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This paper attempts to provide a set of standard test examples for researchers work- 
ing in the area of geometric programming and general nonlinear, continuous, nonconvex 
programming algorithms. The examples consist partly of applications of nonlinear pro- 
gramming that have appeared in the literature and partly of original geometric program- 
ming applications. Solutions to all the problems are provided as well as the starting points 
from which these solutions were computed. Other computationaUy important aspects 
such as tolerances and degree of accuracy with which these problems were solved, are also 
included. 

Introduction 

For some time now there has been a need for a set of  standard test 
problems that would provide a basis for the comparison of  the relative 
efficiencies of  various geometric programming algorithms. Standard test 
problems in areas such as integer programming [9] and general non- 
linear programming [4] have been available for a number of  years and 
have been used for comparison purposes. However, the sets of  problems 
that are available lack information on computational accuracies and 
tolerances that are essential for the comparison of  algorithm perform- 
ance. In this set of  problems we have attempted to overcome this by 
specifying tolerances as well as the stopping criterion with which each 
optimal solution was calculated. 

The problems we have assembled here consist partly of applications 
of nonlinear programming that have appeared in the literature and partly 
of original geometric programming applications. They may be solved by 
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any nonlinear programming method that can be used to solve continu- 
ous, nonlinear, inequality-constrained optimization problems. 

Notation 

The following notation is used consistently throughout this paper. 
All problems are assumed to be of the form 

minimize go (x) ,  ( 1 ) 

subject to gg(x) ~< 1, k = 1, ..., NK,  (2) 

l i ~ X i <~ u i , i = 1, ..., NVAR,  i3) 

where the functions gx(X) (k = 0, ..., NK) are signomial functions of the 
form 

m 

gk(x) = ~ cj il-la x~iJ . (4) 
j e ]  k = 

The coefficients cj and exponents ai] are given real numbers and u i and 
l i are given positive upper and lower bounds on the variable x i. 

The problem constraints are divided into two classes. Signomial con- 
straints (2) and simple bounding constraints (3). The number of signo- 
mial constraints is given by NK and the number of variables by NVAR. 
The set Jx is used to label the terms appearing in the k th signomial con- 
straint. Terms are labeled consecutively starting with those appearing 
in the objective function go(x). 

Since it is expected that the collection of problems presented here 
might be used for purposes of comparing various codes for geometric 
and general nonlinear programming, a distinction is made between two 
different types of  bounding constraints (3). The reason for this is that 
for certain algorithms, convergence is contingent on the compactness 
of  the feasible region of the problem at all stages of  computat ion to- 
ward an optimal solution (see for example [8]). On the other hand, 
many algorithms (see for example [2]) do not  have efficient mechanisms 
for handling simple bounding constraints and would therefore be heavily 
penalized if forced to include variable bounding constraints for every 
problem solved. We have attempted to overcome this difficulty in the 
following manner. Since all the problems presented here (with the ex- 
ception of  Problem 8) are taken from practical applications of non- 
linear programming, the variable bounding constraints that are an inte- 
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gral part of the system being modelled are distinguished from bounding 
constraints that are artificially imposed to guarantee compactness. 

It is expected therefore, that when these problems are used for com- 
parative purposes, the bounds corresponding to the physical model o f  
the system will always be included as part o f  the problem formulation 
(regardless of whether they are active at the optimal solution or not). 
For codes requiring all variables to be bounded from above and below, 
the variable bounds specified with each problem must be used in order 
to standardize results. 

The total number of terms in a problem is denoted by NTERMS. For 
each problem this is computed as the total number of terms appearing 
in the objective function and signomial constraints plus the terms cor- 
responding to variable bounding constraints that result from the mathe- 
matical model of the system. 

An important concept in geometric programming is the 'degrees of 
difficulty' (DD) of a problem. This is defined as: 

DD = NTERMS - (NVAR + 1) 

For each problem the value of DD is stated and is computed according 
to the above formula. 

Lastly, since these problems are intended for providing a standard 
for comparing the relative efficiency of various algorithms, some measure 
of the required accuracy of solution must be specified. We" do this by 
specifying 3 tolerances, EPSCON, EPSCGP and EPSLP; where EPSCON 
is a constraint tolerance, EPSCGP is a convergence tolerance and EPSLP 
is used to determine whether an element in the LP 1 tableau is essenti- 
ally zero or not. These tolerances are discussed in more detail below. 

At some given solution 2, the constraints gk(x)<~ 1 are considered to 
be satisfied if and only if: 

(A) gk(~) ~< 1 + EPSCON, k = 1, ..., NK. 

Since computation time is strongly dependent on the criterion used for 
deciding when to terminate an algorithm, we have specified the follow- 
ing termination criterion in an attempt to standardize results. Our cri- 
terion for primal-based algorithms is: 

gO(x i) _ gO(x i- 1)1 I (B-l) - -  ~< EPSCGP J I gO(X i - l )  I 

I The code used to solve these problems has as its core a linear programming algorithm. 
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where go(x i) is the objective function value of the primal problem at 
the i th iteration and [gl denotes the absolute value ofg.  For dual-based 
algorithms, the tolerance EPSCGP should be used as follows: 

go(X i) - v(~;)[ 
(B-z) I EPSCGP o 

Here v(6 i) is the objective function value of the dual problem at the i th 
iteration. 

A solution 2 (or 3) is considered optimal when both the above cri- 
terian (A) and (B) are satisfied 

Computation times 

The solutions given here were all computed on an IBM 370/158 com- 
puter, using the code GGP written by the author and based on the algo- 
rithm described in [6,8 ]. In all cases double precision arithmetic was 
used and t h e  tolerance EPSLP set to 10 -11 The computat ion times 
using GGP with 2 different sets of  tolerances are given in Table 0.1. 
For comparison purposes a 'standardized' time is also quoted. The 
standardized time is the ratio of  the CPU time in seconds required for 

Table 0.1 
Computation times using GGP 

Problem EPSCON / as specified EPSCON = 0.001 
number EPSCGP } in problem EPSCGP = 0.001 

CPU Standardized CPU Standardized 
seconds time seconds time 

1A 6.950 0.2747 3.190 0.1261 
1B 6.860 0.2711 2.870 0.1134 
2 0.060 0.0024 0.063 0.0025 
3 2.097 0.0829 0.993 0.0392 
4A 7.099 0.2806 1.973 0.0780 
4B 3.350 0.1324 1.973 0.0780 
4C 0.540 0.0213 0.337 0.0133 
5 3.176 0.1255 0.967 0.0382 
6 8.286 0.3275 3.963 0A566 
7 6.080 0.2403 11.209 0.4430 
8A 2.413 0.0954 1.399 0.0553 
8B 2.416 0.0955 1.399 0.0553 
8C 2.003 0.0792 1.193 0.0472 
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the solution of the problem, to the time taken to execute Colville's 
standard timing program [4]. For the above computer  the execution of 
Colville's timing program required 25.30 seconds of CPU time. 

The problems 

The problems documented here have been carefully selected from a 
large number of problems solved by the author over a number of years 
of computational trials with the code GGP [6,8 ]. 

Every effort has been made to compile as interesting a set of pro- 
blems as possible from the computational point of view, without resort- 
ing to artificially constructed problems. All the problems (with the ex- 
ception of Problem 8) are mathematical programming models of 'real- 
world' processes. They are for the main part taken from the field of 
optimal engineering design. 

Problem 1. Multiphase chemical equilibrium calculation 

This problem is the geometric programming dual of the Gibbs free 
energy minimization model formulated by Dantzig, De Haven and Sams 
[5]. 

Chemical equilibrium problems form a very important class of dual 
geometric programming problems. Apart from their practical import- 
ance, they are also very interesting numerically because of the scaling 
difficulties they present. 

The optimal dual variables and hence the optimal values of  the cor- 
responding primal terms usually differ by many orders or magnitude re- 
sulting in the necessity for very accurate solution techniques. In actual 
fact in the particular application solved here, no more than estimates of 
orders o f  magnitude can be obtained for some of the primal terms and 
their corresponding dual variables. This is because some of the primal 
terms are as small as 10 -22 at the opt imum and in order for these terms 
to be significant we would require a constraint tolerance of  10 -22 or 
smaller, something which is computationally infeasible at present. 

Two versions of this problem are included. The first (Problem 1 A) is 
an unscaled version and the second (Problem 1B) has been scaled so that 
all the variables lie between 1 and 10 at the optimal solution. In both 
cases, because of the extremely large value of the objective function at 
the optimal solution, the objective function given here is actually the 
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original objective function to the one tenth power. 
Statistics 

NK = 3 ,  DD = 18,  
N V A R  = 1 2 ,  E P S C O N  = 10 -6 , 
N T E R M S  = 3 1 ,  E P S C G P  = 10 -4 . 
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Objective funct ion and constraints 

r, ~.a 11 a,-a21 a,.a31 a,-a41 a,.a51 ya61 v.aTl "~r'a81 xa91Xalo, 1 val 1,1 
go (X) = ~1"~1 "~2 " 3  "~4 ~5 ~6 ~7 ~8 9 10 "*11 

gl(x)  = c2x 1 + c3x 2 + c4x 3 + CsX4X 5 , 

g Z ( x )  = c6x 1 + CvX 2 + c8x 3 + e9x4x12 + c10x5x121 + CllX6X~ 1 

+ Ca2X7X12 + Cl3X4X 5 + c14X2XsX{21 + Cl5X2x4x 5 

+ c16x2x41xsx  2 + c17xloxd, 

g 3 ( x )  ='C18X 1 + Cl9X 2 + C20X 3 + C21X 4 + C22X5 + C23X 6 + C24X 8 

+ C25X4X 5 + C26X2X5 + C27X2X4X 5 + C28X2X41X5 

+ C29X 9 + C30XlX9 + C31Xll • 

The objective function exponents ai, 1 (i = 1, ..., 12) and the term co- 
efficients c/ (j = 1, ..., 31) for Problems 1A and 1B, are given in Tables 
1.1 and  !.2 respectively. An initial infeasible starting point, upper and 
lower bounds on the variables and the optimal solutions for Problems 
1A and 1B, are given in Table 1.3 and Table 1.4 respectively. All of  the 
variable bounds  shown in Tables 1.3 and 1.4 are artificially imposed. 

Table 1.1 
Objective function exponents, Problems 1A and 1B 

i ai, 1 i ai. 1 

1 ~-0.001331720 7 
2 -0.002270927 8 
3 -0.002485460 9 
4 -4.67 10 
5 -4.671973 11 
6 -0.008140 

-0.008092 
-0.005 
-0.000909 
-0.O0088 
-0.00119 
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Table 1.2 
Term coefficients; Problems 1 A and 1 B 

Term number Coefficient c] 
f Problem 1A Problem 1B 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
4 

25 
26 
27 
28 
29 
30 
31 

1.0000000 E-70 1.00000000 E+5 
5.3637300 E 4 5.36737300 E-2 
2.1863746 E 3 2.1863746 E-2 
9.7733533 E4  9.7733533 E-2 
6.6940803 E 15 6.6940803 E-3 
1,0 1.0 E-6 
1.0 1.0 E-5 
1.0 1.0 E-6 
1.0 1.0 E-10 
1.0 1.0 E-8 
1.0 1.0 E-2 
1.0 1.0 E-4 
1.0898645 E 17 1.0898645 E-1 
1.6108052 E 9 1.6108052 E-4 
t,0 1.0 E-23 
1.9304541 E-3 1.9304541 E-6 
1.0 1.0 E-3 
1.0 1.0 E-6 
1.0 1.0 E-5 
1.0 1.0 E-6 
1.0 1.0 E-9 
1.0 1.0 E-9 
1.0 1.0 E-3 
1.0 1.0 E-3 
1.0898645 E 17 1.0898645 E-1 
1.6108052 E 9 1.6108052 E-5 
1.0 1.0 E-23 
1.9304541 E-3 1.9304541 E-8 
' i .0 1.0 E-5 
1.1184059 E 7 1.1184059 E-4 
1.0 1.0 E-4 

Problem 2. Colville's test problem #3 

This problem is taken from Colville's nonlinear programming study 
[4]. The problem has been included in this selection of problems be- 
cause of *ahe apparent ease with which it was solved, despite the,fact that 
it has a relatively high degree of difficulty and contains both negative 
and positive terms. In fact, if the standardized times for this problem 
(see Table 0.1 ) are compared with those obtained by Colville in his study 
[4], it is seen that GGP solves this problem approximately 3 times 
faster than any of  the codes in [4]. 
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Table 1.3 
Starting values, variable bounds and optimal solution for Problem 1A 
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Variable Starting value Upper bound Lower bound Optimal solution 

go(x) 1.El 1 1.El 1 1.E9 4.8904620 E+9 
x 1 4.E-6 1.E-4 1.E-7 2.5229712 E-6 
x2 4.E-5 1.E-3 1.E-6 2.5288262 E-5 
x3 4.E-6 1.E-4 1.E-7 7.6566135 E-6 
x4 4.E-9 1.E-8 1,E-11 1.1853913 E-9 
x s 4.E-9 1.E-6 1.E-9 7.6971796 E-9 
x 6 4.E-3 1.E-1 1.E-4 1.2919459 E-3 
x 7 4.E-3 1.E-1 1,E-4 4.2615451 E-3 
x8 4.E-3 1.E-1 1.E-4 2.7863431 E-3 
x 9 4.E-5 1.E-3 1.E-6 1.7093851 E-5 
XIO 4.E4 1.E-2 1.E-5 2.0389545 E-4 
Xll 4.E-4 1.E-2 I.E-5 6.6285938 E-4 
x12 4.0 1.E+2 1.E-1 6.5581875 E-1 

Table 1.4 
Starting values, variable bounds and optimal solution for Problem 1B 

Variable Starting value Upper bound Lower bound Optimal solution 

go(x) 10.0 10.0 0.1 3.1682133 
xa 4.0 100.0 0.1 2.5179680 
x 2 4.0 100.0 0.1 2.5391937 
x3 4.0 100.0 0.1 7.6570348 
x4 4.0 100.0 0.1 1.2219265 
x 5 4.0 100.0 0.1 7.4670724 
x 6 4.0 100.0 0.i 1.2916003 
x7 4.0 100.0 0.1 4.2830877 
xs 4.0 100.0 0.1 2.7816976 
x9 4.0 100.0 0.1 1.7870736 
xlo 4.0 100.0 0.1 2.0016703 
xl l  4.0 100.0 0.1 6.4961066 
x 12 4.0 100.0 0.1 6.44 96897 

Statistics 

N K  = 6 ,  D D  -- 2 6 ,  

N V A R  = 5 , .  E P S C O N  = 10 - 5  , 

N T E R M S  = 3 2  , ,  E P S C G P  = 10 - 4  . 

Objective function and constraints 

gO(X) = el x 2  + C2XlX 5 + c3x 1 + c 4 , 
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g l ( X )  = CsX3X 5 + C6X2X5 + C7XlX 4 , 

g 2 ( x )  = C8X2X5 + C9XIX 4 + CloX3X 5 , 

g 3 ( x )  = CllX21X51 + C12XlX51 "+ C13X21X2X51 , 

g 4 ( x )  = C14X2X5 + Cl5 X1X 2 + C16 X2 , 

g 5 ( x )  = C17X31X51 + C18XlX51 + C19X4X51 , 

g 6 ( x )  = C20X3X 5 + C21XlX 3 + C22X3X 4 • 

The coefficients ¢1, "" ,  C22 are given in Table 2.1. A feasible starting 
point, upper and lower bounds on the problem variables and an optimal 
solution are given in Table 2.2. 

The upper and lower bounds on the variables x 1 . . . .  , x 5 are all part 
of  the original mathematical programming model given in [4]. 

Table 2.1 
Coefficients for Problem 2 

j ej / cj j e i 

1 5.35785470 9 0.00009395 17 2275.132693 
2 0.83568910 10 -0.00033085 18 -0.26680980 
3 37.239239 11 1330.32937 19 -0.40583930 
4 -40792.1410 12 -0.42002610 20 0.00029955 
5 0.00002584 13 -0.30585975 21 0.00007992 
6 -0.00006663 14 0.00024186 22 0.00012157 
7 -0.00000734 15 0.00010159 
8 0.000853007 16 0.00007379 

Table 2.2 
Starting point, Variable bounds and an optimal solution for Problem 2 

Variable Initial value (F) Upper bound Lower bound Optimal solution 

go(x) -c4 15000.0 20000.0 1000.0 ' 10126.64252 
x l  78.62 102.0 78.0 78.0 
x2 33.44 45.0 33.0 33.0 
x 3 31.07 45.0 27.0 29.99551065 
x 4 44.18 45.0 27.0 45.0 
x s 35.22 45.0 27.0 36.77517397 
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Problem 3. Alkylation process optimization 

This problem has been taken from Bracken and McCormick [3]. The 
original version of  this problem contained some equality constraints re- 
sulting from mass balance considerations. These have been eliminated 

has been reformulated as a signomial optimization and the problem 
problem. 

Statistics 

NK = 14,  
NVAR = 7 ,  
NTERMS = 58 ,  

DD = 5 0 ,  
EPSCON = 10-  5, 
EPSCGP = 1 0 - 4 ,  

Objective .function and constraints 

go(X) = ClX 1 + C2X1X 6 + C3X 3 + C4X 2 + C 5 + C6X3X5 , 

gl(X)=C7X2 + C8XllX 3 + C9X6, 

g2(x)  -- CloX1X31 + CllXlX 3 l x  6 + C12XlX31X 2 , 

g3(x)  = C13 X2 + Cl4X 5 + Cl5X 4 + C16X 6 , 

g4(x) 

gs(x) 

g6(x) 

g7 (x) 

gs(x) 

g9 (x) 

gl0(X) 

gll (x) 

g12 (x) 

-1 + C18X51X6 + C19X4X51 + C20X51X2 = Cl7X 5 

= C21X 7 + C22XzX31X4 1 + C23XzX31 , 

= C24 X7 1 + C25 X2 X3 1 X7 1 + C26 X 2 X3 1 X4 1 X7 1 

= C27xfl  + C28X51X7 , 

= C29X 5 + C30X 7 , 

= C31X3 + C32X 1 , 

= C33X1X3 1 + C34X31 , 

= % x 2 x 3 1 x 4 1  + c36x2x31 , 

= C37X 4 + C38X21X3X4 , 
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gl3(X)  = C39XlX 6 + C40X 1 + C41X 3 , 

g l4(X)  = C42X11X3 + C43Xl I + C44X 6 • 

The problem coefficients Cl, ..., c44 are given in Table 3.1. A feasible 
starting point, upper and lower bounds on the variables and an optimal 
solution are given in Table 3.2. All the bounding constraints on the vari- 
ables Xl, ..., x 7 are part of  the model  describing the alkylation process. 

Table 3.1 
Coefficients for Problem 3 

/ ~j J ~j J ~j 

1 1.715 16 -0.19120592 E-1  
2 0.035 17 0.56850750 E+2 
3 4.0565 18 1.08702000 
4 10.0 19 0.32175000 
5 3000.0 20 -0.03762000 
6 -0.063 21 0.00619800 
7 0.59553571E-2 22 0.24623121E+4 
8 0.88392857 23 -0.25125634 E+2 
9 -0.11756250 24 0.16118996 E+ 3 

10 1.10880000 25 5000.0 
11 0.13035330 26 -0.48951000 E+6 
12 -0.00660330 27 0.44333333 E+2 
13 0.66173269 E-3  28 0.33000000 
14 0.17239878 E-1  29 0.02255600 
15 -0.56595559 E - 2  30 -0.00759500 

31 0.00061000 
32 -0.0005 
33 0.81967200 
34 0.81967200 
35 24500.0 
36 -250.0 
37 0.10204082 E-1  
38 0.12244898 E - 4  
39 0.00006250 
40 0.00006250 
41 -0.00007625 
42 1.22 
43 1.0 
44 -1.0 

Table 3.2 
Starting point, variable bounds and an optimal solution for Problem 3 

Variable Initial value Upper bound Lower bound Optimal solution 

go(x) 2000.0 2000.0 1000.0 1227.1831610 
x 1 1745.0 2000.0 1.0 1698.5276698 
x 2 110.0 120.0 1.0 53.5257212 
x a 3048.0 5000.0 1.0 3031.5798057 
x 4 89.0 93.0 85.0 90.0909228 
x s 92.0 95.0 90.0 95.0 
x 6 8.0 12.0 3.0 10.5192394 
x 7 145.0 162.0 145.0 153.5353546 
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Problem 4. Optimal reactor design 

This problem is taken from Rijckaert [ 10]. Two formulations of the 
problem are given. The first (Problems 4A and 4B) has a signomial ob- 
jective function and posynomial constraints and is Rijckaert's original 
formulation [10]. The second formulation (Problem 4C) is a posyno- 
mial approximation of Problem 4A. 

Despite the fact that this problem is 'smaller' than the previ9us one, 
it appears to require more time to reach an optimal solution (see Table 
0.1). This could be due to the fact that for this problem we start at an 
infeasible point whereas for Problem 3 we use a feasible starting point. 

Another interesting aspect to the problem is the large difference in 
computation times between the posynomial version (Problem 4C) and 
signomial versions (Problems 4A and 4B) of the problem. This is unex- 
pected since Problems 4A and 4B are 'almost' prototype geometric pro- 
grams. That is, they have only 2 negative out of a total of 16 terms. One 
explanation for this is the slow convergence of the iteration procedure 
of Avriel and Williams [ 1 ]. upon which GGP is based. 

Problem 4B is included to show that GGP requires one half the com- 
putation time to come within 99.9% the value of the optimal solution 
computed in Problem 4A. 

Problem 4A 
Statistics 

NK = 4 ,  D D  = 7 ,  

NVAR = 8 ,  EPSCON 10 -5 , 
NTERMS = 16, EPSCGP = 10 -4 , 

Objective function and constraints 

gO(x) = 0 .4x  0"67 X70"67 + 0.4x20"67x8 0"67 + 10.0 --X 1 -- X 2 , 

g l ( x )  = 0 .0588X5X 7 + 0.1X 1 , 

g2 (x )  = O.0588x6x 8 + 0 .1x  1 + 0 .1x  2 , 

g3 (x )  = 4 x 3 x 5 1  + 2x30"71X51 + O.0588x31"3X 7 , 

g4(x) = 4x4x61 + 2x4°.71x61 + 0.0588x4a'3x 8 . 
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The variable bounds (all artificially imposed) are given by: 

0.1 ~< xi<~ 10, i = 1 , . . . , 8 ,  

and the objective function go(X), is bounded (artificially) by 

1.0 <<, go(X) <~ 4.2 .  

Problem 4B 
Identical to 4A except for EPSCGP = 10-3 

Problem 4C 
Statistics 

NK = 5 ,  DD = 5 ,  
NVAR = 9 ,  EPSCON = 10 -5 , 
NTERMS = 15, EPSCGP = 10 -4 . 

Objective function and constraints 

go(X) = x 0 , 

gl(x),  g2(x), g3 (x), g4(x) as in Problem 4A, 

g b ( x )  = ^ . . . .  0313 0168 -0185  -0.670 u.l,+~+x ° • Xl. x 2 • x 7 + 0.144x00"313 

XlO.502xo.485 x80.670 + 3.6xoO.313 XlO.502x2 0.185 

An infeasible starting point and optimal solutions for Problems 4A, 
5B and 4C computed using this point are given in Table 4.1. 

Table 4.1 
Starting point and optimal solutions for Problems 4A, 4B and 4C 

Variable Starting point Optimal solution 
(infeasible) Problem 8A Problem 4B Problem 4C 

go(x) = Xo 4.2 3.9516982 3.9561968 3.9520666 
xl 6.0 6.3450905 6.1016207 6.3658386 
x~ 3.0 2.3427973 2.5741491 2.3317880 
x 3 0.4 0.6701581 0.6765178 0.6725790 
x 4 0.2 0.5966619 0.5959532 0.5935613 
x s 6.0 5.9528907 5.9935248 5.9494125 
x 6 6.0 5.5291597 5.5315385 5.5272775 
x7 1.0 1.0441714 1.1061818 1.0388592 
x 8 0.5 0.4036023 0.4071500 0.4007536 
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Problem 5. Heat exchanger design 

This problem was first fo rmula ted  as a generalized geometr ic  pro- 
gramming problem by  Avriel and Williams [ 1 ]. 

Statistics 

NK = 6 ,  DD = 10 ,  
N V A R  = 8 ,  E P S C O N  = 10 -5 , 
N T E R M S  = 1 9 ,  E P S C G P  = 10 -4 . 

Objective function and constraints 

go(X) = ClX 1 + C2X 2 + C3X 3 , 

g l ( x )  = c4x{ lx4x61 + c5x61 + c6 x{ lx61  , 

g 2 ( x )  = C7X2"1X5X71+ C8X4 X71 + C9X21X4 X71 , 

g 3 ( x )  = CloX31X81 + CllXsX81 + C12X31X5X8 1 , 

g 4 ( x )  = C13X 4 + Cl4X 6 , 

g S ( x )  = Cl5X 5 + c16x 7 + c17x4 , 

g 6 ( x )  = C18X8 + Cl9X 5 • 

The problem coefficients  c I , ..., c19 are given in Table 5.1. 
An infeasible start ing point ,  upper  and lower  bounds  on the  problem 

Table 5.1 
Coefficients for test problem 5 

1 1.0 11 1.0 
2 1.0 12 -2500.0 
3 1.0 13 0.0025 
4 833.33252 14 0.0025 
5 I00.0 15 0.0025 
6 -83333.333 16 0.0025 
7 1250.0 17 -0.0025 
8 1.0 18 0.01 
9 -1250.0 19 -0.01 

10 1250000.0 
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Table 5.2 
Starting point, variable bounds and an optimal solution for Problem 5 

Variable Initial value Upper bound Lower bound Optimal solution 
(infeasible) 

go(x) 15000.0 20000.0 3000.0 7049.324305 
xl  5000.0 10000.0 100.0 572.852745 
x2 5000.0 10000.0 1000.0 1361.497867 
x3 5000.0 10000.0 1000.0 5114.973425 
x4 200.0 1000.0 10.0 181.476181 
x5 350.0 1000.0 10.0 295.402778 
x6 150.0 1000.0 10.0 218.524281 
x7 225.0 1000.0 10.0 286.075426 
x8 425.0 1000.0 10.0 395.402602 

variables (all of  which are artificially imposed) and an optimal solution 
to the problem are given in Table 5.2. 

Problem 6. A 3-stage membrane separation process 

This problem is a mathematical programming model of  a 3-stage 
membrane separation process. The derivation of  the model  may be 
found in Dembo [6]. 

This model is representative of  a large number  of  chemical flow pro- 
cesses with many recycle streams. One of  the difficulties o f  this sort 
of  model is to simply compute  a feasible solution. 

Statistics 

NK = 13 ,  
NVAR = 13 , 
NTERMS = 5 3 ,  

Objective function and constraints 

go(X) = ClX11 + c2x12 + c3x13 , 

g l ( X )  = C4X8X~I 1 + C5XlX8Xl l  1 , 

g 2 ( x )  = C6X9X121 + C7X2X9X121 , 

g 3 ( x )  = C8X10X131 + C9X3XloX131 , 

g 4 ( x )  = CloX2X5 1 + C11X2 + C12XlX5 1 

DD = 3 9 ,  
E P S C O N  = 10 -6 , 
E P S C G P  = 1 0  - 4 .  
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g5 (x) = c13x3x6 1 + C14X3 + Cl5X~X6 1 , 

g6(x)  = Cl6 X1X51X71X8 + c17x4 x 5 1 +  c18x4 x51x71x8  

g7(x)  = c19x2x9 + c20x5x 8 + c21x 6 + c22x5 + c23xlx8 + c24x6x9 ; 

g8(x)  = C25X2 1X 3 X 9 lXl0 + C26 X 2 1X 6 + C27X91 + ¢28X9 IXl0 

+ C29X21X6X9 1 , 

g9(x)  = ¢30X2 1 + c31xl0 + ¢32x21x3Xlo , 

gl0(X ) = C33X2X 3 1 , 

gl l (X)  = C34X1X2 1 , 

gl2(X) = C35X7 + C36X 8 , 

gl3(X) = C37XlX4 1 + C38Xl + C39X~X4 1 • 

The coefficients Cl, ..., c36 are given in Table 6.1. 
An infeasible starting point, upper and lower bounds on the problem 

variables and an optimal solution are given in Table 6.2. 
The following bounds are derived from the mathematical model of 

the 3-stage membrane separatior/process [6]. 

Table 6.1 
Coefficients for Problem 6 

j q j ej j ej 

1 1.0 14 0.975000 27 
2 1.0 15 -0.009750 28 
3 1.0 16 1.0 29 
4 1.262626 17 1.0 30 
5 -1.231059 18 -1.0 31 
6 1.262626 19 0.002 32 
7 -1.231059 20 0.002 33 
8 1.262626 21 1.0 34 
9 -1.231059 22 1.0 35 

10 0.034750 23 -0.002 36 
11 0.975000 24 -0.002 37 
12 -0.009750 25 1.0 38 
13 0.034750 26 1.0 39 

500.0 
-1.0 

-500.0 
0.9 
0.002 

-0.002 
1.0 
1.0 
0.002 

-0.002 
0.034750 
0.975000 

-0.009750 
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Table 6.2 
Starting point, variable bounds and an optimal solution for Problem 6 

Variable Starting point Upper bound Lower bound Optimal solution 
(infeasible) 

go(x) i ' :  250.0 250.0 50.0 97.591034 
xx 0.50 1.0 0.1 0.803773 
x 2 0.80 1.0 0.1 0.900000 
x3 0.90 1.0 0.9 0.900000 
x4 0.10 0.1 0.0001 0.100000 
xs 0.14 0.9 0.1 0.190837 
x6 0.50 0.9 0.1 0.900000 
x 7 489.0 1000.0 O. 1 574.099615 
x8 80.0 1000.0 0.1 74.099636 
x9 650.0 1000.0 500.0 500.000000 
XIO 450.0 500.0 0.1 0.100000 
x n  150.0 150.0 1.0 20.239117 
x 12 150.0 150.0 0,0001 77.336450 
x13 150.0 150.0 0,0001 0.015467 

Upper bounds on variables x 1, X2, X3, X4, X5, X6, X10. 

L o w e r  b o u n d s  o n  v a r i a b l e s  x 1, x 2, x 3, x 5 , x 6, x 9, x l o .  

Problem 7. A 5-stage membrane separation process 

This problem is essentially an extension of  the previous one and is 
also developed in detail in Dembo [6]. 

Statistics 

NK = 19 ,  DD = 6 8 ,  
N V A R  = 1 6 ,  E P S C O N  = 10 -5 
N T E R M S  = 8 5 ,  E P S C G P  = 10 -3 . 

Objective function and constraints 

go(X) = ClX12 + c2x13 + c3x14 + C4X15 + C5X16 + C6XlX12 

+ C7X2X13 + C8X3X14 + 89X4X15 + CloX5X16 , 

g l ( X )  = C11X1X6 1 + C12Xl + C13X2X6 1 , 

g 2 ( x )  = C14X2X71 + C15X2 + C16X22X7 1 , 

g 3 ( x )  = ClwX3X8 1 + C18X3 + ClgX2X8 1 , 
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ga(X) = C20X 4 X91 + C21X 4 + C22X2X91 , 

g5(x) = C23XsX~o I + ¢24X5 + C25X25Xlo 1 , 

g6(x) = ¢26 X6 X71 + C27Xl X71x~Ilx12 + C28X6 X71Xlll X12 , 

g7(x) = C29X7X81 + ¢30X7X81X12 + ¢31X2X81X13 

+ C32X13 + C33XlX81X12 , 

C34X 8 + C35X8X13 + C36X3X14 + C37X 9 + C38X2X13 

+ C39 X 9 X14 , 

c40x31x9 + c41x31x4x~41x15 + c42x31XloX{41 

+ C43X31X9X141 + C44X31X8X141X15 , 

C45 X4 1 X5 X~Ix16 + C46 X4 1 X10 + 1747 X~ 1 

+ C48X151X16 + C49X41X10X{51 , 

C50X4 1 + ¢51X16 + C52X41X5X16 , 

g8(x) = 

g9(x) = 

glo(X) = 

gll (X) = 

gl2(X) = C53Xll + C54X12 , 

g13 (X) = C55 X~]1X12 , 

gl4(X ) = C56 X4 X51 , 

g15(X) = C57X3X41 , 

g16(X ) = ¢58X2X 31 , 

g17(x)  = c 5 9 x l x 2 1  , 

g18(x )  = c60xgX{o I , 

g19(X ) = C61XS X91 . 

209 
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Table 7.1 
Coefficients for Problem 7 

J ~ J ~ J 

1 1.262626 22 -0.00975 43 -500,0 
2 1.262626 23 0.03475 44 -1 ,0  
3 ~ 1.262626 24 0.975 45 1.0 
4 1.262626 25 -0.00975 46 1.0 
5 1.262626 26 1.0 47 500.0 
6 -1.231060 27 1.0 48 -1 .0  
7 -1.231060 28 -1 .0  49 -500.0 
8 -1.231060 29 1.0 50 0.9 
9 -1.231060 30 0.002 51 0.002 

10 -1.231060 31 0.002 52 -0.002 
11 0.034750 32 -0.002 53 0.002 
12 0.975 33 -0.002 54 -0.002 
13 -0.00975 34 1.0 55 1.0 
14 0.034750 35 0.002 56 1.0 
15 0.975 36 0,002 57 1.0 
16 -0.00975 37 1,0 58 1.0 
17 0.03475 38 -0.002 59 1.0 
18 0.975 39 -0.002 60 1.0 
19 -0.00975 40 1.0 61 1.0 
20 0.03475 41 1.0 
21 0.975 42 500.0 

Table 7.2 
Starting point variable bounds and an optimal solution for Problem 7 

Variable Starting point Upper bound Lower bound Optimal solution 
(infeasible) 

go(x) 250,0 250.0 50.0 174.788807 
xl 0,8 0,9 0.1 0.8037724 
x 2 0.83 0.9 0.1 0.8175130 
x 3 0.85 0.9 0.1 0.9 
x 4 0.87 0.9 0.1 0.9 
x s 0.90 1.0 0.9 0.9 
x 6 0.10 0.1 0.0001 0.0999996 
x 7 0.12 0.9 0.1 0,1078842 
x 8 0.19 0.9 0.1 0.1908369 
x 9 0.25 0.9 0.1 0.1908369 
xto 0.29 0.9 0.1 0.1908369 
xl l  512.0 1000.0 1.0 505.664787 
x 12 13.1 500.0 0.000001 5.6650580 
x13 71.8 500.0 1.0 72.475185 
x14 640.0 1000.0 500.0 500.0 
xls 650.0 1000.0 500.0 500.0 
x16 5.7 500.0 0.000001 0.000001 
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The coefficients c 1 , ..., C61 are given in Table 7.1. 
An infeasible starting point, upper and lower bounds on the problem 

variables and an optimal solution to the problem are given in Table 7.2. 
The following bounds are derived from the mathematical model of  

the 5-stage membrane separation process [6]. 
Upper bounds on variables x 1, x 2, x 3, X 4, X 5, X 6, X 7, X 8, X 9, XlO, X12, 

X13, Xl6. 
Lower bounds on variables x 1, x 2, x 3, x 4, x 5, x 7, xs ,  x 9, Xlo, X14, Xl5. 

Problem 8. B e c k  and Ecker ' s  p rob lem 

This problem is a prototype geometric programming problem taken 
from Beck and Ecker [2]. It has been included here for a number of  
reasons. Firstly, it appears to be sensitive with respect to the exponent 

in the first term of  the objective function. Also, Beck and Ecker [2] 
report large variations in computat ion times for different ~, whereas 
this phenomenon is not observed when the problem is solved using 
GGP. 

Three versions of  the problem have been included here, each identical 
except for the parameter a. 

Stat is t ics  

NK = 4 ,  DD = 10,  
NVAR = 7 ,  EPSCON = 10 -6 , 
NTERMS -- 18,  EPSCGP = 10 -4 . 

Object ive  f u n c t i o n  and constraints  

go (x)  = ClXlX21X2X63X~ + C 2 X l l X 2  2"'1"~3 ~41 . . -  1 . . -  1 / 2 . ~ 5  ~7 

+ c 3 x 1 2 x 2 x 4 1 x 5 2 x 6  +," v 2 v 2 a . - l a . 1 / 2 ~ . - 2  v ~4~1~2~3  ~5 ~6 "~7 

,-, v l / 2 v - l ~ - - 2 v  " I - c 6 x ~ x 2 x 3 2 v l ' v  1/2 gl  (X) = "5~1 ~3 ~6 ~7 "~6¢~7 

+ C 7 X 2 l x  3 X41/2 .,-2/3-vl/4 
~ 6  ~ 7  ' 

g2(x )  = C8Xll /2X2X3 l x 5 1 x  6 + C 9 X 3 X41X51X2 

r v - l v l / 2 v - 2 v - l v l / 3  
~10 ¢~1 ~ 2  ~ 4  ~ 5  ~ 6  ' 



212 R.S. Dembo /A set of geometric programming test problems 

g 3 ( x )  = CllXlX33/2X5X61X~/3 + C12X2X31/2X5x~lx7112 

y - l . , .  ,,.1/2~. C14X22X3X5X61X7 , +C13~'1 ~2~ '3  ~5  + 

g 4 ( x )  = ,. ~ , - 2 v  a , - l v l / 2 v l / 3  + C16xl/2~'2~ • y 1 / 3 ~ . - 2 / 3 v l / 4  
~15"~1 ~2~ '4  ~'5 ~ 7  1 ~ '2" ' 3 J ' 4  ~'5 ~'7 

p ~ - 2 . ~  ~1/2  
+ C 1 7 X 1 3 X 2 2 X 3 X 5  X3/4 +~18~3 ~4"~7 • 

The variable bounds (all artificial) are given by 

O.l<~x i < 1 0 ,  i = 1  .. . .  , 6 ,  

0 .01~<x 7 ~< 10 ,  

and the objective function is bounded (artificially) by  

100 ~< go(X) <. 3 0 0 0 .  

The problem coefficients e I . . . .  , c18 are given in Table 8.1. 
An infeasible starting point  and the corresponding optimal solutions 

computed for a = - ~ (Problem 8A), ~ = ~ (Problem 8B), ~ = ~ (Pro- 
blem 8C) are given in Table 8.2. 

Table 8.1 
Coefficients for Problem 8 

i c/ j ~ j 

1 10.0 7 0.2 13 1.0 
2 15.0 8 1.3 14 0.65 
3 20.0 9 0.8 15 0.2 
4 25.0 10 3.1 16 0.3 
5 0.5 11 2.0 17 0.4 
6 0.7 12 0.1 18 0.5 

Table 8.2 
Starting point and optimal solutions for Problems 8A, 8B, 8C 

Variable Starting value Optimal solution 
Problem 8A Problem 8B Problem 8C 

g 0 ~ )  2500.0 1809.7615 911.87957 543.66638 
x x 6.0 2.8566276 3.8955214 4.3919085 
x 2 6.0 0.61083257 0.80868472 0.8546317 
x3 6.0 2.1503944 2.6626285 2.8416293 
x4 6.0 4.7171337 4.2983005 3.4013674 
x s 6.0 1.0002048 0.85357785 0.72275344 
x 6 6.0 1.3487370 1,0953123 0.87052969 
x 7 6.0 0.03160686 0.02730898 0.02464651 
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