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This paper presents a theoretical result on convergence of a primal affine-scaling method for convex 
quadratic programs. It is shown that, as long as the stepsize is less than a threshold value which depends 
on the input data only, Ye and Tse's interior ellipsoid algorithm for convex quadratic programming is 
globally convergent without nondegeneracy assumptions. In addition, its local convergence rate is at 
least linear and the dual iterates have an ergodically convergent property. 
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1. Introduction 

A long-standing question about affine-scaling methods for linear programming (LP 
for short) was their convergence in the presence of degeneracy. Recently, Tseng 
and Luo [5] and Tsuchiya [6, 7] have resolved the problem. In papers [5] and [6], 
it is shown that the affine-scaling methods for LP are globally convergent without 
nondegeneracy assumptions of either primal or dual program, if some restrictions 
are imposed on the stepsize. Tsuchiya's analysis requires that the stepsize is ½ of 
the maximum allowable distance, which is certainly important in practical computa- 
tions. He also demonstrates in [7] that the convergence results of primal and dual 
affine-scaling methods are mathematically equivalent. However, his proof is quite 
complex and is based on the potential function from projective-scaling. On the other 
hand, Tseng and Luo's proof is straightforward but assumes a tiny step size of order 
2 -°~L~, where L is the input length. In achieving their goal, Tseng and Luo discover 
an interesting property of the methods. They show that the dual iterates generated 
by the methods are ergodically convergent, which means that, despite the seemingly 
irregular behavior of the dual iterates in the presence of degeneracy, certain weighted 
average of the dual iterates has a subsequence converging to a dual solution. 
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Much less work has been done in the convergence analysis of affine-scaling 
methods for convex quadratic programming (CQP for short) although the idea of 
affine-scaling was extended to this case soon after Karmarkar's projective-scaling 

method for LP had been proposed. As a matter of fact, Ye and Tse suggested an 
"interior ellipsoid method" [11] in 1986, which is probably the first affine-scaling 

algorithm proposed for CQP. However, convergence (with or without degeneracy) 

of the method has been an open problem since that time. The interior ellipsoid 
method repeatedly minimizes the quadratic objective function over a series of 
ellipsoids of a fixed radius in the scaled space. Given the conceptual simplicity of 

the method and the potential of utilizing efficient implementation techniques 
developed for LP affine-scaling methods, two theoretical questions should be 

answered. First, is there a simple proof  for its convergence? Second, how does the 
algorithm behave? In this paper we offer our answers to these questions by extending 
Tseng and Luo's analysis to the CQP case. It is shown that, as long as the stepsize 
is less than a threshold value which depends on the input data only, the algorithm 
generates iterates that converge globally without nondegeneracy assumptions; its 
local convergent rate is at least linear; and the dual iterates are also ergodically 
convergent. It should be noted that these results are only of theoretical interest 

because the analyzed algorithm takes the stepsize whose scaled norm equals 
( 7 / 7 ) / (  1 +z /7 ) ,  where ~ = 2 -°(L~ and , / is  of the order of the condition number of 
the constraint matrix. 

We consider the CQP problem 

(QP)  minimize q ( x )  = ½xVQx + cVx 

subject to A x  = b, x >t O, 

where x, c ~ Rn, A c R m×', b c N ' ,  and Q is a symmetric positive semidefinite matrix. 
All input data are integers. The superscript "T"  means the transpose. The following 
assumptions, which are typical for analysis of interior point methods, are made 

for (QP): 
1. A has full rank. 
2. The relative interior of the feasible set F -= {x ~ R" I A x  = b, x >~ 0} is nonempty. 
3. Let x ° be the initial interior solution. Then the set 

K=-- F c ~ { x c l R ' l q ( x ° ) > ~ q ( x ) }  

is included in a box B -= {x c N n ] N x [] co ~< 2t'}, where L =- n 2 + rnn + log2] P] is the input 
length of  (QP) (P  is the product of the nonzero coefficients appearing in Q, c, A, 

and b). 
The assumption 3 is reasonable as Ye and Tse argued in [11] that there is an 

optimal solution of (QP) whose m-norm is bounded by 2 c if (QP) has an optimal 
solution at all. In particular, if Q = 0, this assumption corresponds to the assumption 
of boundedness of the optimal solution set in the case of LP. Notice also that the 
assumption implies that, for all x ~ B, I]X[]l ~< 2 2L and the gradient of q ( x )  is bounded 
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by 

IlVq(x)l[oo ~ [IQIl~llxl[~o+ [Ic[l~o~< 2 L ' 2 L + 2 L ~  23L- (1.1) 

For simplicity of  notation, here and below, [[. I[ denotes the Euclidean norm. 

Unless otherwise specified, we use capital letters to represent matrices or sets, 

lower-case letters to designate vectors, and Greek letters to stand for scalars. 
The affine-scaling algorithm analyzed in this paper  is as follows. 

Algorithm 1.1, Let x k = k ( x ~ , . . . ,  X~)T> 0 be the current interior feasible solution to 
(QP). Let Xk= diag(xt  x, • • . ,  x~). Solve 

(SP) minimize gI(W)==-½wVQw+Vq(xk)TW 

subject to a w = O ,  [[X;~w[[2<~/32< 1. 

Let the solution be w k. Set x k+l = x k + w k. I f  x k+l is optimal to (QP), stop; otherwise 

update k and iterate. 

The solution w k to the subproblem (SP) and the Kuhn-Tucker  vector (pk, ttk)V~ 
~m X R+ satisfy 

Okw g -- A Tp k = -Vq(xk ) ,  

  (llXKlw ll=-/3=) = 0, 
(1.2) 

where Qk = Q + IxkX~ 2. If/Zk = 0, then (1.2) implies that w k is the opt imum of 0(w) 

on A w  = 0. Thus x k+l is an optimal solution to (QP); otherwise/xk > 0, from (1.2) 

one has 

w k - / 3 X ~ r  ~ r k = Vq(x k+l) - ATp k, 

p k = ( A X ~ A  T ) -1AX~V  q(xk+I),  

(1.3) 

and/zk =/3-'llXkrkll. 
In the next  section we will show that if/3 is suitably chosen, then the sequence 

generated by the algorithm will converge to a limit point x* such that q(x*)  is 
within ~ accuracy of  the opt imal  value, where ~ is a given tolerance. Consequently, 
by setting ~ = 2 -4L-1, in a finite number  of  iterations we will get an x k that is within 

2 4L accuracy of  the optimal value of (QP). An optimal solution to (QP) can then 

be obtained by rounding the error from this point, as discussed by Ye and 
Tse [11]. 
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2. Convergence analysis of the algorithm 

It is not hard to see that the algorithm generates a sequence of feasible solutions 
and we have q(x  °) >~ q (x  l) >~ q(x 2) ~>" • • . Hence there is a limit value limk~oo q(x  k) -- 
o-~ because q(x)  is lower bounded on the set K. We will characterize convergence 
properties of the algorithm by showing three theorems: 

(Theorem 1) q(x  k+~) - ~r~ <~ (1 - f i / x / n ) [ q ( x  k) - cry], for large k. 
(Theorem 2) The sequence {x k} converges to a limit point x*. 

(Theorem 3) q(x*)  is within 2/3y25L/(1--/3) accuracy of the optimal value of  
(QP), where y is a constant depending on A. 

Theorem 1. Let {x k} be the sequence generated by Algorithm 1.1. Then for  k sufficiently 
large one has 

q (x  k+l) - cr~<~ (1 - f l / x / n ) [ q ( x  k) - croo]. 

Proof. The convex compact set Y = - K  ¢~ {y lq (y )~< croo} is nonempty because any 
cluster point of {x k) belongs to it. Now we claim that there exists a positive integer 
/~, such that for all k >/~, one has 

mini] X ~ ( y  - x k) 11 <~ ~/~. (2.1) 
y~Y 

To show this, suppose that there is a subsequence {Xk}k~S such that 

min l lX ; l ( y -  xk)tl > ~/-n V k  ~ S. (2.2) 

further assume that {Xk}k~s-~ y* because K is bounded. Note that y * c  Y. 
have 

Therefore 

q(x k+l) - croo<~ (1 -tG/v/-n){q(x k) - ~roo]. [] 

We may 

Thus we 

IIX;l(y*-xk)ll 2 2 
j=l 

= ~, ( 1 - - y * / x ~ ) 2 +  Y~ l<~n ( f o r l a r g e k c S ) ,  
y~>O y~=0 

a contradiction to (2.2). Hence (2.1) is valid. Now consider k > /~  and y k =  
Xk+tf l[y*(X k) --xk]/,/-n, where y*(x  k) attains the minimum in (2.1). Then, from 
(2.1), yk _ x k is a feasible solution to (SP). Compared with the optimal solution w k 

to (SP), we have 

q ( x k + l )  = q ( x  k + Wk) ~ q ( x  k + yk  _ X k) 

= q((1 - ~ / ~ / ~ ) x  k + ~y*(xk)/~/-n)  

~< (1 - - ~ / v ~ ) q ( x k ) + [ 3 q ( y * ( x k ) ) / v / n  

<~ (1 -- fi / ~/-n )q(  x k) + flcr~/ x/-n. 
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In order to show Theorem 2, we need the following lemma. Its proof  is obvious. 

Lemma 1. For any k x n matrix B and any k-vector d, if  the linear system Bx = d has 
a solution, then it has a solution whose norm is at most A [[dll, where A is a constant 

that depends on B only. [] 

Theorem 2. The sequence {x k} converges to a limit point x*. 

Proof. There exists an orthogonal mattrix P, depending on Q only, such that 

p T Q p = ( Q 1  O )  

0 Q2 ' 

where Q, is an nl x n~ diagonal positive definite matrix, Q2 = 0 ~ R n2× n~-, and nl + n2--- 
n. Correspondingly, we express w k= vk+ u k, where 

yk c R n~, and z k c ~"~. 

Claim I. II ~ [[ ~< ~ rq(x ~) -q(x~+')l'/= for all k, where ~- is the smallest eigen- 
value of  Q~ (hence the smallest positive eigenvalue of Q). 

Proof of  Claim 1. From w k = x k + l - x  k and 

q(x  k) -- q (x  k+l) = - -~q(xk+l)Tw k +½(wk)TQw k 

we have 

q(x  k) _ q(xk+l)  ~ 1( wk)TQwk = l(yk)TQ1 yk (2.3) 

because --Vq(xk+l)Twk>~ O, which can be seen from the optimality of w k to (SP). 

Therefore 

II yk II <~ ~ - l  flykl[Q. <~ 2,]~Zir-~lq(xk ) -- q(xk+')ll/2, 

where I1" IIQI is the Q,-norm of the vector. Since Ilvkl/--Ilykll, the claim is proven. 
Claim 2. There holds that 

[[uklJ ~ ozlq(x I") - q(xk+l)ll/2 (2.4) 

for large k, where ~ is a constant. 
Proof o f  Claim 2. Suppose that (2.4) is not valid. Then, because {u k} is a bounded 

sequence, there is a subsequence S of{l ,  2 , . . .}  and a nonempty subset J o f { l , . . . ,  n} 
so that 

Iq(x k) - q(xk+l)]'/z 1 
Js (2.5) 

u k 
lim ~ > 0  V j c J  
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and 

lim u~ = 0  ' ¢ j ~ Y - = { 1 , . . .  n}-J.  (2.6) 
k ~ , k ~  Ilukll 

From (2.6) and Cla im 1, it is impl ied  that  

{llvkll/U~}s~O VjEJ. (2.7) 

Cons ider  the system 

ALl = -A~)  k, cTu = cTu k, Uj = Uy Vj~Z [pTu]i  = 0 Vi = 1 , . . . ,  nl. 

Here  [.  ]i denotes  the ith c o m p o n e n t  of  the vector  [. ]. This system of  equat ions  is 
solvable  because  at least u k is a trivial solution. By L e m m a  1 there is a solut ion O k 

such that  II o k II <~ 3`(11A~ ~ II + I t  Tu k l + Y j j  luYl), where  3, depends  on A, c, and Q only. 

N o w  we argue that  {ak/llukll}s--,0. Since both  ]lavkll and ~j~j [uyl  are in the 
order  of  o(llu~N) (see Cla im 1 and ( 2 . 6 ) ) ,  it suffices to show that  IcTukI= 
O(Iq(x  k) -q(xk+~)]~12). This is true because  of  the fact that  

I--cZuk I = Iq(x k) - q( x k+l) q- ~ q( x k )  T vk Jr- ( xk )  T Qu k -~-l( wk)  T Owk I 

q ( x  k) -- q (xk+l ) - I - I lVq(xk ) l l  • II vk II 

+ ½ (yk)VQiyk (using Q u k = 0 )  

<~ (1 + 23L 2X/2~-1 + 1)lq(x k) -- q(xk+l)l ~/2 

(using (2.3), (1.1), and Cla im 1, for  large k). 

Let d k = u k - O k Vk c S. Then  there hold that  Ad k = O, cVd k = 0, and 

O d k = p (  o'O O0) PT(uk--ok)=o" 

Thus for  every k ~ S we have that  

~ l ( W  ~ - d ~) = ½(w ~ - d ~ ) ~ Q ( w  ~ - d ~) + (Qx k + c)~(w k - d ~) = O(wk),  

A ( w k - d  k) = 0 ,  (2 .8)  

and  that  

Xw~\~ +2"w~-u~+~)  ~ II(x~) '(w~-d~)ll ~= ~, ~ )  
jEY \ j / j ~ J \  Xy 

+ 

= z / ~ i  + z t ~ i  t U , s -  (2.9) joy \ Xj I jEJ 

{uj/uj }s ~ O, which together  with Now,  since {0~/IluklI}S 0, we have for a l l j ~ J ,  -k k 
(2.7) yields {(V~+ak)/U~}s-->O VjcJ.  Then  for  all j ~  J, we have that  

{(v~ + o~)/w~)s = {(v~ + o~)/(v~ + u~))s-~ 0, 
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so each term in the second sum of (2.9) is strictly less than the square of w~/x~ for 
sufficiently large k c S. Because J is not empty, we have for those k that 

I IX; ' (  w k - d k) I[ 2 ( I l X  k I W k I12. 

This, together with (2.8), means that w k - d k is an interior optimal solution to (SP), 
so x k + w k - d k is an optimal solution to (QP). Since q(x  k + w k - d k) = q (x  k + w~), 

x k + w k is optimal to (QP), too. Hence the algorithm will stop. In other words, the 
sequence {x k} will either stop at an optimum or have that IIukll<~ 

a ( I q ( x  k) -q(xk+l)[~/2),  where a is a constant. This completes the proof  of Claim 2. 

Now we prove the theorem. Using Theorem 1, Claim 1, and Claim 2, we obtain 
that for any large k < r, 

r - - I  

I lxk-xr l l~<(~+ 2~/2~ -1) ~ Iq (x* ) -q (x~+l ) l  1/2 
S ~ k  

r - - 1  

~<(o~+x/2r-') Y~ lq(x*)-o'ool '/2 
s = k  

co 

(Ogq-X/~-7 )  ]q(xk)--O'oo[ '/2 E ( 1 - / 3 / ' f f f )  s/2. 
s = 0  

Hence {x k} is a Cauchy sequence and it must converge to a limit x*. [] 

Remark. In a separate paper of Ye [10], a statement is given (without proof) that 
if Q is positive definite then {x k} converges, This can be seen clearly from the proof  
of Theorem 2. Theorem 2 offers a good supplement to Ye's observation. 

The following three lemmas help to establish Theorem 3. 

Lemma 2. Suppose that x E K and p c ~m satisfy 

x j = 0  ~ [ V q ( x ) - A T p ] j > ~ - e ,  

xj> 0 ~ e ~  [Vq(x)--ATp]j> --~. (2.10) 

Then q (x )  is within 2e22e o f  the optimal cost o f  (QP). 

Proof. Consider the parameterized form of  (QP): 

(PQP)  minimize 4(x,  e) = ½ x T Q x + ( c + e e ) T x  

subject to A x  = b, x >- O, 

where e = ( 1 , . . . ,  1) v. Its dual program is 

(D PQ P)  maximize d ( y , p ) = - - ½ y T Q y + b T p  

subject to V q ( y ) - A T p > ~ - e e ,  y > O .  

Note that x is feasible to (QP). In addition, if (2.10) is satisfied by x and p, then 
(x, p) is feasible to (DPQP). By duality we note that 

0 <~ q(x,  e) - d (x ,  p) = x T V q ( x )  -- bVp + eeTx 

= xV(Vq(x )  - AVp) + eeVx <~ 2eeVx. 
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The inequality above says that the q(x) is within eeTx of the optimal cost of (PQP). 

However,  the opt imal  values of  (QP)  and (PQP)  can differ at most  by e2 2L. Thus 

q(x)  is within 2e2 2L of  the opt imal  cost of  (QP) .  [] 

Lemma 3. For any h c D, where D is a bounded set in ~ ,  the range of the function 
p ( x k) = ( A X  2k A X )- I A X  2 h is a bounded set whose bound depends only on A, n, and D. 

Proof. Vanderbei and Lagarias [8, Section 4] have proven that p(x  k) is bounded 

for any positive diagonal matrix Xk and for fixed A and h. Now let h = e j, the j th  

unit vector in ~". We conclude that the j th  column, hence each entry of  the matrix 
(AX~AT)-~AX2k, has a bound that depends on A only for any Xk. Therefore the 

range o f p ( x  k) is contained in a bounded set if  h c D and D is bounded. Moreover, 

the bound of the range can depend on A, n, and D only. [] 

Remark. The bound obtained in [8] for the ith component  of p(x") is 

detj, . . . .4,,(al, . . . ,  h, :- .  ._a~) I 
m a x  . . . .  a ' 

l ~ j l < ' " < J m ~ n  , . . . ,  m 

denomina to rT"  0 

where detj,,...3,,,(a 1, . . . ,  a m) denotes the m x m subdeterminant of A by selecting 

columns Jb .. • ,j,n from A, where a~ , . . . ,  a m are the rows of A. The numerator  is 

defined similarly but a ~ is replaced by h T. Thus by Cramer 's  rule, if h = e j, the 
entries of (AX~AV)-~AX~ are bounded by the largest absolute value of the entries 

of T ~ among all m x m invertible submatrices M of A. Let this value be ~ (which 

depends on A only). It is then implied that 

III - AT(AX2A T)-~AX2k IIo  1 + II AXl[o~(n~) ~ % 

where y is of  the order of  the condition number  of the constraint matrix A. Hence 

by (1.1) and (1.3) one has 

II rkl[oo = II [1 - A T  (AX~A T) - I A X 2 ] V q ( x  k+ l )11 ~< Y 23L. 

The lemma below is a well-known result in mathematical  analysis. 

Lemma 4. Suppose that 0 < ak -~ +oo and h k ~ h* as k-~ oo. Then ~ = o  aih i /~  ~=o cq 
h*. [] 

Now we prove the third theorem. 

Theorem 3. The sequence {x k} generated by Algorithm 1.1 converges to a limit point 
x* with q(x*) being within 2f ly2sL / (1 - f l )  accuracy of the optimal value of (QP). 

Proof. The proof  is similar to the one of  Tseng and Luo for linear programming 
except for the processing of some limits. For the reader 's  convenience, we write it 
in detail here. 
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Let gk =Vq(xk+ l ) .  For  each k denote  

P" _ pO / Il Xor°ll + " "  + pk  l [[ X k  r k II 

1/[[Xor°ll + . . .  + 1/IlXkr k 1[ 

Note  that  f rom fo rmulae  (1.3), L e m m a  3, and the r emark  after  L e m m a  3, the 
sequence {pk}  is bounded ,  so are the sequences  {/5k} and {rk}. 

Note  that  IlXkrkr[-~ O, which can be der ived f rom 

q(x k) - - q ( x  k+l) ~ - - V q ( x k + l ) T w  k (by convexi ty  of  q ( x ) )  

=~] lx~? l l  (by fo rmulae  (1.3)). 

Cons ide r  any convergent  subsequence  of  {/sk}k~s -~/5*. We now show tha t  x* and  
/5* satisfy (2.10) with e = /3723L/ (1- - f i ) .  Because { g k } ~  g , =  Vq(x*) ,  by L e m m a  4 

and  the fact that  IIX.r"l[ - ,  0, we have 

E~=o gj/l lX/ll 
k 

2,=o 1 / l l X / l l  -~ g* 

I f  x* > O, then f rom X k  rk ~ 0 we know r)  ~ O. L e m m a  4 then implies  that  

k i i [AV/sk]j_2,=o~ gj/l lX,  r II _- 
Y,=o a/l lx/ l l  

and thus for  any e > 0 we have that  

I[AT/~ * -  V q ( x * ) ] j  I < s. 

I f  x* = O, we first p rove  the fol lowing result: 

,Lo ~j/IIx/II  
k 

Y=,=o a/l lx/ l l  

where  

F rom 

~ 0 ,  

k i i 0k k E,=or#f [xs  II< J + ~ E,=olrjI /Hx/l[  
~--W-- ~ -  ~ k k , 
E,=ol/lIX, r f[ L=oa/llX, r'[[ 1-fi E , = o l / l l X / l l  

xk(~k  X f f - l ( ~ ;  1 0 0 
ok = ..j vj  q _ _  t-. • • + x j  6j r)  

x)  +'  x )  - - - 5 -  and 8if= . xj 11 xkr ~ 11 

Xff +1 = X) -- # (X))2 r)/1] Xk rk II 

= X ) ( 1  -- fiX)r)/IlXkr k JJ) = x ) ( 1  + f ix)6))  

we have  that  

( l + ~ ) x ~ . ~ x )  +' 

(1 - ~ ) x ) ~ x )  +' 

so that  

if 8 y > 0, 

if  8 y < 0, 

3 ) / ( l + f l ) ~  k ~ k ,  k+, X i O j / x j  if  6 k > 0 ,  

~ ) / ( 1 - ~ ) ~  k~k. k+, x j  % / x j  if  8y < O. 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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Since 1 / (1 + 13) = 1 - /3 / (1 +/3) and 1 / (1 - 13) = 1 + 13 / (1 - /3) ,  this implies that 

. . . .  ~ £ ,s;+_C.~ ~ o  ,s!-< o'~ `s)+ +`so 1+/3~;>o " 1 - / 3  _. - ' ~ . '  

Hence by using the fact ,8/( 1 +,8) <,8/( 1 -fl), 

`SY+""" +'s°<- oY + 1 _--~ ~ (l`s)l + ' "  + I`s°l). 

Dividing both sides by 1/llx~/ll + . . .  +l/llXor°ll and using (2.13) gives (2.12). 
Because II rkl] oo ~< Y2 3L (see the remark after Lemma 3 ), we have from (2.12) that 

(ATpk); Ei_-ogjllXiri[] E~or~/llX/ll off 
- ~ o  1 / l l x / l l  - - ~-~o 1 / l l X / l l  <  ̀~=o 1 / l l x / l [  

Thus by Lemma 4, there holds that 

0k (nTff*--g*)j<`lin~ s u p ~ k  1/llX, r,[] } 13723L 
~o,k~s ( Y ,=o 1 -/3 

Now since x* = 0, we obtain from (2.13) and (2.14) that 

F13xj k`sjk i~xk--l`sk-1 0 0 7Y] 1 r - i  J F 0) = 13 . . .  + / 3 x A ,  
Lx,-U --+ x; d J 

=/3 1 [ + ( ~ - 1 )  1 [ x '  \ 1 { x ) _ 1 )  ] 

[;o ] =13-~ 1 x~l+l ~-oO. 

This together with (2.15) then implies that 

/3723L 
q 

1-13 

[ATp*--Vq(x*)]j< 

(2.15) 

(2.16) 

The inequalities (2.11) and (2.16) ensure that the conditions (2.10) of Lernma 2 
for x* and ~0" with ~=fiy23L/( 1 -fl). The conclusion of  Theorem 3 is therefore valid 
due to Lemma 2. [] 

3. Conclusions and final remarks 

Dikin [2, 3], Barnes [1], Vanderbei and Lagarias [8], and Vanderbei, Meketon and 
Freeman [9] showed convergence of various affine-scaling algorithms for LP under 
certain nondegeneracy assumptions. Tseng and Luo [5] and Tsuchiya [6] provided 
convergence proofs for some affine-scaling methods for LP without using non- 
degeneracy assumptions. This paper is concerned with Ye and Tse's primal afine- 
scaling algorithm for CQP. We show that the convergence of the convergence of 
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the a lgor i thm does  not  d e p e n d  on n o n d e g e n e r a c y  a s sumpt ions  and  that  the dual  

i terat ive so lu t ions  have an e rgod ica l ly  convergent  p roper ty ,  However ,  our  p r o o f  

does  not  imp ly  that  the a lgo r i thm has p o l y n o m i a l  complexi ty .  Not ice  that  Monte i ro ,  

A d l e r  and  Resende  [7] have p roven  p o l y n o m i a l  complex i ty  for  a p r i m a l - d u a l  

aff ine-scal ing m e t h o d  for  CQP,  but  the p r o o f  requi res  the ini t ial  po in t  close to the 

centra l  pa th .  An  in teres t ing  open  ques t ion  then  is whe ther  there  is a p o l y n o m i a l - t i m e  

aff ine-scal ing m e t h o d  for  LP or  C Q P  that  a l lows a na tura l  s tart  point .  A n o t h e r  

d i rec t ion  o f  poss ib le  fu ture  research  is to invest igate  the convergence  p roper t i e s  o f  

aff ine-scal ing me thods  in more  genera l  (e.g. convex)  or  more  special  (e.g. ne twork)  

set t ings than  CQP. 
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