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New results concerning the family of random searches as proposed by Rastrigin are 
presented. In particular, the random search with reversals and two optimized relative step 
size random searches are investigated. Random searches with reversals are found to be 
substantially better than their counterparts. A new principle of updating the step size for 
this family of searches is proposed. 

1. Introduction 

Algorithms for the numerical optimization of unconstrained objec- 
tive functions may be categorized into four classes: 

(i) Second-order algorithms or Newton-Raphson methods , ,  
(ii) first-order algorithms or gradient searches, 

(iii) zero-order algorithms or direct searches, 
(iv) Monte Carlo algorithms or random searches. 
Mthough,  strictly speaking, random searches are direct searches, it is 

useful to separate them in order to contrast them with the other three 
classes. Classes (i) to (iii) are deterministic algorithms, whereas random 
searches use stochastic methods to optimize a (deterministic) objective 
function. 

The concept of random search seems to have been proposed first by 
Anderson [ 1 ]. Since then, a large variety of  algorithms of this class have 
become known [9]. 

This paper deals with the specific family of  random searches proposed 
initially in 1960 by Rastrigin [5]. Rastrigin published theoretical inves- 
tigations in 1963 [6] and in 1964 with Mutseniyeks [4]. Later, Schumer 
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and Steiglitz [8] extended these ideas and proposed the first practical 
implementation of  this type  of  search. 

After a brief introduction to the concepts involved, new recursion 
formulas will be stated for some of  the parameters of  interest, to be fol- 
lowed by a theoretical investigation of  an improved algorithm which 
belongs to this family. A new proposal to handle the step size updating 
problem will conclude the paper. 

2. The step size and direction problems 

Let g be the (real valued) objective function, being a function o f  N 
parameters, g = g(x), x ~ R N. Desired is a local minimum x = x*, i.e., a 
vec torx*  such that g(x*) <~ g(x) for all x in a suitable environment o f x .  
Let x ° be a given starting point. Sequential optimization algorithms are 
often based on the formula 

Xk+l =xX +okd x, k = 0 , 1 , . . . ,  (1) 

where x and d are N-vectors, and o is a scalar. Supercripts denote iter- 
ation. For convenience assume d k, k = 0,1, ... to be normalized vectors, 
i.e. the Euclidean norm It d k II = 1 for all k. 

Two basic problems need to be attacked in the definition of  such an 
optimizat ion algorithm: the direction problem and the step size pro- 
blem. These are the problems of  choosing the vector d k and the scalar 
o k , representing the direction and the step size, respectively, o f  the next 
step of  the search. Desired are values which will insure a fast conver- 
gence of  the sequence (x 0, x 1 , ...} to x*. 

In most  random searches, the direction d k is determined by the use 
of  random vectors. The searches then differ in the choice of  certain stra- 
tegies, e.g. in the choice of  the distribution from which the random vec- 
tors are to be selected, in the possibility of  including past information, 
or in the choice of  the step size. , 

3. Rastrigin's family of  random searches 

To allow a theoretical analysis of  a given algorithm, Rastrigin [6] ap- 
proximates the arbitrary objective function g by the N-dimensional func- 
tion f(x) = xTx  (superscript T denoting transposition) whose contours 
are hyperspherical. 
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He proposed a sequential random search, based on equation (1), for 
which unit random vectors, with a uniform distribution on the hyper- 
sphere, are chosen as search directions. Essentially, this eliminates the 
direction problem, and the theoretical analysis thus concentrates on the 
step size problem. These conditions characterize the family of  random 
searches under discussion. 

A number of proposals to handle the step size problem have been 
made so far: In the fixed step size random search [6], the step size of 
the normalized random vectors is never changed. In the optimum step 
size random search [4], the step size taken is the opt imum step size 
along the random direction vector. In the adaptive step size random 
search [8], the step size is increased or decreased in a heuristic fashion 
according to the successes or failures experienced during the search. 
Other random searches based on equation (1) have been proposed as 
well, see e.g. [101. 

For searches of  this family, the probability of success P = P(J(x Ic +1)< 
f(xk)) is derived from the ratio S1/S x of surfaces on the hypersphere, 
where S 1 is the surface of the cap subtended by the angle for which a 
success can still occur and S T is the total surface of the hypersphere [6, 
4]. It is given by 

¢m 
1 f sinN-2 ff d f f ,  (2) 

P -  2A(N) 0 

X2 

Fig. 1. Mathematical notat ion,  N = 2. 
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where A(N)" = f~/2 sin N -2~  dl~, ~ is the angle between the random vec- 
tor  d and the negative gradient of  f, and Cm is the maximum angle 
for which a success can still occur (see Fig. 1). This angle is given by 
~x m = arc cos (o~/(2Ok)), where Ok: = IIx k - x*ll is the distance to the 
optimum. 

Thus, the probability of  success is a function of  the parameters N, 
o and p. 

By introducing [8] the concept of  relative step size r/:= o/p, defined 
as the ratio of  the step size o to the distance to the opt imum p, the prob- 
ability of  success P becomes a function of  two parameters only, the di- 
mension N and the relative step size r~. The angle ~ becomes 

~km(r/) = arc cos (r/k/2), where r/k ok/p k . 

For a success, the relative step size must observe the inequalities 

0 < ~ k < 2 .  

Note, as r~ -~ 0, P(N, 7) -~ 0.5. 

Theorem. The integrals A(N)  and P(N, rT) can both be expressed by re- 
cursion relations as follows: 

A(2) = rr/2, A(3) = 1,  

A(N)  = ( N -  3) A ( N -  2 ) / ( N -  2) , N~> 4 (3) 

and 

P(2,r/) = (1/rr) arc cos (r//2),  

P(3, r/) = (2 - r~)/4, 

77 (1 ~21A'~(N- 3)/2 
P ( N ' ~ ) = P ( N - 2 ' r T ) - 4 N (  - ) ~ A ( N ) ' ~ - " ' - "  ' 

N ~> 4 .  (4) 

The proofs for these relations, being straightforward, will be omitted. 
Since a random search employs stochastic methods for the optimiza- 

tion of  an objective function, it becomes necessary to investigate the 
search with probabilistic or statistical means. Thus, its behaviour must 
be evaluated in terms of  the mean of  a number  of  optimization runs, 
each at tempt  optimizing the same objective function and starting with 
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Fig. 2. Random search without reversals, probability of success vs. ~, N = 2, 3, 5, 10, 20, 50, 100. 

the same starting point, but using different sequences of  random vec- 
tors. 

In order to meet this objective as well as to allow a comparison of  
one algorithm with another on this basis, Rastrigin introduced an inter- 
esting concept, the search loss. Its reciprocal, to be called the expected 
relative improvement per function evaluation I(N, 7), is a more relevant 
parameter here. Let E(.) denote mathematical expectation. Then, for a 
minimization algorithm, I(N, 7) is defined by 

I(N, 7): = E((f(x k) --f(xk+l))/f(xk)), k fixed. 

This parameter is related to the usual criterion used for the comparison 
of  minimization algorithms, viz. the number of  function evaluations re- 
quired for a given reduction of the objective function value. The larger 
the expected relative improvement, the better the search. 

For the family of random searches under discussion, it has been 
shown [8 ] that 

~m 

I(N,7) = 1/(aA(N)) f (aT cos ~ - 7  2) sinN-2~ d~b 
0 
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I 
to 2.0 

Fig. 3. Random search without reversals, expected relative improvement vs. ~, N = 2, 3, 5, 10, 
20, 50, 100. 

from which, by integration, for N t> 2, 

I(N, rt) = {i (1-rl2/a)(N-1)/2/((N-1)A(N))-rl2P(N'rl)'Ootherwise ~< r/~< 2,. (5) 

The relations (3), (4) and (5) allow the numerical calculation of the 
probability of success P(N, rl) and the expected relative improvement 
I(N, rl) for any given r/in the range 0 ~< r/~< 2 and any given dimension N. 
Figs. 2 arid 3 depict graphs of these parameters versus r/for several N. 

From Fig. 3 it becomes immediately obvious that there exists an 
optimum relative step size rl*(N) for each dimension. Numerical values 
for ri* can be obtained by solving the equation 

d/(N, r/*)/dr/= 0 .  

Table 1 
Optimum relative step size as a function of dimension N 

N "~*(N) ~?~'(N) 

2 0.7885 0.7490 
3 0.666... 0.6235 
5 0.5298 0.4897 

10 0.3812 0.3494 
20 0.2717 0.2480 
50 0.1726 0.1572 

100 0.1222 0.1112 
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Some of these values are shown in Table 1. 
As N increases, the values for P(N, r?*), I(N, r/*), and ~*(N) tend to the 
asymptotic expressions given in [8 ]. 

4. The optimized relative step size random search with reversals 

Before entering into a discussion of  the step size problem, an obvious 
extension of  Rastrigin's random search will be investigated. This random 
search, called random search with reversals, is theoretically superior to 
the above random searches, as will be demonstrated in section 5. It was 
originally proposed by Lawrence and Steiglitz [31. 

Let x- be the parameter vector with associated previous best function 
value, i.e. f(x-) <. f(xi),  i = O, 1, ..., k. Upon generation of  a random vec- 
tor  and the calculation of  the next step x k+l = 2 + okd k and its associa- 
ted function value f(xk+l), the subsequent success or failure of  the iter- 
ation will be called a first success or first failure, respectively. Upon a 
first failure, the direction of  search is reversed, i.e. x k+2 becomes 

x k+2 = 2 - -  ulCdk (6) 

and the objective function is again evaluated. The success or failure fol- 
lowing a first failure will be called a second success Or second failure, 
respectively. 

Theorem. For the random search with reversals, the probability o f  suc- 
ces is given by 

Pr(N, r~) = 2 P(N, r/)/(2 - P(N, ~) ) ,  (7) 

where P(N,~) is the probability o f  success o f  the random search with- 
out  reversals (eq. (2)). 

Proof. Let n be the number of  random vectors generated, let s I and s 2 
be the number of  first and second successes. To calculate the probabil- 
ity of  success, examine the limit of  the ratio of  the total number  of  suc- 
cesses to the number  of  function evaluations as n -+ ~.  Since the number 
of  reversals is given by n - s 1 , this becomes 

s 1 + s 2 
Pr(N, r/) = lim . (8) 

~ - - ,  ~ n + (n - s l )  
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Define 
f l  := sl /n,  the frequency of  first success, 
f2 := s2/(n - s l ) ,  the frequency of  second success. 

The limit o f f1  as n -+ oo is identical to the probabili ty of  success P(N,~). 
The limit o f  f2 is the conditional probability P2 of  a second success 
given that a first failure has occurred. Similar to the derivation of  P(N,r~), 
probabili ty P2 is derived from the ratio $2/S R of  surfaces on the hyper- 
sphere where S 2 is the surface of  the cap subtended by the angle for 
which a second success can still occur and S R = S T - S 1 is the surface of  
the cap subtended by  the angle on which a first failure occurs. Due to 
the symmetry  of  the objective function considered, i.e. since the con- 
tours of  f (x )  are hyperspherical, the angle subtending the cap with sur- 
face S 2 is equal to the angle subtending the cap with surface S 1 and 
hence S 2 = S 1 . Thus, the ratio $2/S R becomes S~/(S T - S1), from which 
P2 = P(N,~)/(1 - P(N, rl)). Of course, in general probabilistic situations, 
the probabili ty of  a second success given a first failure is not P/(1 - P). 
Therefore, 

lim f2 = P(N,~)/(1 - P(N,~)) . 
n - - ~  oo  

Substi tution of  the limits of  f l  and f2 into (8) yields the desired prob- 
ability of  success. 

Note, as n -~ O, Pr(N, rl) --" 2/3. 

Theorem. For the random search with reversals, the expected relative 
improvement per function evaluation is given by 

Ir(N, rl) = 2 I(N,r~)/(2 - P(N,~I)) , (9) 

where I(N,~) is the expected relative improvement and P(N,~) is the 
probability o f  success o f  the random search without reversals (equations 
(5) and (2) respectively). 

Proof. The expected relative improvements per successful function eva- 
luation are identically equal for the two searches, i.e. 

I ( N , n ) I  P(N,~7) = I r ( N , n ) l  P r (N,n)  . 

From this, the theorem follows immediately. 
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Graphs of the parameters Pr(N,~?) and Ir(N,~) are similar to those in 
Figs. 2 and 3. Again, optimum relative step sizes ~2" exist for each N, 
numerical values for which (see Table 1) can be obtained by solving the 
equation 

d/r(N,n*)/dn = O. 

5. Comparison of the two types of algorithms 

The probability of success of the random search with reversals can 
easily be compared to that of the search without reversals for fixed N 
and ~: 

Theorem. For N and ~ fixed, 

Pr(N,~)>P(N,~) ,  N~>2 ,  0 ~ < ~ < 2 .  (10) 

Proof. For 0 ~< ~ < 2 there follows p2 > 0, whence 

Pr - P = 2P/(2 - P )  - P = P2/(2 - P) > 0.  

Similarly, the expected relative improvements per function evalua- 
tion for the two searches can be compared. 

Theorem. Let Ir(N,~7 ) be the expected relative improvement per func- 
tion evaluation for the random search with reversals. 

For N and ~ fixed, 

Ir(N,~)>I(N,~7), N~>2 ,  0 < ~ < 2 .  (11) 

Proof. The proof is similar to the preceding one. 

Numerically, the probability of success for a high dimension (say 
N >  100), at the optimum relative step size is approximately 16% higher 
for the search with reversals compared to the search without, 

Pr(N, rl*) "~ 1.16 P(N, rI*) . 
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Similarly, 

Ir(N,r/*) ~- 1.25 I(N, rl*), 

i ,e .  approximately a 25% improvement. 

:Remark. Lawrence and Emad [2] have compared the random search 
with reversals with that without reversals and with the gradient search. 
They discuss a parameter called the search loss, SL(x), which is easily 
shown to be the inverse of the relative improvement per function 
evaluation: SL(x)= 1/I(N, rl). They relate the search losses for the two 
random searches by SLr(X)/SL(x) =-~. From equation (9), however, the 
inequalities 

1 <<. Ir(N,n)/I(N, rl) < ~ 

can be derived. The result concerning the ratio SLr(x)/SL(x) thus stands 
corrected. 

6. Updating the step size 

The results given so far are valid for all members of Rastrigin's family 
of random searches, i.e. they are independent of the strategy employed 
to solve the step size problem. Surely, the fixed step size random search 
as well as the opt imum step size random search are unsatisfactory since 
the former will not progress fast enough in the initial and final iterations 
of  the search and the latter requires too many function evaluations at 
each iteration during the one-dimensional search along the search direc- 
tion. The existence of an opt imum relative step size suggests the alter- 
native approach to keep the relative step size at its opt imum value at 
each iteration of  the search, thus insuring maximum expected relative 
improvement in the mean. This search was introduced by Schumer and 
Steiglitz [8] and they named it the "opt imum step size random search" 
(but which should not be confused with the search of  the same name of  
Mutseniyeks and Rastrigin). Based on this search, they have defined 
their "adaptive step size random search", where the adapting of  the step 
size occurs in a heuristic fashion. 

The latter search as well as a number of  other searches prescribe an 
increase in the step size after a success. But if the relative step size is to 
be kept constant (say, at its opt imum value) throughout the search, i.e. 
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if 

•k = r/*(N) for all k ,  (12) 

the step size o must be decreased since the distance to the opt imum de- 
creases after a success as shown by o k = rl*(N)pk. The difficulty in- 
volved in an implementation of  the search is the fact that neither the 
distance to the opt imum nor the relative step size is known at each iter- 
ation. In order to find a satisfactory solution to the step size problem, 
one proposal might be to update ~?k+l in some as yet  undetermined 
fashion after a success such that condition (12) is met. However, from 
the very nature of  a random search, this will not be possible. Instead, 
it will be necessary to substitute for condition (12) an alternative 
one, namely to keep the relative step size constant in the mean; more 
precisely, to keep the mathematical expectation of  ~k+l (given pk, ok, 
o k +1, and N) constant by an appropriate choice of  o k +1: 

E(f/k+l ]p k, a k, o k+l, AT) = ~?k for all k .  (13) 

Since vk +1 = ak +l/pk+l with a k + 1 a constant, 

Eo?k+l[p k, o k , a k + l , N ) = o k + a E ( 1 / p k + l l p k ,  ok, N ) ,  (14) 

indicating that it is possible to employ the updating formula 

o k + l = a o  k for a l l k = 0 , 1 , . . . ,  (15) 

where a is a scalar, to be called the step size updating factor. This choice 
of  o k+l happens to have a desirable effect: the substitution of  (15) into 
the explicit expression of  EO?k+ltp k, o k, (7 k+l, N) transforms it such 
that it becomes a function oft /k,  ~ and N, i.e. it no longer is dependent  
on pk and a k individually. 

Equation (13) then becomes 

E(r/k+l I r/k, a, N) = 7/k for all k = 0, 1, .. . .  (16) 

Note that this equation implies that the step size updating factor a is 
also a function of~? k and N only, a = aO)k,N).  

7. Calculation of  the step size updating factor 

Although it is possible to calculate the step size updating factor by 
equation (16), it is more convenient to factor out  o g+l as in (14). The 
scalar ~ can then be calculated explicitly: 

c~ = 1/(p k E(1/pk +l l pk, o k, N))  . (17) 
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However, this expression requires the conditional expectation of  the 
inverse distance to the opt imum for given pk, ok, and N. 

Lemma. Let y = lip k +l, p = pk, O = o k .  Then the mathematical expec- 
tation o f  the inverse distance to the optimum, given p, o, and N, is given 
by 

1/Ip±ol 
E(y I p ,o ,N)=(1 / (2poA(N)P(N,~) ) )  f ((1--52(y)/4)(N-3)/2/y 2) d y ,  

1/p 
where 60')  = ~ + 1/7 - 1/(poy2). 

Proof. The conditional density distribution of  the distance to the opti- 
mum can be obtained from the conditional probability of  pk+l < w 
for fixed w < pk. Let z = pk+l, p, o as before, After  some manipulations, 
there follows 

p(z I P, o,N) = z(1-32(z)/4)(N-3)/z/(2poA(N)P(N,v)),  (18) 

where 3(z) = ~7 + 1/r~ - zZ/(po). 
The ranges of  z are given by 

([pk(1--~?k),pk] for~?k~ [0 ,1] ,  
Z = p k + l E  

l 
[[pkOTk--1),pk] for r~k C [1 ,2] .  

The transformation of  (18) for y = 1/p. k+l yields the conditional prob- 
ability density for the inverse of  the distance to the optimum. The 
desired expectation then follows immediately. 

A transformation of(17)  using the substitution t = oy = ok/p k +1 shows 
that pE(y [p,o,N) is not  dependent  on pk and a k individually, i.e. a = 
a(@, N), as asserted above. 

8. The optimized relative step size random searches 

The proposed new updating principle, represented by equation (16) 
with rt x --- r~*(N) and equation (15), defines searches called the optim- 
ized relative step size random search (ORSSRS) and optimized relative 
step size random search with reversals. 

For the opt imum relative step size r~*(N), a few numerical values of  
are given in Table 2, as calculated with aid of  eq. (17). ~*(N) is the 

opt imum step size updating factor for the ORSSRS without  reversals 
and ~*(N) that for the same with reversals. 
The ORSSRS with reversals can be summarized as follows. 
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Table 2 
Optimum step size updating factor as a function of dimension N 

N a*(N) ~*(N) 

2 0.4471 0.4801 
3 0.666... 0.6883 
5 0.8212 0.8330 

10 0.9183 0.9238 
20 0.9609 0.9636 
50 0.9848 0.9858 

100 0.9924 0.9930 

Algori thm 
(i) Set ~-= x°, ~ = a °, ~-= g(x°), k = - 1 .  

(ii) Update k +- k + 1, generate d k, a random vector with uniform dis- 
tribution on the hypersphere, and calculate x k +1 corresponding to equa- 
tion (1), i.e. by 

x k  + l = ~ + ~ d  k . 

(iii) Evaluate the objective function g(x k+l) at the new point and 
compare with ~. 

(iv) In the case of  success apply stopping rules. If  the search is to be 
continued, replace 2 by x x+l, -~ by g(xe+l), and reduce the step size ac- 
cording to equation (15), i.e. by 

O~-- 0~ O , 

then continue with (ii). 
(v) In the case of  no success, return to (ii) if the immediately pre- 

ceding step was a reversed step, else reverse the search direction accord- 
ing to equation (6), i.e. using 

X k +2 = X - -  -6d k , 

update k ~ k + 1, and continue with (iii). 

As mentioned, a value for the initial step size o ° must be known, 
without  which the algorithm cannot be started. Since it cannot be as- 
sumed that a 0 is known, it will be necessary to estimate it. Further- 
more, for the optimized relative step size searches a ° should be such 
that the initial relative step size assumes its opt imum value, i.e. r/° = 
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A number  of  possibilities present themselves for this purpose. One 
is to o b t a i n  cr 9 from a knowledge of  po, then a ° = ~7*(N) pO. Another  
possibility is an- experimental estimation of  the probability of  success 
Pr(N,r~) in an initialization phase of  the algorithm. With an estimated 
step size ~, a number  of  trials m 1 are carried out  at the start ing point  
x ° and the number  of  successes m 2 recorded. Then the ratio m2/m I re- 
presents an approximation of  Pr(N, fl), and ~ is an approximation to the 
relative step size r} = O/pO. The implicit calculation of  r / f rom the equa- 
tion ' 

m2/m I = Pr (N,~) 

presents no difficulties; N e w t o n - R a p h s o n  iterations converge always. 
Thus, 

pO 

but desired is o ° = a* from p0 = o*/~*(N), i.e. 

a0 

the desired initial estimate of  the step size. 
An implementation of  this algorithm requires some additional con- 

siderations. For example, it will be necessary to take into account the 
possibility of  too large or too small an estimated step size 8. Further- 
more, for a nonparallel implementation, a periodic reestimation of  the 
step size is: advisable. 

Experimental results of  the kind reported previously [7] are encour- 
aging, particularly for the search with reversals. 

References 

[1] R.L. Anderson, "Recent advances in finding best operating conditions", Journal o f  the 
American StatisticalAssociation 48 (1953) 789-798.  

[2] J.P. Lawrence III and F.P. Emad, "An analytic comparison of random searching and gra- 
dient searching for the extremum of a known objective function", 1EEE Transactions on 
Automatic Control AC-18 (1973) 669-671.  

[3] J.P. Lawrence III and K. Steiglitz, "Randomized pattern search", 1EEE Transactions on 
Computers C-21 (1972) 382-385.  

[4] V.A. Mutseniyeks and L.A. Rastrigin, "Extremal control of continuous multi-parameter 
systems by the method of random search", Engineering Cybernetics 1 (1964) 82-90.  

[5] L.A. Rastrigin, "Extremal control by the method of random scanning", Automation and 
Remote Control 21 (1960) 891-896.  



244 G. Schrack, M. Choit / Optimized relative step size random searches 

[6] L.A. Rastrigin, "The convergence of the random search method in the extremal control 
of a many-parameter system", Automation and Remote Control 24 (1963) 1337-1342. 

[7] G. Schrack and N. Borowski, "An experimental comparison of three random searches", 
in: F.A. Lootsma, Ed., Numerical methods for non-linear optimization (Academic Press, 
London, 1972) pp. 137-147. 

[8] M.A. Schumer and K. Steiglitz, "Adaptive step size random search", 1EEE Transactions 
on Automatic Control AC-13 (1968) 270-276. 

[9] R.C. White, Jr., "A survey of random methods for parameter optimization", Simulation 
17 (1971) 197-205. 

[10] M.J. Wozny and G.T. Heydt, "Hyperconical random search", Transactions oftheASME, 
Journal of  Dynamic Systems, Measurements, and Control 94G (1972) 71-78. 


