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We study the max cut problem in graphs not contractible to Ks, and optimum perfect matchings in 
planar graphs. We prove that both problems can be formulated as polynomial size linear programs. 
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I. Introduction 

The convex hull of the incidence vectors of matchings in a graph has been character- 
ized by Edmonds (1965). In his pioneering paper, Edmonds showed that exponen- 
tially many inequalities may be necessary. Several other polytopes related to com- 
binatorial problems have been characterized by systems whose number of 
inequalities is exponential in the size of the problem. One example is the Cut 

Polytope for graphs not contractible to Ks, see Barahona and Mahjoub (1986a). In 
this paper we show that the maximum cut problem in graphs not contractible to 

Ks, and the optimum perfect matching problem in planar graphs, can be formulated 
as polynomial size linear programs. For this reason we say that we present compact 
systems for those problems. A compact system for optimum arborescences has been 
presented in Wong (1984) and in Maculan (1985). Ball, Liu and Pulleyblank (1987) 
gave a compact system for two terminal Steiner trees. In Barahona and Mahjoub 
(1986b, 1987) we presented compact systems for the following problems in series- 
parallel graphs: stable sets, acyclic induced subgraphs, and bipartite induced sub- 

graphs. In Barahona and Mahjoub (1989) we gave a compact system for stable sets 
in graphs with no W4 minor. For matching in a complete graph, Yannakakis (1988) 
proved that there is no symmetric compact system. In Barahona (1988) it was shown 
that optimum matching in a general graph reduces to a sequence of O(m ~ log n) 
minimum mean cycle problems and this last problem admits a compact formulation. 
We denote by n the number of nodes and by m the number of edges. 
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A connected graph G is said to be contractible to a graph H if H can be obtained 
from G by a sequence of elementary contractions, in which a pair of adjacent 
vertices is identified and all other adjacencies between vertices are preserved 

(multiple edges arising from the identification being replaced by single edges). The 
complete graph on n nodes is denoted by Kn. 

Given a graph G = ( V, E),  and U ~ V, the set of edges with exactly one endnode 
in U is called a cut and denoted by 6(U).  The empty set is also a cut. Given a cut 
C, the incidence vector of C, x c, is defined by 

xC(e)= if e~ C. 

We denote by Pc(G) the convex hull of incidence vectors of cuts of G. Given 
two sets S and T, their symmetric difference is denoted by SAT. For x ~ R  E and 
T_c E we denote by x ( r )  the sum ~e~r x(e).  

In this paper a simple cycle of  G will be just called a cycle. We call S(G) the 
following system of inequalities: 

x ( F ) - x ( C \ F ) < ~  [ F I - 1  for each cycle, F_c C, IF[ odd, (1.1) 

0 < ~ x ( e ) ~ l  for e~E. (1.2) 

Since the intersection between a cut and a cycle has even cardinality, every 
incidence vector of a cut satisfies (1.1). Moreover, given a cut D its incidence vector 

satisfies (1.1) as equation only if IF (7 DI = IFI - 1 and (C\F)  ~ D = 0, or I F  ¢~ DI = 
Ivl and ](C\F) (7 DI  -- 1. These constraints are valid for Pc(G), and are called cycle 
inequalities. In Barahona and Mahjoub (1986a) we proved that G is not contractible 
to Ks if and only if P c ( G )  is defined by S(G). 

In Section 2 we describe Wagner's characterization of graphs not contractible to 
Ks. In Section 3 we prove that if G is not contractible to K5 then Pc (G) is defined 
by S(G), the proof that we had given in Barahona and Mahjoub (1986a) was based 
on the work of Seymour (1981b) on the matroids with the sum of circuits property, 
the proof  we present here does not involve Matroid Theory. In Section 4 we study 

the integrality of  the dual solution and we give an algorithm for mult icommodity 
flows in graphs not contractible to/£5. In Section 5 we study the system of inequali- 
ties defined by the odd cycles of  a graph. In Section 6 we give a compact system for 
the max cut problem in graphs not contractible to/£5. In Section 7 we give a compact 
system for perfect matching in planar graphs. The reader that is only interested in 
compact systems can skip Sections 2, 3, 4 and 5. 

2. Wagner's characterization of graphs not contractible to Ks 

Let G =  (V, E)  be a connected graph, and let y c  V be a minimal articulation set 
(that is, the deletion of Y produces a disconnected graph, but no proper subset of 
Y has this property). Choose nonemtpy subsets T1, T2 of V, such that (T1, Y, T2) 
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is a partition of V, and no edge joins a node in T1 to a node in T2. Add a set Z of  

new edges joining each pair of nonadjacent nodes in Y. Let G1 = (V1, El), G2 = 

(172, E2) be subgraphs so that V~= T~u Y, Ei = E(V~) u Z ,  i = 1 ,  2. Then if ]Y t=k ,  

1 ~< k ~< 3, G is called a k-sum of G1 and G2. Let us notice that this decomposition 
is not necessarily unique. If Z is empty, the k-sum is called strict. 

Let us denote by ~ / t h e  class of connected graphs not contractible to Ks. Wagner 
(1964, 1970) has shown that any graph G c  ~ / c a n  be obtained by means of k-sums 
starting from planar graphs and copies of 118, which is the graph of Figure 1. This 

decomposition can be found in polynomial time. 

0 1 

3 

5 4 

Fig. 1. 

3. The cut polytope for graphs not contractible to Ks 

In this section we assume that G is a graph not contractible to Ks. We shall prove 
that Pc(G)  is defined by S(G) .  

Let us denote by Ax  <~ b the system S(G) ,  let w : E ~ 7/be a weight function. We 
have to prove that the problem 

maximize wx 

subject to Ax<~ b, (3.1) 

has an integer optimal solution. 
Suppose that for every node u the sum of the weights of the edges incident with 

u is even. In the next section we shall prove that, under this evenness condition, the 
dual problem has also an integer optimal solution. 

Case I. We first study planar graphs. We need a result of Edmonds and Johnson 
(1973) about the Chinese postman problem. This problem can be defined as follows. 
given a graph H = (N, F) ,  T_c N, and a set of integer weights d(e)  >! O, for e c F, 

minimize Y~ d (e )x (e )  

subject to  ~ x ( e ) = { ~ ( m o d 2 ) i f v ~ T ,  (3.2) 
e~8<~ (mod2)  i f v c V \ T ,  

x(e)  c{O, 1} for e e F .  
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They proved that this problem is equivalent to the linear program 

minimize Z d(e)x(e) 

subject to  ~ x(e)~>l  for every set S c_ N with IS c~ T] odd, (3.3) 
ecS(S)  

x>~O. 
Assume now that we have a planar graph G = ( V, E)  embedded in the plane, and 

a weight function w: E ~ Z .  We are going to reduce (3.1) to a Chinese postman 

problem in the dual graph of G. 
Define E l = { e :  w(e)<~0}, E2={e:  w(e)>0},  and d(e)=lw(e)l, for eeE.  Let H 

be the dual graph of G and T the set of faces D of G (i.e. nodes of H )  with [D c~ E21 
odd. Consider problem (3.3) associated to H. Notice that cuts in H correspond to 

unions of cyles in G. An inequality in (3.3) induced by a cut having a disconnected 
shore is redundant. Cuts of H with connected shores correspond to (simple) cycles 
of G, so problem (3.3) becomes 

minimize dx 

subject to ~, x ( e ) ~ l  for C e C ,  (3.4) 
eEC 

x>~O. 

We denote by C the set of cycles C of G with I C c~ E21 odd. 
The dual problem of (3.4) is 

maximize ~ Yc 
CcC 

(3.5) 
subject to Z { y c : e e C } < ~ d ( e )  for ecE,  

y>~O. 

Seymour (1981a) has proved that under the evenness condition (3.5) has an 
optimal solution that is integral. In Barahona (1990) we showed that a slight 
modification of the algorithm of Edmonds and Johnson produces this integer dual 
solution. From the solution of (3.4) we are going to derive a solution of (3.1). 

Let ff be an integer optimum of (3.4), and S = {e: X(e) = 1}. Removing the edges 
in S breaks all the cycles in C. We can assume that S is minimal with respect to 
this property because the objective function is nonnegative. Thus the node set V 
can be partitioned into V~ and V2 in such a way that every edge in E~\S has both 
endnodes in V1 or both in V2 and every edge in E2\S has one endnode in V1 and 
the other in V2. On the other hand every edge in E~ c~ S has exactly one endnode 
in V1, and every edge in J~2 (~ S has both endnodes in V1 or both in V2. Hence the 

vector ~ defined by 

~(e) = IX(e) i f e c E 1 ,  
L 1 - X  if ecE2, 
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is the incidence vector of  a cut. Now we have to show that it is an opt imum of 

(3.1). To see this we shall construct an opt imum of the dual problem. 

Let us denote by /3 (C ,  F )  the dual variables associated with inequalities (1.1), 

and by y(e) the dual variable associated with 

x(e)~< 1. 

Let ~ be an opt imum of (3.5), let us define 

F ) = ~ y c  if F = I C n E 2 I ,  
t3( c, to otherwise, 

y ( e ) = { o ( e ) - ~ { y c ' e ~ C }  if e~E2,  
otherwise. 

Since y satisfies the constraints of  (3.5) we have that (/3, y) is a feasible vector 

for the dual of  (3.1). Moreover,  if 15 is integer valued then (/3, y) is also integer 

valued. Let c~ be the value of the opt imum of (3.4), then w~ = - a  +~e~e~ w(e) and 
(/3, y) has the value. Case 1 is complete. [] 

Case 2. Let G be the graph Vs. 

As in Case 1, we consider the problem (3.4). We need the following lemma. 

Lemma 3.1. For any objective function w there are two nodes that cover all the cycles 
in C. 

Proof. First, let us remark that if we switch all the signs of  the weights of  the edges 

incident with one node, the family C does not change. Hence we can assume that 
only edges t~, j = i+  1 (mod 8), may belong to E=. 

I f  the cycle whose nodes are 1, 2, 6, 5 is not in C, we choose the nodes 0 and 3. 
Otherwise, we study the cycle defined by 0, 1, 5, 6, 7. I f  it is not in C we choose 

2 and 4. 

Otherwise, we study the cycle defined by 1, 2, 3, 4, 5. I f  it is not in C we choose 
0 and 6. 

I f  the last three cycles are in C then the cycle defined by 2, 3, 4, 5, 6 is not in C, 
we choose 1 and 7. 

The proof  of  this lemma is complete. [] 

Let p and q be these two nodes, we can split them in such a way that the family 
C is a family of two-commodity  paths as follows. 

First partition the node set o f H  = (N, F)  = G\{p,  q} into N1 and N2 so that edges 
in E2 ~ F have exactly one endnode in N1, and edges in E1 c~ F have both endnodes 

in N 1 o r  both in N2. Now consider the edges incident with p, let p~ and P2 be its 

copies. I f  pu ~ E~ and u ~ N~ then we put the edge p~u. I f  pu c El and u c N2 then 
we add p2u. I f  pu c 17.= and u ~ N2 then we put the edge p~u. I f  pu ~ E= and u ~ N~ 
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then we add p2u. The edges incident with q are treated in a similar way. This type 
of construction has been used in Barahona (1983b). 

The dual problem (3.5) is a two-commodity flow problem. It follows from the 

work of Hu (1963) and the theory of blocking polyhedra of Fulkerson (1971) that 
(3.4) has an integer optimum. Rothschild and Whinston (1966) have proved that 

under the evenness condition the flow can be chosen to be integer, thus (3.5) has 

an integer optimum. 
The remainder of the proof  is the same as for Case 1. [] 

Case 3. G is a k-sum of two graphs G 1 and G2, such that P c ( G 0  and Pc(G2)  
are defined by S(G1) and S(G2) respectively. 

We need a way to compose polyhedra. The following theorem appears in Barahona 
(1983a), the proof  of it follows the arguments of Cornu6jols, Naddef  and Pulleyblank 

(1985). 

Theorem 3.2. I f  G is a strict k-sum of  G~ and G2, then a system of  linear inequalities 
sufficient to define P c ( G )  is obtained from the union of  the systems that define P c ( G 0  
and Pc (G2), and by identifying the variables associated with the edges in G1 c~ G2. 

Proof. Let Q be the polytope defined by the union of these systems. Clearly 
P c ( G )  c_ Q, so we have to prove that every vector x e Q is a convex combination 

of vectors in Pc(G).  
Suppose k = 3 and that e, f and g are the edges in G1 c~ Gz. The restriction x ~ of 

x to the component set E1 belongs to Pc(GO thus 

component  set EL belongs to Pc(GO thus 

X 1= ~'~ h i y  i, with ~ h i = 1, h/>0,  
i~l i~l 

and the vectors {yi} are extreme points of Pc(GO. 
Let 

lef = ~ { ai : i e I such that y; ( e ) = y; ( f  ) = l }, 

ljg = ~  {Ai: i e  I such that t i ( f )  = y i ( g ) =  1}, 

leg = ~  {2;: i e / t h a t  y;(e) =y ; (g )  = 1}, 

lo=2{A;:  i c I  such that y i ( e ) = y i ( f ) = y i ( e ) = O } .  

Note that 

lef+leg=x(e), lef+lfg=X(f) ,  

ley + leg + ljg + Io= l. 

leg -~- lfg ~- x ( g ) ,  

This uniquely determines 1,¢, leg, !lg and 1o, given x. 
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Similarly; for the restriction x 2 o f  x to E2, we have 

X 2= ~ [A,jZ j, with ~ /xj = 1, p. ~ O, 
j~J j~J 

where the vectors {z j } represent cuts o f  G2. 

Let 

m~r = }] {/xj : j  ~ J such that yJ(e) = y J ( f )  = 1}, 

mrg = ~ {IXj : j c J such that y J ( f )  = yJ(g) = 1}, 

m~e = ~ {/xj : j  ~ J such that y ( e )  = yJ(g) = 1}, 

mo = Z {/xj : j  c J such that yJ(e) = y ( f )  = yJ(e) = 0}. 

Then  

59 

N o w  we have to s tudy the case when the k-sum is not strict, i.e. we need to delete 

some artificial edges. This situation is considered in the lemma below. 

Lemma 3.3. Let G be a graph such that Pc(G)  is defined by S(G)  and let e be an 
edge of G. Then P c ( G \ e )  is defined by S (G\e ) .  

Proof.  The poly tope  P c ( G \ e )  is the project ion o f  Pc(G)  along the variable x(e),  
i.e. 

( [ y ]    )forsomeva,ueofx e } P c ( G \ e ) =  y: x(e)  

In order  to obtain a system o f  inequalites that defines this project ion one can 

apply  Four i e r -Motzk in  el imination to the system S(G) ,  see for instance Schrijver 
(1986). 

Each  inequali ty o f  the new system is obta ined by adding an inequali ty ax <~ a 
that  has the coefficient 1 for x(e)  with an inequali ty bx <~ ¢3 that  has the coefficient 

- 1  for this variable. We have to prove that this new constraint  is implied by the 
system S( G\e) .  

m~l+meg=x(e),  mer+mjg=x( f ) ,  meu+rnfe=x(g), 

rn¢f + mee + rnj~ +mo = 1. 

This system of  equat ions has a unique solution, then leF = rncr, !re = rare, leg = m~e 
and Io = too. Thus we can match vectors y~ with vectors z ~ to form incidence vectors 

o f  cuts o f  G, say {XP}, and a family o f  coefficients {/3p} such that 

x = ~ f l pX  p, ~ / ~ p = l  and /3/>0. 

I f  k = 2 the p roo f  is similar, and if k = 1, it is obvious. [] 
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I f  we add x(e)<~ 1 to x ( F ) - x ( C \ F ) < ~  I F I -  1, with e e C\F, we obtain 

x ( F )  - x ( C \ [ F  {e}]) I FI, 

which is implied by 0 ~< x <~ 1. 

I f  we add - x ( e )  <~ 0 to x(F)  - x ( C \ F )  <~ I F [ -  1, with e ~ F, we obtain 

x(F\{e})  - x ( C \ F )  <~ [FI, 

which is also implied by 0 <~ x ~< 1. 

Now consider the inequalities x(F)  - x ( C \ F )  <~ [ F ] -  1, and x(G)  - x ( D \ G )  
] G [ - 1 ,  with e c Fc~{D\G}.  The symmetric difference C A D  is a union of edge 

disjoint cycles C ~ , . . . ,  Cp, and the inequality 

x ( F \ { e } )  + x ( G )  - x ( C \ F )  - x ( D \  [Gu {e}l ) ~< IFI + ]GI - 2  

is implied by inequalities 

x(Fi)-x(C~\Fi)<~lFil-1,  Fi~Ci ,  F~c_ Ci, IF~] odd, l<~i<~p, 

and 

0<~x(f)~< 1 for f ~ C c~ D. [] 

The proof  of  Case 3 is complete. [] 

Until now we have proved that if G is not contractible to Ks then Pc(G) is 

defined by S(G).  Now consider the graph Ks = (V, E),  the inequality 

y~ x(e)  ~<6 (3.6) 
eEE 

defines a facet of Pc(Ks), see Barahona and Mahjoub (1986a). I f  G has a subgraph 

contractible to Ks, then G contains a subgraph H that has been obtained from Ks 
by subdivision of edges and splitting of nodes. In Barahona and Mahjoub (1986a) 
we gave a construction that derives a facet defining inequality of  Pc(H)  starting 
from (3.6) and applying these two operations. All coefficients of this inequality are 

nonzero, therefore Pc(H)  is not defined by S(H).  Lemma 3.3 implies that S(G) is 

not sufficient to define Pc(G). 
Now we present a combinatorial  algorithm to solve the max cut problem in graphs 

not contractible to Ks. This algorithm will be needed in the next section. 

I f  the present graph is planar or V8, we solve the problem as in Cases 1 and 2. 
Otherwise G is a k-sum of G~ and G2; where G 2 is a planar graph or Vs. We need 
a way to decompose the problem. Let us denote by A (S, T, H )  the maximum weight 
of a cut of  the graph /4, containing the edge set S and having empty intersection 

with the edge set T. We write A(H) instead of A(0, 0, H).  
Suppose k = 3 and let e, f and g be the edges in G~ c~ G2. 
The edge weights in G2 are taken to be the same as for G. Then, the max cut 

problem is solved in G~ where all the edge weights are taken to be the same as for 
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G, except for e, f, g, which are redefined as the solution of the following system of 

linear equations: 

w'(e) + w'(f) = A ({e,f}, 0, (32) - A (0, {e, f  g}, G2), 

w'(f)+ w'(g) = A({f g}, 0, G2) -A(0 ,  {e, f  g}, G2), 

w'(e)+w'(g)=A({e,g},fl, G2)-A(O,{e, f g } ,  G2). 

The above system reflects the fact that a cut contains 0 or 2 of these edges. Let 
us remark that if the original weights satisfy the evenness condition, then the new 

weights in G1 also satisfy the evenness condition. We have that 

A(G) = A(Gi )+  A(0, {e,f, g}, 02). 

If  k = 2, let e be the edge in gl c~ G2. We take in (32 the same weights as for G. 

In GI we redefine only the weight of e as 

w'(e) = A({e}, 0, G2)-A(0 ,  {e}, G2). 

Then A ( G ) =  A(GI)+) t (0  , {e}, G2). 
If  k = 1, the problem is solved independently in G~ and (32. 
This algorithm appears in Barahona (1983a), it is an adaptation of an algorithm 

given by Cornu6jols, Naddef  and Pulleyblank (1985), for the traveling salesman 
problem in graphs with 3-edge cutsets. 

4. On the dual integrality of  S(G) 

In this section we shall prove that, under the evenness condition, the dual problem 
of (3.1) has an integer optimum. For reasons that will be clear later, we assume that 
the problem is a minimization problem. 

We first study the case when the value of the optimum is zero, i.e. there is no cut 
of negative weight (a negative cut). Since the zero vector is an optimum, the only 
constraints from (1.1) whose dual variables can take a positive value are 

x ( C \ e ) - x ( e ) ~ O  for every cycle C, e c  C. (4.1) 

These dual variables satisfy 

yB <~ w, y >10, (4.2) 

where Bx >~0 denotes the system (4.1). 
Consider a multicommodity flow problem defined as follows. A negative value 

for w(e) represents a demand between the endnodes of e, a nonnegative value for 
w(e) represents the capacity of e. Let ~ be the family of cycles having exactly one 
edge e with a negative weight w(e). A flow is a function f :  ~ + ,  such that 

{ ~<w(e) if w(e)~O, 
E {f(C)lec C} 

>~-w(e) i f w ( e ) < 0 .  
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Lemma 4.1. There is a flow if and only if there is a vector y that satisfies (4.2), 

Proof. I f f  is a flow then one can easily obtain f r o m f  a vector y that satisfies (4.2). 

Now let us assume that y is a vector that satisfies (4.2). Denote by y(C, e) the 

component of y associated with 

x (C \e ) - x ( e )>~O.  

If  w(e) ~> 0 and y (C, e) > 0 for some cycle C then e is said to be wrong. If  w (e) < 0, 

e~ C, and y(C, e ' ) > 0  for e ' ¢  e, then e is also said to be wrong. Otherwise e is 

called right. 
Let e be a wrong edge, then y(C, e ) > 0 ,  y(D, e ' ) > 0 ,  and e c D .  
Set 

e = m i n { y ( C , e ) , y ( D , e ' ) } ,  y ( C , e ) ~ y ( C , e ) - e ,  

y(D, e')~-y(D, e ' ) - e .  

Let F be the symmetric difference between C and D. The set F is a disjoint union 

of simple cycles. If  e' belongs to one of them let us denote it by H. In this case set 

y(H, e ' ) ~ y ( H ,  e')+ e. 

The new vector y also satisfies (4.2). We apply this procedure until the edge e is 

right. A right edge cannot become wrong. When every edge is right, we can derive 

a flow from the vector y. Note that this procedure does not increase the number of 

nonzero components of the vector y. [] 

This proves that for graphs not contractible to Ks, there is a flow if and only if 

there is no negative cut. This result has been proved by Seymour (1981b), he also 

proved that under the evenness condition the flow can be chosen to be integer. We 

give below a polynomial algorithm that constructs the flow. 

To find those dual variables, we distinguish three cases as in Section 3. 
If  the graph is planar we solve a Chinese postman problem, see Case 1. If  the 

graph is V 8 we solve a two commodity flow problem, see Case 2. 

Now we assume that G is a k-sum of G1 and G2, where G~ is planar or Vs. We 

apply the algorithm of Section 3 to redefine the capacities in G~ ; we denote them 

by w'. Notice that they will satisfy the evenness condition and that G~ does not 

have a negative cut. We can treat G~ as in Case 1 or Case 2 of Section 3, therefore 

we can find an integer flow in G~. Then we have to find a flow in G2. We redefine 

the capacities of the edges in G~ c~ G2 as w"(a) = w(a) - w'(a), for a E G~ c~ G2. 
Notice that the new capacities in G2 satisfy the evenness condition, and that G2 

will not have a negative cut. Once we have a flow for G1 and G2 we put together 

these two vectors to obtain a vector y that satisfies (4.2), then we apply the procedure 
of Lemma 4.1 to derive a flow in G. Notice that if the k-sum is not strict then we 

have some artificial edges of weight zero in G~ c~ G2, the procedure of Lemma 4.1 

will produce a flow that does not use these artificial edges. We continue working 

recursively with G2. 
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Thus finding a flow reduces to a sequence of Chinese postman problems in planar 

graphs and two-commodity flow problems in Vs. Given a planar graph with p nodes, 

the Chinese postman problem can be solved in O(p 3/2log p) time, cf. Barahona 
(1990). Thus if the original graph has n nodes and we have its decomposition, 
finding a flow takes O(n 3/2 log n) time. The most efficient way we know to find the 
decomposition takes O(n 2) time. 

Now we study the case when the value of the optimum cut is negative. Let @ be 
a minimum cut with respect to the weights d. Let us define the weights w as follows: 

- d ( e )  i f e ~ @ ,  
w(e )=  d(e) if e~@. 

It is easy to see that G has no negative cut with respect to w. Then the optimum 

value of the linear program below is 0. 

Minimize wx 

subject to x(C\e)-x(e)>~O for every cycle (7, e c  C, (4.3) 

x(e)>~O for e~E. 

Given a vector )~ that satisfies (4.2), let us denote by y(C, e) the variable associated 
with the inequality (4,1), and let ~ = w - g B .  

Let us define 

~(C,F)={~(C,e) if F=(Cm~)A{e},  
otherwise, 

y(e)={o(e) i f e c ~ ,  8(e)={o'(e ) i f e ~ ,  
otherwise, otherwise. 

The vector (fi, y, 8) is a feasible solution of the dual of 

minimize dx 

subject to -x(F)+x(C\F)>~ 1- IF ]  for each cycle C, F_c C, IF[ odd, 

- x ( e ) ~ > - l ,  x(e)>~O, for e~E. 

This construction has the following interpretation. Let ax >i 0 be one inequality 
of (4.3) which has a positive dual variable. We associate this dual value to the 
inequality a 'x >~ ~, where 

a'(e) ~-a(e) i f e ~ @ ,  
= ( a ( e )  if e~  ~, and c~ = - e ~  ~ a(e). 

If w is a linear combination of the rows of  (4.3), involving nonnegative coefficients, 
then we can use the same coefficients to write d as a linear combination of the rows 
given by the above procedure. 

The incidence vector of @ together with (fi, y, 8) satisfy the complementary 
slackness conditions of  linear programming. 
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5. Covering odd cycles 

Given a graph G = ( V ,  E),  consider the system 

x (C)  ~ 1 for every odd cycle C, 

x~>0. 
(5.1) 

We shall see that if G is not contractible to K5 then (5.1) defines an integral 
polyhedron. This has been proved by Fonlupt, Mahjoub and Uhry (1984) using 
composition techniques for the Bipartite Subgraph Polytope. It is an open problem 

to characterize the graphs that have this property. Graphs having two nodes that 
cover all the odd cycles have this property, cf. Barahona (1983b). 

Suppose that we have weights d ( e ) >  0 for every edge e. We have to prove that 
the linear program 

minimize dx 
(5.2) 

subject to (5.1) 

has an integer optimum. Let ff be an optimum with the additional constraint 
x c {0, 1} e. The set S = {e: )7(e) = 0} is a maximum cut. Define w as follows: 

~ - d ( e )  i f X ( e ) = l ,  
w ( e ) = [ d ( e )  if)7(e) = 0. 

Consider the multicommodity flow problem of Section 4. The graph does not 
have a negative cut with respect to w, otherwise S would not be maximum. Therefore 

there is a flow f such that 

~ f (  C) = }~ {w(e) l~(e)  = 1}. 

I f f ( C ) >  0 then C contains exactly one edge e with )~(e)= 1, every other edge 
in C belongs to S, therefore C is an odd cycle. This shows that f is a solution of 
the dual of (5.2) that proves the optimality of ~. In a similar way one can prove 

that for graphs not contractible to Ks, the system (3.4) defines an integral polyhedron. 

6. A compact system for max-cut in graphs not contractible to /(5 

Now we shall derive a compact system for the max cut problem in graphs not 
contractible to Ks. Consider the system S(G) ,  we just need the following three 

observations: 

Remark 6.1. Let G be an arbitrary graph and e an edge of G. Let us suppose that we 
eliminate x (e) by applying Fourier- Motzkin elimination to S (G). The system we obta in 
after deleting some redundant constraints is S ( G \ e ) .  
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Proof. This is proved in Lemma 3.3. [] 
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Remark 6.2. l f  a cycle C has a chord e, then any inequality in S (G)  associated with 

C is a sum of two other inequalities associated with the two new cycles obtained by 

adding e to C. This proves that the inequalities associated with C are redundant. 

Proof. Consider 

x ( F ) - x ( C \ F ) < ~ [ F ] - I ,  Fc_ C, IF[ odd. 

Let C1 and C2 be the new cycles obtained by adding the chord e to C. Let 

Fi = Ci c~ F, i = 1, 2. Suppose that IF~] is odd, then the last constraint is the sum of 
the next  two: 

x(F1) - x ( C I \ F I )  ~ JF1]- 1, 

x (e )+x(F2) -x (C2 \ [F2u{e}] )<[F21 .  [] 

Remark 6.3. I f  the edge e belongs to a triangle (a cycle of  cardinality three), then the 

inequalities O<~x(e)<~ 1 are implied by the cycle inequalitiees associated with the 
triangle. 

Proof. If {e, f g} is a triangle we have the constraints 

x(e)  + x ( f )  + x(g)  <~ 2, 

x(e)  - x ( f )  - x(g)  <~ O, 

- x ( e )  + x ( f )  - x(g)  <~ O, 

- x ( e )  - x ( f )  + x(g)  <~ O. 

By adding the first two we obtain 2x(e)<~2, and adding the last two gives 
-2x(e)~<0.  [] 

Let K,  be a complete graph, n/> 3, we denote by T ( K , )  the following system: 

x(e)  + x ( f )  + x(g)  <~ 2, 

x ( e ) - x ( f ) - x ( g ) > ~ O ,  

- x ( e )  + x ( f )  - x(g)  <~ O, 

- x ( e )  - x ( f )  + x(g)  <~ O, 

for every trinagle {e, f g}. 

It follows from Remarks 6.2 and 6.3 that S ( K , )  and T(Kn) define the same 
polytope. 
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Let G be subgraph of K,, that is not contractible to Ks. If  we apply Fourier- 

Motzkin elimination to S(Kn), to project the variables associated with the edges in 

Kn\G, we obtain S(G).  This follows from Remark 6.1. Therefore, if we apply 

Fourier-Motzkin elimination to T(Kn), to project the same variables, the system 

we obtain also defines Pc(G).  Let w be a weight function for the edges of  G, then 

the value of 

maximize Z w(e)x(e)  
e E G  

subject to x satisfies T (K, ) ,  

is the value of a max cut of G. 

We now state our main result. 

(6.1) 

Theorem 6.4. Let G be a subgraph of Kn. The value of the optimum of (6.1) is the 
value of a max cut of G, for every weight function w, if and only if G is not contractible 
to Ks. [] 

7. A compact system for perfect matching in planar graphs 

In this section we shall use the results of Section 6 and planar duality to derive a 
compact  system for perfect matching in planar graphs. In all the earlier sections we 

assumed that the graph has no loops and no parallel edges. In this section the graph 

may have loops and parallel edges. Parallelism is an equivalence relation. Its 

equivalence classes will be called parallel classes. Given a graph G, we shall denote 

by G the graph obtained from G by deleting loops and keeping only one representa- 

tive of  each parallel class. 
Given a graph G, we call U(G) the system 

x(eo) -x (e i )=O,  i = l , . . . , p ,  for each parallel class {e0, . . . ,  %} of G, 

x(e) + x ( f )  + x(g) <~ 2, 

x(e) - x ( f )  - x ( g )  <- O, 

- x ( e )  + x ( f )  - x(g) <~ O, 

- x ( e )  - x ( f )  + x(g) <~ O, 

for every triangle {e, f g} of  (~, 

0~<x(e)<~l 

for every edge e of G that does not belong to a triangle. 
Let H = ( V, E)  be a planar graph, and G a dual graph of H. Cuts of  G correspond 

to disjoint unions of cycles in H. Let T c V, with IT] even. A T-join is a subgraph 
o f /4 ,  such that the nodes in T (resp. not in T) have odd (resp. even) degree. The 
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symmetric difference between two T-joints is a union of cycles. The symmetric 

difference between a T-join and a disjoint union of cycles is also a T-join. Let us 

add edges to G until G is complete. Denote by x the variables associated with the 

original edges and by z the variables for the new edges. The system U(G) is a 
compact system for unions of  cycles (cuts of  the dual graph) of  H. Let F be a 

(fixed) T-join of H. Let us define 

{x(e) if e ¢ F, 
Y(e )=(1-x (e )  if e c  F. 

This transformation will be denoted by y = Dx + h. The matrix D is nonsingular 

and h is a 0-1 vector. 
Let w be a weight function for the edges of H. We obtain the value of a minimum 

weighted T-join by solving 

minimize Y, w(e)y(e) 
e ~ H  

subject to y = Dx + h 

(x, z) satisfies U(G). 

If  T =  V then the perfect matching polytope is the face of the T-join polytope 

defined by 

E y(e)=½lVl. 
e E H  

Thus if w is a weight function for the edges of  H, the minimum weight of a perfect 
matching in H can be obtained by setting T = V, and solving 

minimize Z w(e)y(e) 
e E H  

subject to y = Dx + h, 

(x, z) satisfies U(G), 

E Y(e)--½1V]. 
e ~ H  
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