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This paper presents a theoretical result on convergence of a primal affine-scaling method for convex
quadratic programs. It is shown that, as long as the stepsize is less than a threshold value which depends
on the input data only, Ye and Tse’s interior ellipsoid algorithm for convex quadratic programming is
globally convergent without nondegeneracy assumptions. In addition, its local convergence rate is at
least linear and the dual iterates have an ergodically convergent property.
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1. Introduction

A long-standing question about affine-scaling methods for linear programming (LP
for short) was their convergence in the presence of degeneracy. Recently, Tseng
and Luo [5] and Tsuchiya [6, 7] have resolved the problem. In papers [5] and [6],
it is shown that the affine-scaling methods for LP are globally convergent without
nondegeneracy assumptions of either primal or dual program, if some restrictions
are imposed on the stepsize. Tsuchiya’s analysis requires that the stepsize is 3 of
the maximum allowable distance, which is certainly important in practical computa-
tions. He also demonstrates in [7] that the convergence results of primal and dual
affine-scaling methods are mathematically equivalent. However, his proof is quite
complex and is based on the potential function from projective-scaling. On the other
hand, Tseng and Luo’s proof is straightforward but assumes a tiny step size of order
279" where L is the input length. In achieving their goal, Tseng and Luo discover
an interesting property of the methods. They show that the dual iterates generated
by the methods are ergodically convergent, which means that, despite the seemingly
irregular behavior of the dual iterates in the presence of degeneracy, certain weighted
average of the dual iterates has a subsequence converging to a dual solution.
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Much less work has been done in the convergence analysis of affine-scaling
methods for convex quadratic programming { CQP for short) although the idea of
affine-scaling was extended to this case soon after Karmarkar’s projective-scaling
method for LP had been proposed. As a matter of fact, Ye and Tse suggested an
“interior ellipsoid method” [11] in 1986, which is probably the first affine-scaling
algorithm proposed for CQP. However, convergence (with ot without degeneracy)
of the method has been an open problem since that time. The interior ellipsoid
method repeatedly minimizes the quadratic objective function over a series of
ellipsoids of a fixed radius in the scaled space. Given the conceptual simplicity of
the method and the potential of utilizing efficient implementation techniques
developed for LP affine-scaling methods, two theoretical questions should be
answered. First, is there a simple proof for its convergence? Second, how does the
algorithm behave? In this paper we offer our answers to these questions by extending
Tseng and Luo’s analysis to the CQP case. It is shown that, as long as the stepsize
is less than a threshold value which depends on the input data only, the algorithm
generates iterates that converge globally without nondegeneracy assumptions; its
local convergent rate is at least linear; and the dual iterates are also ergodically
convergent. It should be noted that these results are only of theoretical interest
because the analyzed algorithm takes the stepsize whose scaled norm equals
(t/9)/(1+1/y), where t =27°") and v is of the order of the condition number of
the constraint matrix.

We consider the CQP problem

(QP) minimize q(x)=3x"Qx+c'x
subjectto Ax=b, x=0,

where x, ceR", AcR™*", bcR™, and Q is a symmetric positive semidefinite matrix.
All input data are integers. The superscript ““T”” means the transpose. The following
assumptions, which are typical for analysis of interior point methods, are made
for (QP):

1. A has full rank.

2. The relative interior of the feasible set F ={x cR"| Ax = b, x = 0} is nonempty.

3. Let x° be the initial interior solution. Then the set

K=Fn{xeR"|q(x" = q(x)}

is included in a box B={x e R"|||x|.=<2"}, where L= n”+mn +log,|P| is the input
length of (QP) (P is the product of the nonzero coefficients appearing in Q, ¢, A,
and b).

The assumption 3 is reasonable as Ye and Tse argued in [11] that there is an
optimal solution of (QP) whose c-norm is bounded by 2% if (QP) has an optimal
solution at all. In particular, if Q = 0, this assumption corresponds to the assumption
of boundedness of the optimal solution set in the case of LP. Notice also that the
assumption implies that, for all x € B, || x|, =2" and the gradient of g(x) is bounded
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by
V() o = [ Qllusllx [0+ [[€ oo = 25254+ 2 < 2% (1.1)

For simplicity of notation, here and below, ||| denotes the Euclidean norm.
Unless otherwise specified, we use capital letters to represent matrices or sets,
lower-case letters to designate vectors, and Greek letters to stand for scalars.

The affine-scaling algorithm analyzed in this paper is as follows.

Algorithm 1.1. Let x¥=(x* ..., x5)T> 0 be the current interior feasible solution to
(QP). Let X =diag(x%, ..., x*). Solve

(SP) minimize g(w)=3iw Qw+Vq(x*)"w
subjectto  Aw=0, [ X.'w|’sg’*<l.

Let the solution be w*. Set x**' = x*+ w* If x**' is optimal to (QP), stop; otherwise
update k and iterate.

The solution w” to the subproblem (SP) and the Kuhn-Tucker vector ( p*, u,) e
R™ X R.. satisfy

kak“AT k:—Vq(Xk), AWk:O, ||X;1Wk“2$,BZ,
(1.2)
(I X wH 2= 8% =0,

where Q, = Q+ mw X ". If w, =0, then (1.2) implies that w* is the optimum of g(w)
on Aw=0. Thus x**" is an optimal solution to (QP); otherwise u, >0, from (1.2)
one has

k BXirk

—_ _ =, rkzvq(xk+l)_AT k,
Il Xl (1.3)

PF=(AX;AT) TAXIVq(x ),

and g, =B Xur"|.

In the next section we will show that if 8 is suitably chosen, then the sequence
generated by the algorithm will converge to a limit point x* such that g(x*) is
within & accuracy of the optimal value, where £ is a given tolerance. Consequently,
by setting € =27*""' in a finite number of iterations we will get an x* that is within
27*" accuracy of the optimal value of (QP). An optimal solution to (QP) can then
be obtained by rounding the error from this point, as discussed by Ye and
Tse [11].
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2. Convergence analysis of the algorithm

It is not hard to see that the algorithm generates a sequence of feasible solutions
and we have g(x°) = q(x") = g(x*) =" - - . Hence there is a limit value lim_,, g(x*) =
0. because g(x) is lower bounded on the set K. We will characterize convergence
properties of the algorithm by showing three theorems:

(Theorem 1) q(x*™") — o< (1-8/Vn)[q(x*) — o), for large k.

(Theorem 2) The sequence {x*} converges to a limit point x*.

(Theorem 3) g(x*) is within 28y2°"/(1~B) accuracy of the optimal value of
(QP), where v is a constant depending on A.

Theorem 1. Let {x*} be the sequence generated by Algorithm 1.1. Then for k sufficiently
large one has

fI(ka)‘Uoos (1 —ﬁ/\/ﬁ)[q(xk)_o'oo]-

Proof. The convex compact set Y=K n{y|q(y) <o} is nonempty because any
cluster point of {x*} belongs to it. Now we claim that there exists a positive integer
k, such that for all k> k, one has

min| X '(y —x")| <. (2.1)
ye

To show this, suppose that there is a subsequence {x*},.s such that

mignx;l(y—xk)nm/ﬁ VkeS. (2.2)

We may further assume that {x*},.s~ y* because K is bounded. Note that y*¢ Y.
Thus we have

IX3 7 =X = X 1=yl
=Y (1-y¥/x?+ ¥ 1=<n (for large ke S),

yT>O yj‘=0

a contradiction to (2.2). Hence (2.1) is valid. Now consider k>k and y*=
x*+ B[ y*(x*) - x*]/v/n, where y*(x*) attains the minimum in (2.1). Then, from
(2.1), y*—x* is a feasible solution to (SP). Compared with the optimal solution w*
to (SP), we have

g(x" ") = g(x"+w") = q(x"*+y* = x)
=q((1-B/vn)x"+By*(x*)/v/n)
<(1-B/Vn)q(x")+Ba(y*(x"))/Vn
<(1-B/Vn)q(x")+ Bo/vn.

Therefore

q(x*") —oe<(1-B/Vn)lg(x*)~o.]. O



J. Sun / Convergence of an affine-scaling algorithm for QP 73

In order to show Theorem 2, we need the following lemma. Its proof is obvious.

Lemma 1. For any kX n matrix B and any k-vector d, if the linear system Bx = d has
a solution, then it has a solution whose norm is at most A|d||, where X is a constant
that depends on B only. [

Theorem 2. The sequence {x*} converges to a limit point x*.

Proof. There exists an orthogonal mattrix P, depending on Q only, such that

T _ Ql 0
PQP‘(O Qz)’

where Q, is an n, X n, diagonal positive definite matrix, Q,=0€R"™*"2, and 1, + n, =
n. Correspondingly, we express w*= 0"+ u*, where

k 0
0 z

y*eR™, and z* e R™.

Claim 1. ||o*]|<vV27 "|q(x*) = g(x**")|"/* for all k, where 7 is the smallest eigen-
value of Q, (hence the smallest positive eigenvalue of Q).

Proof of Claim 1. From w"=x""'—x* and

g(x*) = g(x") = =Vq(x"")Tw* +3(w*)TOw*
we have

g(x*)—q(x*")=3(w)TQw* =3(»*)TQ, »" (2.3)

because —Vq(x*"")"w* =0, which can be seen from the optimality of w" to (SP).

Therefore
Iy ff=vVe ™y o, =vV277" g(x*) = q(x"" D",

where ||- ||, is the Q;-norm of the vector. Since ||v*|| =] y*||, the claim is proven.
Claim 2. There holds that

|| < alq(x") - g(x*"")'? (2.4)

for large k, where « is a constant.

Proof of Claim 2. Suppose that (2.4) is not valid. Then, because {u*} is a bounded
sequence, there is a subsequence S of {1, 2, . . .} and a nonempty subset J of {1, ..., n}
so that

ky k+1y11/2
{lq(X) g(x""")] }%0’ 2.5)

u"]
|
cnites [

>0 VjelJ
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and

k

Yoo vjel={1,...,n1—J (2.6)

es T

From (2.6) and Claim 1, it is implied that
{|lo*|/uf}s>0 Vjeld (2.7)
Consider the system
Au=-Av, cTu=c"u w=uf VjeJ, [PTul,=0Vi=1,...,n,.

Here [ - ]; denotes the ith component of the vector [ -]. This system of equations is
solvable because at least u* is a trivial solution. By Lemma 1 there is a solution "
such that ||i*|| < A (| Av® | +|c"u"| +Y,e7 |u¥]), where A depends on A, ¢, and Q only.
Now we argue that {#*/[u®|}s~0. Since both |Av*|| and Y,.;|uf| are in the
order of o(||u®|) (see Claim 1 and (2.6)), it suffices to show that |c'u*|=
O(|g(x*) — g(x*"")]"/?). This is true because of the fact that

|—cuk| =g (x*) = g(x*") + Vq(x*) 0"+ (x*)TQu* +3(w") "Qw|
<q(x*)=g(x"")+[Vg(x")] - [v"]
+3 (%) 701y (using QuF=0)
= (1+2V2r T 1)|g(x*) — ()]
(using (2.3), (1.1), and Claim 1, for large k).
Let d*=u*—a* Yke S. Then there hold that Ad*=0, ¢"d*=0, and

Q 0) PY(u*—i*)=0.

Qd :P(O 0

Thus for every ke S we have that

gOwk = d¥) = Jow* = d)TQ(w* = ")+ (Qx* + ) (w ~d*) = G(wh),

A(Wk—dk)=0, (28)
and that
K2 ko gk
I(X) " (wk=d") =% (W—) +z(—W’ & ”)
jeT \Xj jed xj
ky\ 2 ky\ 2 k ~ kN 2
_ w; Wj> (Uj+“j>
= -4 + —L ] (2.9)
,E,-(x;f) E,(x; wh

Now, since {#¥/||u"|}s =0, we have for all je J, {i;/u;}s~ 0, which together with
(2.7) yields {(vF+a})/ufts >0 V¥je J Then for all j€J, we have that

{(oF+ak)/wits ={(vf + )/ (vf +uf)}s >0,
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so each term in the second sum of (2.9) is strictly less than the square of w,’-‘/xj’-‘ for
sufficiently large k€ S. Because J is not empty, we have for those k that

X (w* = d) P < X w2

This, together with (2.8), means that w* —d* is an interior optimal solution to (SP),
s0 x“+w*—d* is an optimal solution to (QP). Since g(x*+w*~a*) = g(x*+w"),
x*+ w* is optimal to (QP), too. Hence the algorithm will stop. In other words, the
sequence {x*} will either stop at an optimum or have that [u*|<
a(lg(x*) ~ q(x*"")|'?), where « is a constant. This completes the proof of Claim 2.

Now we prove the theorem. Using Theorem 1, Claim 1, and Claim 2, we obtain
that for any large k<r,

=Xl = (a2 ) T lar) =]
(@t T ()= ol

<(aty 2t ) g —oo? T (1-B/Vn)2.
5=0
Hence {x*} is a Cauchy sequence and it must converge to a limit x*. [J

Remark. In a separate paper of Ye [10], a statement is given (without proof) that
if Q is positive definite then {x*} converges. This can be seen clearly from the proof
of Theorem 2. Theorem 2 offers a good supplement to Ye’s observation.

The following three lemmas help to establish Theorem 3.

Lemma 2. Suppose that x€ K and p e R™ satisfy
x=0 = [Vg(x)—A"p];> —e¢,
x>0 = ez [Vg(x)—A"pl;> —e.

Then q(x) is within 2e2°" of the optimal cost of (QP).

(2.10)

Proof. Consider the parameterized form of (QP):

(PQP) minimize §(x,e)=3x"Qx+(c+ee)"x
subjectto Ax=b x=0,

where e=(1,...,1)". Its dual program is

(DPQP) maximize d(y,p)=-3y"Qv+b"p
subjectto  Vq(y)—ATp=-—ce, y=0.

Note that x is feasible to (QP). In addition, if (2.10) is satisfied by x and p, then
(x, p) is feasible to (DPQP). By duality we note that

0s<g(x,e)—d(x,p)=x"Vq(x)—bTp+ee'x

=x"(Vg(x)—A"p)+ee'x<2eex.
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The inequality above says that the g(x) is within ee'x of the optimal cost of (PQP).
However, the optimal values of (QP) and (PQP) can differ at most by ¢22%. Thus
q(x) is within 2¢2%* of the optimal cost of (QP). O

Lemma 3. For any he D, where D is a bounded set in R”, the range of the function
p(x*)=(AXZA") 'AX?h is a bounded set whose bound depends only on A, n, and D.

Proof. Vanderbei and Lagarias [8, Section 4] have proven that p(x*) is bounded
for any positive diagonal matrix X, and for fixed A and h. Now let i = ¢, the jth
unit vector in R™. We conclude that the jth column, hence each entry of the matrix
(AX3A")'AX}, has a bound that depends on A only for any X,. Therefore the
range of p(x*) is contained in a bounded set if h € D and D is bounded. Moreover,
the bound of the range can depend on A, n, and D only. [

Remark. The bound obtained in [8] for the ith component of p(x*) is

1
detjl """ j"l(a ".',h""ﬁam)
max

1 m
1<ji<--<ju,<n detj1,---,j,,.(a PN /4 )
denominator=0

k4

where det; jm(al, ...,a™) denotes the m x m subdeterminant of A by selecting
columns j,, ..., j. from A, where a’,..., a™ are the rows of A. The numerator is
defined similarly but a’ is replaced by A". Thus by Cramer’s rule, if h = e’, the
entries of (AX;A") 'AX7 are bounded by the largest absolute value of the entries
of T~' among all m X m invertible submatrices M of 4. Let this value be 5 (which
depends on A only). It is then implied that

I I—ATAX;AD) TAX =1+ |AT||o(nn) =1y,

where v is of the order of the condition number of the constraint matrix A. Hence
by (1.1) and (1.3) one has

1 Yoo = I TT=AT(AXZAT) 7' AXZ ]V (X* 1) | <2,
The lemma below is a well-known result in mathematical analysis.

Lemma 4. Suppose that 0< )~ +c0 and h* > h* ask—>oc0. Then ¥\_, a;h' /Y5 ;>
h*. O

Now we prove the third theorem.

Theorem 3. The sequence {x*} generated by Algorithm 1.1 converges to a limit point
x* with q(x*) being within 28y2°"/(1—B) accuracy of the optimal value of (QP).

Proof. The proof is similar to the one of Tseng and Luo for linear programming
except for the processing of some limits. For the reader’s convenience, we write it
in detail here.
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Let g“=Vq(x**"). For each k denote
DX p X
V| Xor® 4+ -+ 1/ X"

Note that from formulae (1.3), Lemma 3, and the remark after Lemma 3, the
sequence {p*} is bounded, so are the sequences {5*} and {r*}.
Note that || X,r*|| >0, which can be derived from

g(x*)—q(x*"") = -Vq(x
=B X" (by formulae (1.3)).

“Twk  (by convexity of g(x))

Consider any convergent subsequence of { 5*},.s > p*. We now show that x* and
p* satisfy (2.10) with & = 8y2*"/(1— ). Because {g"} > g*=Vq(x*), by Lemma 4
and the fact that ”Xkrkll -0, we have

Z, ogj/”Xr” 3
Y- OI/HXYH

If x}>0, then from X, r* -0 we know r’-‘—)O. Lemma 4 then implies that

S og/ X'l _ z, o/ IXir)

[AT_k i i i
P X T TS X
and thus for any & >0 we have that
[A"p*—Vq(x*)];|<e. (2.11)
If x} =0, we first prove the following result:
Tor/IXrl 0t B Siolr/|Xr] o)
Yo VIXr | S VIX | 1B X /X ]
where
kak xk 15k 1 xOSO rl_(
R 1 1d NPT R Y S i 2.13
T o TR 219
From
xk+1 B(x )2 k/||XkrkH
=xj(l—,3xk KX ) = xF(1+ Bxf85) (2.14)

we have that
(1+B)xf=x"" if 8F>0,
(1-B)xf<xf" if 8F<0,

so that
8f/(1+B) = xk8l/x™! if 85> 0,
87/(1-B)=xf8l/xf+" if 6f<0.
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Since 1/(1+8)=1-B/(1+8) and 1/(1—B)=1+B/(1—B), this implies that

B i !
— o+ d; \0
’ 1+Bafz>o ! Baz<0

Hence by using the fact 8/ (1 +,8) <f/(1=p),

5J’_<_|_...+59_

S+ - +8V=<0rf 5 (|5“|+ -+ [87)).

J

Dividing both sides by 1/||Xkrk|| +- 41/ Xor°|| and using (2.13) gives (2.12).
Because [|r¥],, <y23F (see the remark after Lemma 3 ), we have from (2.12) that

(AT k) zl Ogj/llxr ” z: = j/”Xr || 0}’( i 3723L
YL VIXAl T T V) X Il Yo /01X
Thus by Lemma 4, there holds that
. ok B'y23L
ATp* —g*). <lim su { L . }+ } 2.15
( p g )j k—;oo,keg zf_czo l/”X,r'H I_B ( )

Now since x; =0, we obtain from (2.13) and (2.14) that
Bxisk ﬁx’.‘*ls’f"l Bx)8Y
B~ l: i k J R il o

+ .
k+1 1
X; X; Xj

1 [xF ) 1 ( xk 1 (x! }
—1 7 gl J
- — g )+ SR R TRy o
A l:xj'-‘ﬂ( xf xE\xf! ) xj \x} >

R
J J

This together with (2.15) then implies that

,37
-B
The inequalities (2.11) and (2.16) ensure that the conditions (2.10) of Lemma 2

for x* and p* with e=pfy23L/ (1 —p). The conclusion of Theorem 3 is therefore valid
due to Lemma 2. [

ok =

I

[ATp*—Vg(x

(2.16)

3. Conclusions and final remarks

Dikin [2, 3], Barnes [1}, Vanderbei and Lagarias [8], and Vanderbei, Meketon and
Freeman [9] showed convergence of various affine-scaling algorithms for LP under
certain nondegeneracy assumptions. Tseng and Luo [5] and Tsuchiya [6] provided
convergence proofs for some affine-scaling methods for LP without using non-
degeneracy assumptions. This paper is concerned with Ye and Tse’s primal afine-
scaling algorithm for CQP. We show that the convergence of the convergence of
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the algorithm does not depend on nondegeneracy assumptions and that the dual
iterative solutions have an ergodically convergent property. However, our proof
does not imply that the algorithm has polynomial complexity. Notice that Monteiro,
Adler and Resende [7] have proven polynomial complexity for a primal-dual
affine-scaling method for CQP, but the proof requires the initial point close to the
central path. An interesting open question then is whether there is a polynomial-time
affine-scaling method for LP or CQP that allows a natural start point. Another
direction of possible future research is to investigate the convergence properties of
affine-scaling methods in more general (e.g. convex) or more special (e.g. network)
settings than CQP.
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