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In this paper we establish a theoretical basis for utilizing a penalty-function method 
to estimate sensitivity information (i.e., the partial derivatives) of a local solution and 
its associated Lagrange multipliers of a large class of nonlinear programming problems 
with respect to a general parametric variation in the problem functions. The local solu- 
tion is assumed to satisfy the second order sufficient conditions for a strict minimum. 
Although theoretically valid for higher order derivatives, the analysis concentrates on 
the estimation of the first order (first partial derivative) sensitivity information, which 
can be explicitly expressed in terms of the problem functions. For greater clarity, t h e  
results are given in terms of the mixed logarithmic-barrier quadratic-loss function. How- 
ever, the approach is clearly applicable to any algorithm that generates a once differenti- 
able "solution trajectory". 

1. Introduction 

The primary purpose of this paper is the theoretical validation of a 
technique for estimating the sensitivity of a local solution of a general 
mathematical programming Problems to a small parametric variation of 
the problem functions. The solution point in question is assumed to 
satisfy the second order sufficient conditions for strict (locally unique) 
local optimization [11, Theorem 4]. Although the approach allows, in 
theory, for the use of any procedure that generates the appropriate esti- 
mates of the first order Kuhn-Tucker  parameters, it is structured here 
to provide an intimate correspondence with, and exploitation of, a par- 
ticular penalty function algorithm, Although existence results are ob- 
tained for higher order derivatives, the analysis concentrates on the ex- 
plicitly tractable first order (first partial derivative) sensitivity informa- 
tion. 

The main results may be viewed as extensions of sensitivity results 
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and extrapolation results that were presented in [11] (in particular 
Theorems 6 and 17). 

A number of authors have studied the variational behavior of the 
solution value or the set of  solution points of a parametric mathematical 
programming problem. Most of these results, some of  them known for 
some time, appear to be concerned with the continuity of  these entities 
in terms of continuity properties of the point-to-set mapping that de- 
fines the constraint set as a function of the parameter. Results of this 
nature may be found in [2, 8, 9, 13 and 16]. Related results for pro- 
blems having special structure may be found in the literature of para- 
metric programming. At an elemental unstructured level, sufficient con- 
ditions such that any neighborhood of a compact set of local solution 
points (of a given mathematical programming problem) will eventually 
contain a local solution of a related sequence of problems were recently 
given by the author [ 10], in terms of the limiting behavior of the re- 
spective sequence of constraint sets. 

The distinguishing feature of  the sensitivity analysis given in [ 1 1, 
Theorem 6] was the inclusion of results pertaining to the rate o f  change 
of a solution point. It provided: 

(1) a demonstration of the relationship of the second order sufficient 
optimality conditions (for a strict local solution) to the existence and 
behavior of first order variations of a local solution and the associated 
Lagrange multipliers, when the problem functions are subject to para- 
metric variations, 

(2) the explicit representation of the first partial derivatives of the 
local solution point and the associated Eagrange multipliers with respect 
to the problem parameters. The main results here first extend this theory 
to incorporate a larger class of parametric problems, and then synthe- 
size this sensitivity theory with an extension of the penalty function 
extrapolation theory presented in [ 11, Theorem 17, in particular]. 

A generalization of the basic sensitivity results given in [ 11, Theorem 
6] is obtained in Section 2 for a large class of nonlinear programming 
problems involving parametric variation. Essentially, first order (i.e., 
first derivative) sensitivity information is determined for a second order 
local solution and the associated Lagrange multipliers. Closely related 
results have also been obtained by Bigelow and Shapiro [3 ] and Robinson 
[19]. 

A basis for estimating the sensitivity information is established and 
explicitly related to the usual logarithmic-barrier quadratic-loss penalty 
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function algorithm, in Section 3, giving rise to a procedure for calculat- 
ing the desired estimates. Two small examples involving parameters are 
resolved using the indicated method, in Section 4. Also, higher order 
partial derivatives (with respect to the involved parameters) are shown 
to exist under appropriate differentiability assumptions on the problem 
functions, and other extensions (e.g., to parametric programming) are 
suggested. An indication of the status of computational implementation 
of the approach, and acknowledgements, are briefly summarized in Sec- 
tion 5. A few remarks concerning related results are given in Section 6. 

2. First-order sensitivity analysis of a second order local solution 

We give a generalization of a result presented in [ 11 ]. Consider the 
problem of determining a local solution x(e) of 

min x f(x, e), 
P(e.) 

s.t. gi(x,e)>~O (i= 1 ..... m), hj(x,e)=O q=l , . . . , p ) ,  

where x ~ E n and e is a parameter vector in E k. 
The Lagrangian of P(e) is defined as 

m p 

L(x,u ,w,e)-~f(x ,e)- i~  1 uigi(x,e)+ ~wlh](x ,e ) .  (2.1) = j=l 

Throughout the paper, if there are no inequality constraints, simply 
suppress reference to the functions gi and the associated multipliers ui, 
and do likewise for the h /and  w / i f  there are no equalities. In all cases, 
the gradient vector and Hessian matrix operators, respectively denoted 
by V and V 2, are taken with respect to x. 

We are interested in analyzing the behavior of a local solution x(~) 
of P(~) when ~ is subject to perturbation. For simplicity in notation, we 
shall assume that ~ = 0 (without loss of generality). Conditions will be 
given tha t  guarantee the existence of a local solution x(e) of P(e) in a 
neighborhood of x(0) for e in a neighborhood of 0, along with the as- 
sociated optimal Lagrange multipliers u(e) and w(e). Under these condi- 
tions, the components of all these quantities are shown to be uniquely 
defined differentiable functions of e in a neighborhood of e = 0. 

We shall make critical use of the second order sufficient conditions 
for a locally unique solution of a mathematical programming problem. 



290 A.V. Fiacco / Sensitivity analysis for nonlinear programming 

These conditions are now well known, although they have only recently 
been seriously exploited. They are developed and verified in [ 11, Theo- 
rem 4] and in a number of papers (several of  which are given as refer- 
ences in [11 ]). For the problem P(0), the conditions may be stated as 
follows. 

Lemma 2.1 (second order sufficient conditions for a local isolated min- 
imizing point of  problem P(0)). I f  the functions defining problem P(O) 
are twice continuously differentiable in a neighborhood o f  x*, then x* 
is a local isolated (locally unique) minimizing point  o f  problem P(O) i f  
there exist (Lagrange multiplier) vectors u* ~ E m and w* ~ E p such 
that the first order K u h n - T u c k e r  conditions hold, i.e., 

gi(x*, O) >10 (i= l , . . . ,m)  , 

hj(x*~O) =0 (] = 1 , . . . , p ) ,  

u*gi(x*, O) = 0 (i = 1, ..., m ) ,  

u F > 0  ( i = l , . . . , m ) ,  

m 

vL(x* ,  u*, w*, 0) - v f (x* ,  0) - ~ u 7 v gi(x*, O) 
i=1 

P 

+ ~ wj* Vhj(x*; 0) = 0 
]=1 

and further i f  y TV2L (x*, u*, w*, 0) y > 0 for  all y 4= 0 such that 

yT Vgi(x ,  ' O) >1 0 

yT Vgi(x,  ' O) = 0 

yT Vh/(x*, 0) = 0 

for all i, where gi(x*, O) = 0 , 

for  all i, where u* > 0 , 

(y= 1 , . . . , p ) .  

These conditions are applicable whether or not constraints are present, 
and whether  or not  there exists a vector y as indicated. If there are no 
constraints, the above conditions are logically valid if reference to the 
constraints is suppressed. This leads to the well known sufficient condi- 
tions that x* be an isolated local unconstrained minimizing point of  
f(x,  0): Vf(x*, 0) = 0 and yT v2f(x*, 0) y > 0 for al ly  4= 0. If there are 
no y v~ 0 satisfying the indicated relationships with the constraint  gra- 
dients and the first order K u h n - T u c k e r  conditions hold, then (x *, u *, w *) 
again logically satisfies these second order conditions. As a point of  inter- 
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est it is observed that in such a case there must be n linearly indepen- 
dent binding-constraint gradients at x*. For example, if P(0) is a linear 
programming problem and the second order conditions hold at 
(x*,u*,w*), then, since V2L -= 0, there can be no y ~ 0 satisfying the 
given inequalities, i.e., x* must be a vertex of the feasible region de- 
fined by the constraints of P(0). 

A slight strengthening of the second order strict sufficiency condi- 
tions at (x*, 0) and the appropriate differentiability assumptions lead 
to the following generalization of a result proved in [11, Theorem 6]. 

(ii) 

(iii) 

(iv) 

then 
(a) 

(b) 

Theorem 2.1 (first-order sensitivity results for a second order local min- 
imizing point x*). I f  

(i) the functions defining P(e) are twice continuously differentiable 
in (x, e) in a neighborhood of(x*,  0), 
the second order sufficient conditions for a local minimum of  P(O) 
hold at x*, with associated Lagrange multipliers u* and w*, 
the gradients Vgi(x*, 0) (for i such that gi(x*, O) = 0) and 
V hi(x*, O) (all j) are linearly independent, and 
u* > 0 when gi(x*, O) = 0 (i = 1, ..., m) (i.e., strict complemen- 
tary slackness), 

(c) 

x* is a local isolated minimizing point o f  P(O) and the associated 
Lagrange multipliers u* and w* are unique, 
for e in a neighborhood o f  O, there exists a unique once eontinu- 
ously differentiable vector function [x(e), u(e), w(e)] satisfying 
the second order sufficient conditions for a local minimum o f  
problem P(e) such that [x(O), u(O), w(O)] = (x*,u*,w*) and, 
hence, x(e) is a locally unique local minimum of  P(e) with asso- 
ciated unique Lagrange multipliers u(e) and w(e); and 
strict complementarity (with respect to u(e) and the inequality 
constraints) and linear independence o f  the binding constraint 
gradients hold at x(e) for e near O. 

Proof. (Part (a) follows if (b) is true. It is stated separately because it 
follows without differentiability in e or assumption (iv).) The fact that 
x* is a local isolated minimum of P(0) follows from assumption (ii), 
which also implies that vL(x*,u*,w*,O)= 0. The uniqueness of u* and 
w* follows from this and assumption (iii). 
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The proof  of  (b) follows from a straightforward application of the 
implicit function theorem [14] to the first order necessary optimality 
conditions of  P(e), as follows. 

Assumption (ii) implies the satisfaction of  the K u h n - T u c k e r  first- 
order conditions 

VL(x,  u, w, e) = 0 , 

uigi (x ,  e) = 0 (i = 1, ..., rn) , (2.2) 

hj(x, e) =0  (j= l .... , p ) ,  

at (x, u, w, e) = (x*,u*,w*,O).  Assumption (i) implies that  the system 
of eqs. (2.2) is once continuously differentiable in all the arguments, so 
in particular, the Jacobian matrix of  (2.2) with respect to (x ,u ,w)  is 
well-defined. It follows that assumptions (ii), (iii) and (iv) imply the 
existence of the inverse of this matrix at (x*,u*,w*,O).  (An immediate 
extension of [ 11, Theorem 14], and now a well-known result.) 

The assumptions of  the implicit function theorem with respect t o  
eqs. (2.2) and the particular solution (x* ,u*,w*,O)  are satisfied and we 
can conclude that in a neighborhood of (x* ,u* ,w*) ,  for e in a neighbor- 
hood of  0, there exists a unique once continuously differentiable func- 
tion [x(e), u(e), w(e)l satisfying (2.2), with [x(0), u(0), w(0)] = 
(x* ,u* ,w*) .  The  satisfaction of (2.2) means that for e near 0, x(e)  is a 
first-order K u h n - T u c k e r  point of  problem P(e), with associated Lagrange 
multipliers u(e) and w(e).  

To complete the proof  of(b),  we first note that the binding constraint 
set at x(0) remains the same for e near 0. This is seen immediately for 
the equalities h/[x(e),e] = 0, since x(e) satisfies (2.2) near e = 0. For  
the inequalities, we have from (2.2) that ui(e) gi[x(e),e] = 0 (i = 1, ..., m) 
near e = 0. Ifgi[x(O),O] = 0 for some i, then ui(O) > 0 (by strict comple- 
mentary slackness), hence ui(e ) > 0 near e = 0 by continuity ofu(e)  and 
we conclude that gi[x(e),e] = 0. If gi[x(O),O] > 0 for some i, then 
gi[x(e),e] > 0 near e = 0 by continuity. Therefore, defining 

B(e) - {i Ig i [x(e)  , e]  = 0} , 

we have concluded that B(e) = B(0) for e near 0. (The argument also 
shows that strict complementary slackness is preserved for e near 0, 
proving the first part of  (c).) 

We now assert that the second order sufficient optimality conditions 
(Lemma 2.1) hold at Ix(e), w(e), w(e)] for any e near 0. We must show 



A. V. Fiacco / Sensitivity analysis for nonlinear programming 293 

that there exists 6 > 0 such that for any e such that lel < 5, it follows 
that j r (e)  V2L[x(e), u(e), w(e)] y(e)> 0 for any vector y(e)4= 0 such 
that yT;(e) vgi[x(e),e] = 0 for all i ~ B(0) and yT(e) Vhj[x(e),e] = 0 for 
all j. This may be proved as follows. Suppose the assertion is false. Then 
there must  exist e k > 0 a n d y  k 4= 0 such that ex -+ 0, (y~)T Vgi[x(ek), @ = 
0 for all i e B(0), (yk)T Vhj [X(ex), e/c ] = 0 for all j, and (y/C)T V2L [x(ek) ' 
u(e~) w(elc), elc] yk <~ 0 for k = 1,2, .... Without loss of  generality, as- 
sume [lyk[I -- 1 for all k. Select a convergent subsequence of{yX}, relabel 
the subsequence {yk} for convenience and call the limit j .  Taking limits 
as k-+ +~ and recalling assumption (i) yields the conclusion that 
yT V2L(x,,u,,w,,O) y <<. 0 for some j such that Ilyll = 1, yT Vgi(x* ,O ) = 

0 for all i 6 B(0) and yT Vhj(x*,O) = 0 for all j. But this is a contradic- 
tion of  assumption (ii) and the proof  of  the assertion is complete. 

Since it was established that [x(e),u(e),w(e)] uniquely solves (2.2) 
for e near 0, it follows that x(e) is a locally unique local minimum of 
P(e) with associated unique Lagrange multipliers u(e) and w(e), com- 
pleting the proof  of  part (b). 

• The preservation of strict complementary slackness was proved above. 
The preservation of  the linear independence of the (say) r + b binding 
constraint gradients at x(e) for e near 0 follows directly from the fact 
that an (r + p) by (r + p) Jacobian of the system of  equations defined 
by the constraints that are binding at x(0) must be nonsingular, along 
with the assumed continuity of  the first derivatives. 

Bigelow and Shapiro [3] have obtained a similar generalization and an 
extension for the problem with inequality constraints, removing the re- 
quirement of  strict complementary slackness and showing the existence 
of  directional derivatives of  a solution and the associated Lagrange mul- 
tipliers. Robinson [ 19] also has recently proved an analogous theorem 
under weaker assumptions (specifically, assumption (i) is replaced by 
the assumption that the second partial derivatives of  the problem func- 
tions with respect to x are jointly continuous in (x,e)), and demonstra- 
ted the resulting continuity of  (x(e),u(e),w(e)) near e = 0. He also ob- 
tains bounds on the variation of  (x(e),u(e),w(e)) for small changes in e 
and uses these to determine convergence rates for a large class of  algo- 
rithms, 

The conditions of the theorem are assumed to hold in the remainder 
of  this section. 

With (x,u,w) = [x(e),u(e),w(e)], eqs. (2.2) are identically satisfied for  
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e near 0 and can be differentiated with respect to e to yield explicit ex- 
pressions for the first partial derivatives of  this vector function. Define 
the matrices, 

d x / d e  = [ax i /ae  / ] (i = 1 . . . .  , n; j = 1 . . . . .  k )  , 

d u / d e - -  [~ui /~e  1] (i = 1, ..., m ; j  = 1, ..., k )  , 

d w / d e  = [~wi /ae  ]] ( i = l , . . . , p ; j = l , . . . , k ) .  

For  convenience, let y ( e )  - [ x ( e ) , u ( e ) ,w (e ) l  T, and also define 

~/~e(Vx  L)=- [OaL/Oxi~ej] T (i = 1 . . . .  , n ; j =  1 . . . .  , k ) ,  

agi/ae - [Ogi/aea,..., Ogi/aek]T (i = 1, ..., m )  , 

~h l /~e - -  [~hj/Oe 1 . . . .  ,Ohj/Oek] T (j = 1 . . . .  , p ) .  

It follows from the fact that the total derivative of  (2.2) with respect 
to e is zero for e near 0 that 

M ( e )  d y ( e ) / d e  = N ( e )  , (2.3) 

where 

M ( e )  - 

-V2L - V g l ,  ... - Vgm 

Ul VTgl g l  0 

Urn VTg m 0 grn 

Vh I 
0 

Vhp 

V h l ,  "", Vhp 

0 

0 

the Jacobian matrix of (2 .2)  with respect to ( x , u , w ) ,  evaluated at [y(e),e] 

and 

I ~ ~gl ~gm ~hl ~hplT 
N(e ) -~  - - ~  (VxL), - u  1 0e ....  ' -Urn Oe ' Oe ' " " - - - ~ - e j  , 

the negative of  the Jacobian matrix of  (2.2) with respect to e, evaluated 
at [y(e) ,e] .  Since M is nonsingular for e near 0, it follows that 

d y ( e ) / d e  = M - l ( e )  N (e )  , (2.4) 
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where the quantities involved are defined above and e is in a neighbor- 
hood of  0. In particular, we have that 

dy(O)/de = ( M * ) - I N  * , (2.5) 

wherey(0)  = [x(O),u(O),w(O)l T = (x *,u*,w*) T, M* =M(0) and N* = N(0). 
Also, since the quantities involved in (2.4) are all continuous in their 
arguments (from the assumptions of  the theorem and the consequen- 
ces o f  the implicit function theorem), (2.5) is also the limit of  (2.4) as 
e ~ 0, i.e., 

lim dy(e) _ dy(0) (2.6) 
e-~ 0 de de 

It is important to note that dy(e)/de, a first-order estimate of the 
variation of  an isolated local solution x(e) of  problem P(e) and the asso- 
ciated unique Lagrange multipliers u(e) and w(e), can be calculated 
from (2.4) once [x(e),u(e),w(e)l has been determined. In particular, 
dy(O)/de, and hence a first order Taylor series approximation of  
[x(e),u(e),w(e)] in a neighborhood of  e = 0, is available from (2.5) 
once (x*,u*,w*) is known. This is summarized in the following state- 
ment.  

Corollary 2,1 (first order estimation of [x(e),u(e),w(e)] near e = 0). 
Under the assumptions o f  Theorem 2.1, a first order approximation o f  
[x(e),u(e),w(e)] in a neighborhood ore = 0 is given by 

u(e) ~= u* + (M*)-IN*e ÷ o(llell), (2.7) 
/ 

(e)J w 

where (x*,u*,w*) = [x(O),u(O),w(O)l, M* = M(O), N* = N(O), and M(e) 
and N(e) are defined as in (2.3). 

3. Approximation of first order sensitivity information using a penalty 
method algorithm 

In the previous section, a first order analysis is given of the variation 
of a local isolated solution x(e) of  a general problem P(e), along with 
the associated Lagrange multipliers [u(e),w(e)], when e is perturbed 
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about e = 0. As indicated, once ( x* ,u* ,w*) -  [x(O),u(O),w(O)] is avail- 
able, dy(O)/de can be calcualted using (2.5) and hence [x(e),u(e),w(e)] 
can be estimated (in some neighborhood of  e = 0) using eq. (2.7). 

Although this result is of considerable interest, in practice it is desir- 
able to be able to estimate dy(O)/de without requiring prior determina- 
tion of (x*,u*,w*). It develops that the class of algorithms based on 
twice-differentiable penalty functions can readily be adapted to provide 
this estimate, without additional assumptions. Essentially, we formu- 
late an appropriate penalty function for the problem P(e), thus absorb- 
ing the problem parameter directly into the penalty-function. It fol- 
lows that the assumptions of Theorem 2.1 guarantee the existence of a 
trajectory of unconstrained local minima of  the penalty function con- 
verging to x*. For changes in e near e = 0, perturbations of  this trajec- 
tory are shown to relate closely to perturbations of x(e). 

For convenience and to be more specific, the results will be given in 
terms of the logarithmic barrier function combined with a Courant 
quadratic penalty term to handle the equality constraints [ 11, p. 84]. 
For the problem P(e), this function is written 

m p 

W(x,e,r)-  f(x,e) - r  ~i=l ln gi(x,e) + (l r) ~ l  h2(x,e) (3.1) 

where r is a positive real parameter. The analysis can be carried out in 
a similar fashion for any twice-differentiable penalty function. Numer- 
ous interesting properties involving such penalty functions have been 
documented in [ 11 ] and elsewhere. For our present purposes, we shall 
prove the following results that are extensions of results obtained in 
[ 11, Theorems 6 and 17 ]. 

To avoid various trivial exceptions, it is assumed in the following 
that at least one constraint is present in P(e). 

Theorem 3.1 (approximation of first order sensitivity results and deter- 
mination of  estimates from W(x,e,r)). I f  the assumptions o f  Theorem 
2.1 hold, then in a neighborhood about (e,r)= (0,0) there exists a 
unique once continuously differentiable vector function [x(e,r),u(e,r), 
w(e,r)] satisfying 

VL(x,u,w,e) = 0 ,  

uigi(x,e) = r (i = 1, ..., m) , (3.2) 

hj(x,e) = wjr (j = 1, . . . , p ) ,  
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with [x(O,O),u(O,O),w(O,O)] = (x* ,u*,w*) ,  and such that for  any (e,r) 
near (0,0) and r > 0, x(e,r) is a locally uniqueuncons tra ined  local min- 
imizing point  o f  W(x,e,r), wi th  gi[x(e,r),el > 0 (i = 1 . . . .  , m)  and 
v 2W[x(e,r),e,r] positive definite. 

Proof. The existence of  [x(e,r),u(e,r),w(e,r)] as described follows f r o m  
the implicit function theorem [ 14] using the same argument as is used 
in Theorem 2.1 to prove part (b), noting that the Jacobian matrices of  
(3.2) and (2.2) coincide when r = 0. 

The fact that gi[x(e,r),e] > 0 for all i such that gi(x*,O) > 0 follows 
for all (e,r) near (0,0) since gi(x(e,r),e] -+ gi(x*,O) as (e,r) -+ (0,0). For  i 
such that gi(x*,O) = 0, the fact that ui(e,r) -~ u* > 0 (the latter inequal- 
ity deriving from the assumption of  strict complementary slackness) as 
(e ,r ) - .  (0,0) implies from (3.2) that gi[x(e,r),el = r /ui (e ,r)> 0 for r > 0  
and (e,r) near (0,0). Thus, gi[x(e,r),e] > 0 (i = 1, ..., m)  providing r > 0 
and (e,r) is sufficiently close to (0,0). 

By the definitions (3.1) of  W and (2.1) of  L we have that 

m p 

(r/gi) V gi +/~1 (hi~r) Vhj , (3.3) V W =  f - i = l  "= 

m p 

VL = v f  - i=lE bl i ~Tg i + f~l'= w] Vh] . (3.4) 

Consequently, providing only that gi ~ 0 (all i) and r ¢ 0, so that W is 
well-defined, any solution (x ,u ,w)  of  the system (3.2) yields V W = VL = 0. 
In particular, this is true for (x ,u ,w)  = [x(e,r),u(e,r),w(e,r)] and we can 
conclude (using also the fact proved in the previous paragraph) that 

W[x(e,r),e,r] =- v L[x(e,r),u(e,r),w(e,r),e] = 0 

for r > 0 and (e,r) sufficiently close to (0,0). Thus, t he  first order neces- 
sary condition that x(e,r) be an unconstrained minimizing point of  
W(x,e,r) is satisfied (for (e,r) as indicated). 

In the remainder of the proof  assume, for convenience of  notation, 
that all functions are evaluated at [x(e,r),u(e,r),w(e,r)] unless otherwise 
specified. The positive definiteness of  vzw for e near 0 and r > 0 and 
small can be shown as follows. 
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We make use of the following facts. Differentiating (3.3) and (3.4) 
with respect to x and comparing yields 

m p 

vzJ4] = vZL + i=1 ~ (r/g2) Vgi VTgi + ( l / r )  y=~l vh]VThj 

and pre- and post-multiplying by any vector Z and using (3.2) gives 

m 

zT~72W Z = z T v 2 L  Z + ~ (ui/gi) (ZTVgi)2 
i=1 

P 

+ (1 / r ) /~  1 (ZTvhj )  2 . (3.5) 

Also, recall that the second-order sufficient conditions, together with 
strict complementary slackness, imply that 

g T V2L (x* ,u* ,w*,O)  Z > 0 for Z va 0 such that 

Z T Vgi(x*,O) = 0 for all i 6 B* - (i: gi(x*,O) = 0} , (3.6) 

Z T Vhj(x*,O) = 0 (] = 1, ..., p ) .  

Consider any sequence (ek,r k} with r k > 0 and (ek,r ~) -+ (0,0). If suf- 
fices to show that T 2 Z~ V I¢~ Z k > 0 for k large, where (Z k} is an arbitrary 
sequence of unit vectors in E n and vzwk denotes the Hessian of IV 
evaluated at (ek,rk). For convenience, let 

g* - gi(x*,O), h 7 - h/(x*,O), and L* - L (x* ,u* ,w* ,O)  . 

Select a convergent subsequence of (Z k }, relabel it (Z k } for con- 
venience, and call the limit (unit vector) Z. If ZV g* ~ 0 for some 
i 6 B *  or if Z v h ~ ¢  0 for some j, then taking limits in (3.5) with 
Z = Z k and (e,r)= (ek, r k) and recalling the assumption of strict com- 
plementary slackness, yields the conclusion that T 2 Z k v  W k Z  k - + + ~  as 
k -~ +~. If zTv g* = 0 for all i ~ B* and z-Tvh~ = 0 for j  = 1, ..., p, then 
we again take limits over the appropriate subsequence in (3.5) to con- 
clude that 

lira infk ZT V2WkZ k >t lim i n f Z  T V2LkZk  = ZrV2L*Z  > 0 ,  

because of (3.6) (assumption (ii)). 
This shows that Z T V'2W Z ~> 0 for all Z =/= O, providing r > 0 and (e,r) 
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is close to (0,0), i.e., V2W is positive definite for all such (e,r). This 
implies that x(e,r)  is a unique local minimizing point  of  W(x,e,r) for 
any e near 0 and r > 0 and small, completing the proof. 

With (x ,u ,w)  w = [x(e,r),u(e,r),w(e,r)] T - y(e,r),  eqs. (3.2) are identic- 
ally satisfied for (e,r) in a neighborhood of  (0,0). Using the chain rule, 
differentiation of  (3.2) with respect to e yields 

M(e,r) dy(e,r) /de = N(e,r)  , (3.7) 

the precise analogy of  (2.3), where the quantities in this equation cor- 
respond term by term with those appearing in (2.3), except that the 
p Xp zero matrix (the last p rows and columns) that appeared in the 
Jacobian matrix M(e) is now replaced in the new Jacobian matrix M(e,r) 
by a p X p diagonal matrix with each diagonal element equal to - r .  Cor- 
responding to eqs. (2.4) and (2.5), respectively, we have, since M(e,r) is 
nonsingular for (e,r) near (0,0), that 

dy(e,r) /de = M - l ( e , r )  N(e~r) , (3.8) 

dy(0,0)/de = M- l (0 ,0 )  N(0,0) = ( M * ) - I N  * , (3.9) 

where M* and N* are as defined in (2.5). 
Since the systems of  eqs. (2.2) and (3.2) coincide when r = 0, the 

conclusions of  Theorems 2.1 and 3.1 imply that y ( e , O ) = y ( e )  and 
dy(e, 0)/de = dy(e) /de for e sufficiently close to 0. Hence, from Theorem 
3.1 we can conlcude that for any ~ in a neighborhood of e = 0, 

y(e,r)  -+ y(g, O) = y (~) ,  (3.10) 

dy(e,r) /de ~ dy(~, O)/de = dy(-e)/de (3.11 ) 

as (e,r)-+ (g,O), with (e,r) confined to a neighborhood of  (0,0). In part- 
icular, for (e,r) -~ (0,0), 

y(e,r)  ~ y(O,O) =y(O) = [x(O),u(O),w(O)]T=(x*,u*,w*) T, 
(3.12) 

dy(e,r)/de-+ dy(O,O)/de = dy(O)/de = (M*)- IN * . (3.13) 

Based on these results, it is apparent that we can estimate y(e)  = 
[x(e),u(e),w(e)] T and dy(e) /de  as closely as desired for e near 0, by 
y(e , r )= [x(e,r),u(e,r),w(e,r)] T and dy(e,r)/de,  respectively, providing r 
is sufficiently close to 0. Having obtained a solution y(e,r)  of  (3.2) for 
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(e,r) sufficiently close to (0,0), dy(e,r)/de can be calculated from (3.8). 
Though, in principle, any technique could be utilized that yields a 

solution of (3.2) near (e,r) -- (0,0), we have obviously formulated the 
system (3.2) - which should properly be viewed as a perturbation of  
the first order necessary conditions for a local minimizing point of  pro- 
blem P(e) - such that it is satisfied by [x(e,r),u(e,r),w(e,r)] for r > 0 if 
and only if the logarithmic-barrier quadratic-loss function W(x,e,r) is 
minimized by x(e,r) (with the multipliers u(e,r) and w(e,r) appropriately 
defined, as specified). Thus, the indicated algorithm is the usual penalty 
function procedure based on determining, for fixed e, the unconstrained 
minimizing points(x(e, rk)} of{W(x,e, rk)} for r  k > 0 and r k ~ O, k = 1,2 .... , 
for x such that gi(x,e)> 0 (all i) in an appropriate neighborhood of  
x(0,0) = x*. 

Having determined x(e,rk), an estimate of  x(e) when k is large, the 
Lagrange multipliers (u(e),w(e)) can be estimated from the relations 
ui(e, rk) = rk/gi[x(e, rk),e] , w/(e, rk) = hi[x(e, rk),e]/r k (all i and j). It fol- 
lows that the vector y(e,r k) = [x(e, rk),u(e, rk),w(e, rk)] is' a solution of  
(3.2) and y(e,r k) ~ [x(e),u(e),w(e)] T as k - ,  ~ .  The first partial deriva- 
tives of  y(e,r k) with respect to e can then be obtained from eq. (3.8), 
and would constitute an estimate of  dy(e)/de (according to (3.11)), 
providing k is large and e is near 0. 

An alternative to utilizing eq. (3.8) to calculate dy(e,r)/de is available, 
using the fact that the Hessian of W(x, e,r) is nonsingular at a minimizing 
point x(e,r). This will be seen to have the advantage of  involving a smal- 
ler matrix inverse - that of  the n X n Hessian of If rather than the 
(n + m + p) X (n + m + p) Jacobian matrix M(e,r) appearing in (3.8) - 
and requires only information that is readily available from the If func- 
tion at a minimizing point. In this approach, the penalty function is 
minimized to obtain x(e,r), which determines dx(e,r)/de in terms of  
quantities available from W[x(e,r),e,r] and its Hessian. The multipliers 
and their derivatives can then be calculated to satisfy (3.2), which deter- 
mines these quantities as functions of x,e, and r. The matrix dx(e,r)/de 
is obtained from the following result. 

To avoid any ambiguity, denote by ~(e,r) the trajectory of  local 
minima of  W(x,e,r) whose existence is proved by the theorem. We 
showed that when r > 0 

~(e,r) =-- x(e,r) and d~(e,r)/de - dx(e,r)/de (3.14) 

for (e,r) near (0,0). The following corollary is a direct consequence of  
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Theorems 2.1 and 3.1 and provides a basis for estimating changes in x(e)  
by corresponding changes in 2(e,r).  

Corollary 3.1 (approximation of  x(e)  and dx(e) /de  by Y(e,r) and 
d2(e,r)/de).  Under the assumpt ions  o f  Theorem 3.1, f o r  (e,r) near (0,0) 
and r > O, it f o l lows  that  2(e,r)--, x(e-) and  d2(e,r) /de-~ dx(g) /de  as 
e -+ g and  r -+ O, and  

d f (e , r ) /de  = - { V2W[2(e,r),e,r]} - 1 a/Oe { V W[ 2(e,r),e,r]} . 
, ( 3 . 1 5 )  

Proof. Since the system of  eqs. (2.2) and (3.2) coincide when r = 0, 
it follows from the conclusions of  Theorem 2.1 and 3.1 that, for r > 0, 
and (e,r) near (0,0), 

2(e,r) -+ x(g,O) = x(eD , (3.16) 

df (e , r ) /de  -+ dx(e-,0)/de = dx(e-)/de 

as e ~ g and r --, 0 (where convergence is component  by component ,  in 
all cases). From the fact that ~7 W[Y(e,r),e,r] = 0 and E(e,r) is  once con- 
tinuously differentiable for any e near 0 and r > 0 and small, it follows 
that 

v2W[2(e,r) ,e,r] d2(e ,r) /de  + ~/Oe vW[2(e,r),e,r] = 0 ,  

and since we showed that V2W is positive definite for (e,r) near (0,0) 
and r > 0, we obtain the expression given in (3.15) for d2(e,r)/de.  

This result gives the basis for approximating u ( ~  and w(e-) as well. 
With (e,r) near (0,0) and r > 0, defining 

ui(e,r) = r/gi[2(e,r),e] (i = 1, ..., n ) ,  (3.17) 

~ ( e , r ) -  hj[2(e,r) ,e]/r  (j = 1, ..., p), (3.18) 
since 

~TL [E(e, r), ~(e, r), ~-(e,r), e ] = VW [2(e, r), e,r ] = 0 

it follows that y ( e , r ) -  [Y(e,r),~(e,r),~(e,r)] T is a solution of (3.2). 
Therefore, Theorems 2.1 and 3.1 imply that 

~i(e,r) -+ ui(g,O) = ui(g) (i = 1, ..., m ) ,  (3.19) 

~/(e,r) ~ wi(~,O) = wj(~) (I = 1, ..., p) 

as (e,r) -+ (g,O). 

(3.20) 
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Differentiation of (3.17) and (3.18) with respect to the S th compo- 
nent of  e yields 

~i(e,r) /~e s = (-r/g2i ) dgi/de s 

= (-r/g2i) (VTgiO2(e,r)/~e s + ~gi/aes) (i = 1, ..., m; 

s = l , . . . , k ) ,  (3.21) 

s -- ( l / r )  a hj/ es 

= ( l / r )  (X7rhj~2(e,r)/~es + ahj/~es) (1" = 1, ...,p; 

s = 1, ..., k ) ,  (3.22) 

where the functions are all evaluated at [2(e,r),e]. The previous results 
also imply that the matrices whose components  are given respectively 
by (3.21) and (3.22) converge component-wise as follows. 

d~(e,r)/de -+ du(g,O)/de = du(e-)/de , (3.23) 

d~(e,r)de -," dw(g,O)/de = dw(e-)/de (3.24) 

ase --, g and r-+ 0. 
Consequently, we can estimate y(e) and dy(e)/de by y(e,r) and 

d~(e,r)/de for (e,r) sufficiently close to (0,0) and r > 0. For  any such 
(e,r), these quantities can all be calculated once a local unconstrained 
minimizing point 2(e,r) of  W(x,e,r) has been determined (in the region 
such that gi[x(e,r),e] > 0 (i = 1, ..., m)), in a suitable open set con- 
taining x( e, 0). 

Returning to the problem P(0), it follows that the usual penalty func- 
tion approach utilizing W(x,O,r) to find a local solution of  this problem 
can be used to approximate y ( 0 ) = ( x * , u * , w * )  "r and dy(O)/de. A min- 
imizing sequence {2(O, rk)} of  {W(x,O, rk)} converging to x* is guaranteed 
by Theorem 3.1 for r k > 0 and small. The point 2(0,r k) may be con- 
sidered an estimate of  x*. The quantities involved in the right-hand side 
of (3.15) can be evaluated at e = 0, r = rk, once 2(0,rk)has been deter- 
mined, yielding the estimate 

dx(0)/de -" dY(O,rk)/de =( v2W[~(O, rk),O, rk]}-l~/~e{ VW[2(O,rk),O, rk]} . 

(3.25) 

The associated Lagrange multipliers [u(e),w(e)] and their first partial 
derivatives at e = 0 can then be estimated from 
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u(O) - ~(O,rk), (3.26) 

w(O) - ff~(O, rk), (3.27) 

du(O)/de "- d~(O, rk)/de , (3.28) 

dw(O)/de - d~(O, rk)/de, (3.29) 

where the respective quantities on the right are obtained from the rela- 
tions (3.17), (3.18), (3.21) and (3.22) evaluated at e = 0, r = r k. 

It is important to note, from the point of view of  computational 
implementation, that the inverse Hessian matrix [ 7 2 1 4 ] ]  - 1 of the penalty 
function If that is involved in calculating the estimate dX(O,rk)/de of 
dx(O)/de in (3.25), will already be available if one of the several popular 
variants of the Newton method [11,15], is used to compute the un- 
constrained minimizing point 2(0,r k) of If(x,O,%). An estimate of this 
matrix will be available if a quasi-Newton method [11,15] is used. 
Thus, utilizing any of these well-known procedures for the uncon- 
strained minimizations, much of the information required to calculate 
the sensitivity information by this technique will have already been 
generated in implementing the usual penalty function algorithm. (Of 
course, the second term O/Oe(\7If) appearing in (3.25) is known once 
the problem is specified and need only be evaluated at [2(O, rk),O, rk].) 

The analogous observation holds for the calculation of the first par- 
tial derivatives of the problem functions at 2(0,r k) with respect to e. 
Using the chain rule, we obtain 

df[x(O, rk),O]/de = [dx/de] T Vf  + af/~e , (3.30) 
where 

dr/de =- [df/del, ..., df/dek] T and 

~f/Oe = [~f/~c1,  ..., ~ f /~ek]  T , 

and all arguments are evaluated at e = O, r = r k. The vector of partials 
~f/Oe will be known once the problem is specified and need only be 
evaluated. The gradient Vf will normally have already been calculated 
at 2(O,rk), in applying the usual penalty function algorithm. Thus, the 
work requited to obtain the estimate 

df[x(O),e]/de - df[2(O, rk),O]/de 

is considerably reduced. The same applies to the gi and hi, the deriva- 
tives of which appear in (3.21) and (3.22). 
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4. Examples and extensions 

The application of the previous theoretical results for estimating sen- 
sitivity information may be illustrated by the following simple examples. 

Example 1. 

min x ,  
Pl(e) 

s. t .  x / >  e, x C  E 1 . 

The solution of  the problem is given uniquely by x ( e )  = e, for any e. 
The hypotheses of  Theorem 2.1 may be readily verified for this pro- 
blem. (Note that the second order sufficient optimality conditions are 
satisfied in a logical sense, since there are no nonzero vectors orthogonal 
to the binding constraint gradients.) The Lagrangian (2.1) is given by 
L ( x , u , e )  = x -  u ( x -  e) and the first order K u h n - T u c k e r  conditions 
yield u ( e )  = 1. We thus find 

d x ( e ) / d e  = 1, d u ( e ) / d e  = 0 for all e .  

The logarithmic barrier function (3.1) for this problem is W(x ,e , r )  

x - r ln(x - e), uniquely minimized for x > e and any r > 0 by x ( e , r )  = 

e +r.  Hence, for any value o f e , x ( e , r )  ~ e = x ( e )  as r -~ 0 and dx (e , r ) / de  ==- 

1 = dx(e)/de, illustrating the conclusions o f  Corollary 3.1. Also, since 
u(e,r)  =- r / g [ x ( e , r ) l ,  with g[x (e , r ) ]  - x ( e , r )  - e = r, we have that u(e,r)  -- 

1 = u ( e )  and d u ( e , r ) / d e  = 0 = d u ( e ) / d e  for all r. 
For this example, the solution x ( e )  of  P(e)  is unique and differenti- 

able for any  value of  e, and it is noted that the corresponding estimates 
using the penalty function are valid for any  e. This might have been 
anticipated by Theorems 2.1 and 3.1 and Corollary 3.1, since the re- 
quired assumptions are satisfied for any e. 

Example 2. 

P2(e) 
rain X 1 + e l X 2 ,  

s.t. g l ( x , e ) -  - e  2 x 2 + x 2>>-0,  

g2 (x , e )  - - x  1 >>- 0 ( x  E E 2) . 

The first order K u h n - T u c k e r  conditions imply that the solution and 
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the associated Lagrange multipliers are uniquely given by 

Xl(e ) = - l / 2 e l  e2 , x2(e ) = l / 4 e l e  222 , 

Ul(e ) = e 1 , u2(e ) = 0 ,  

where e = (el,e2), for any value o f  e such that e 1 > 0 and ele 2 v ~ 0. 
We assume that the components  of  e are so restricted in the following. 
It is easily verified that the second order conditions hold for [x(e),u(e)] 
as given, and hence it is observed that all the hypotheses of  Theorem 
2.1 are satisfied for any value of  e as indicated. 

It follows that 

and 

dx(e) [dxl(e) d x 2 ( e ) t =  [ 1/2e e2' 
de -= L -~e ' de !l _le le32, 

du(e) 7 d U l ( e ) d u 2 ( e ) l  I 10001  
de - L ~ de  ' de = " 

-1 /2e~e  2] 

l/2+ j 

These matrices, whose coefficients give the desired first-order sensitivity 
information, can also be calculated directly from (2.4). 

To estimate these quantities, we use the logarithmic barrier func- 
tion (3.1), which for our exampl e is 

W ( x , e , r ) -  x I + elX 2 r ln(x 2 2 2 - - e2Xl) - r l n ( - x l ) .  

As usual, r > 0 and the function is minimized over the set of  points 
satisfying the constraints with strict inequality as r--" 0. From the re- 
quirement of  stationarity, VW(x,e,r)  = 0, we find that W(x,e,r) is min- 
imized uniquely (over the indicated region) by 

- 1  - (1 + 8ele2r)  1/2 r 
x l ( e , r )  = , x 2 ( e , r )  = e x (e,r) + - -  , 

4e 1 e 2 e 1 

for any r > 0. As expected from the theory, xl(e,r)-~ - 1/2el e2 = x 1 (e) 
and x2(e;r) -+ 1/4e2e 2 = x2(e ) as r -, 0. 

The Lagrange multipliers associated with X(e,f) a r e  given by 

r r 
Ul (e,r ) - _ - g l [ x ( e , r ) , e l  r / q  el ' 
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r r 
u 2 (G r) = g2 [x(e, r), el - - x  I(G r) " 

It fol lows that  Ul(e,r  ) - Ul(e ) and u2(e,r  ) --> 0 = u2(e ) as r -> 0. 
Calculating first derivatives with respect  to e we obta in  

dx l (e , r )  _ 1 6 e l e 4 ( l +  8e l e2r ) -1 /2  r + 4e22 [ 1+(1+ 8ele~r)U2] 

del  16e~ e 4 

dx l(e,r  ) _ - 3 2 e ~  e 3 ( l +  8e 1 e 2 r ) - l / 2 r +  8e le  2 [1+( 1+ 8e le2r)  1/2 ] 

de2 16el 2 e 4 

It fol lows that  d x l ( e , f ) / d e  1 -~ 1/2e2e 2 = dx l ( e ) / de  1 and 
d x l ( e , r ) / d e  2 -+ 1 / q e ~  = dx l (e ) /de2 ,  as r -+ 0. 

One can also verify that  

dx2(e,r)  _ 2 e 2 x l ( e , r )  d x l ( e , r )  r 
de 1 de 1 e 2 ' 

dx2(e ' r)  2 e 2 x l ( e , r )  dXl (e ' r )  
de 2 - de~- -  + 2e2x~(e ' r ) "  

Taking limits yields dx 2 (e,r) /de I -> - 1/2e~e 2 = dx2(e) /de  2 and 
dx2(e ,r ) /de  2 -+ - 1/2e~e~ = dx2(e) /de  2 as r -+ 0, as desired. Thus, 
dx(e , r ) /de  -+ d x ( e ) / d e  as r -+ 0, c o m p o n e n t  by  componen t ,  as conc luded  
f rom the theory .  

Finally,  f rom the ~revious calculat ion of  u(e,r),  we have that  

du(e ,r)  _ 
de 

r dx l ( e , r )  

1, Xal (e,r) de 1 

r dx  1 (e,r) 

O, x~ (e,r) de2 
 I::l 

as r -~ 0, and the first order  results are comple te .  
No te  that ,  as in the previous example,  the results are valid for  a se t  

of  values o f  e. In this case, the condi t ions  implying exis tence and con- 
vergence of  the  quanti t ies  obta ined  above are satisfied as long as e 1 > 0 
and e le  2 4: 0. Thus,  for b o t h  examples  the results go well b e y o n d  the 
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calculation and estimation of sensitivity information at a point (for a 
given value of e), and essentially provide a "parametric analysis". The 
indicated functions exist for a large set of values of e and the functions 
depending on the penalty parameter r converge pointwise in e to their 
indicated limits as r -+ 0. 

These examples suggest that the theoretical results obtained in Sec- 
tions 2 and 3 can be extended, under appropriate conditions, to allow 
for a parametric analysis (i.e., a sensitivity analysis in the large). Such 
would appear to follow, noting that the proofs of the main results 
hinge primarily on the implicit function theorem applied to the K u h n -  
Tucker conditions of problem P(0) and on an appropriate perturbation 
of those conditions. The respective results are valid in a neighborhood 
of any e or (e,r) for which the conditions (satisfying the hypotheses of 
the implicit function theorem) are assumed to hold. It appears that we 
need only invoke the analogous conditions for every e or (e,r) in the 
sets in which these parameters are allowed to vary, to establish the val- 
idity of the conclusions in a "neighborhood" of these sets. This argu- 
ment  remains to be investigated. 

We conclude with two immediate extensions that may lead to addi- 
tional developments of this theory. 

The following corollary of Theorem 2.1 is an immediate implication 
of well-known extensions of the implicit function theorem [4,14]. 

Corollary 4.1 (existence of higher order derivatives). I f  the conditions 
o f  Theorem 2.1 hoM, with the assumed order o f  differentiability being 
k +  1 (k~> 1), then y(e)  = - [x(e),u(e),w(e)] T E C tc in a neighborhood o f  
e = O. I f  the problem funct ions are analytic in (x,e) in a neighborhood 
o f  (x*,O), then y(e)  is analytic in a neighborhood o r e  = O. 

Proof. The existence and continuity of the higher order partial deriva- 
tives and analyticity results from the implicit function theorem and its 
extensions applied to the system of eq. (2.2) as in the proof  of  Theorem 
2.1. 

The following corollary of Theorem 3.1 is also, analogously, an imme- 
diate consequence of the same extensions if the implicit function theorem 
and the fact that the systems of eqs. (2.2) and (3.2) coincide when r = 0. 
The first part precisely parallels Corollary 4.1. 
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Corollary 4.2 (existence and convergence of higher order derivatives of 
y(e,r)). I f  the assumptions o f  Theorem 3.1 hold and the assumed order 
o f  differentiability is k + 1 (k >~ 1), then 

y(e,r) - [x(e,r),u(e,r),w(e,r)] T ~ Ck 

in a neighborhood o f  (e,r) = (0,0). I f  the problem funct ions are analytic 
in (x,e) in a neighborhood o f  (x*,O), then y(e,r) is analytic in a neighbor- 
hood o f  (e,r) = (0,0). Furthermore, 

y(e,r) ~ y(e) and dyf(e,r)/de/ ~ dyJ(e)/de ! (/= 1 .... , k) 

as r ~ O, for  (e,r) near (0,0). 

Proof. The existence and continuity of the higher order partial deriva- 
tives and analyticity results from the implicit function theorem and its 
extensions applied to the system of eqs. (3.2) as in the proof of Theorem 
3.1. From this and the fact that (2.2) and (3.2) coincide when r -- 0, 
we conclude that 

y(e,r) -~ y(e,O) = y(e) , 

d@(e,r)/de ] --> d/y(e,O)/de j = d]y(e)/de ] (j = 1,.. . ,  k) 

as r -* 0, in a neighborhood of (e,r) = (0,0). 
These results are not pursued further in this paper. They could have 

application, e.g., in providing a basis for estimating the parametric vec- 
tor function x(e) by developing each component of x(e) as a power 
series in e, yielding the estimate ~(e). This is precisely analogous to the 
extrapolation theory developed for estimating the course of a minim- 
izing trajectory (in terms of the involved parameter) in penalty func- 
tion methodology [ 11, Chapter 5 and Chapter 8, Section 8.4]. Similarly, 
x(e,r) could be developed in a power series 2(e,r) in (e,r). For r near 0, 
Sc(e,r) may be an adequate estimate of 2(e). To construct $c(e,r), we 
could utilize the penalty function method based on W(x,e,r) to obtain 
several values of x(e,r) satisfying (3.2) for r > 0 and fixed, correspond- 
ing to several values of e in a suitable domain. 

5. Computational implementation and acknowledgments 

Garth McCormick primarily developed the basic sensitivity and extra- 
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polation theory presented in [11, Theorem 6 and Chapter 5]. As indi- 
cated, Theorems 2.1 and 3.1 are a generalization of some of these results. 
The idea of using the penalty function approach for estimating the sen- 
sitivity of a solution of a mathematical programming problem to per- 
turbations emerged from discussions with McCormick and, subsequent- 
ly, with Beverly Causey, who first implemented the technique [7] with 
an experimental computer program developed at the Research Analysis 
Corporation (RAC). 

Charles Mylander, also at RAC, corrected and revised the Causey pro- 
gram, recoded this for computer implementation using the SUMT code, 
and gave a description of a computational procedure and the code in 
[ 17]. Recently, in a research study conducted under the author's direc- 
tion at The George Washington University, Robert Armacost, coordin- 
ating with Mylander, further expanded the RAC-Mylander program and 
implemented it on the IBM 360/50 at The George Washington University 
Computer Center. Armacost obtained excellent results for several pro- 
blems, including a number extracted from those reported in [5 ], intro- 
ducing a variety of parametric perturbations in these problems. These 
results appear in a recent paper [1]. A users' guide to the use of the 
computer program (called SENS-SUMT) was prepared by Mylander 
and Armacost and appeared as a George Washington University tech- 
nical paper [ 18]. 

The author is indebted to all the above for helpful discussions and 
insights. He also gratefully acknowledges the referees' thorough review, 
which resulted in several important Corrections and modifications. 

6. A note concerning related results 

Zoutendijk [22] has suggested using a barrier function to incorporate 
a (scalar) parameter, primarily, it appears, to enforce satisfaction of a 
parametric constraint for all values of the parameter between specified 
bounds. 

The barrier function involved is the inverse type (i.e., ~ 1/gi) and the 
parametric barrier terms are integrated (mathematically) over the para- 
meter space. This approach apparently has potential practical applica- 
tions and has recently received some attention in the applied literature 
[ 12,20]. In fact, a very successful (and apparently the first) implemen- 
tation of a generalization of the Zoutendijk idea was reported by 
Thornton and Schmit [21 ]. 
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Though the idea of handling the parameter by way of a penalty func- 
tion obviously coincides with the basic idea of the approach treated 
here, the motivation, formulation and intended application are appa- 
rently quite distinct. The author is unaware of any further develop- 
ments based on Zoutendijk's Suggestion. 

More in the spirit of the present analysis, it is noted that Buys [6] 
has analyzed a parametric augmented Lagrangian (penalty) function for 
the equality constrained problem with "right-hand side" perturbation. 
In this case, because the penalty function is "exact", a local uncon- 
strained minimum of this function yields a local solution of the given 
problem Under certain conditions. Further, it follows that this penalty 
function is such that the local perturbation behavior of the penalty func- 
tion minimum is also apparently exact, i.e., it coincides with the pertur- 
bation behavior of the corresponding solution of the given constrained 
problem. The results given in [6] are primarily concerned with the be- 
havior of the optimal value function as a function of the right-hand side 
parameters. 
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