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The capacitated vehicle routing problem (CVRP) considered in this paper occurs when goods must be 
delivered from a central depot to clients with known demands, using k vehicles of  fixed capacity. Each 
client must be assigned to exactly one of  the vehicles. The set of clients assigned to each vehicle must 
satisfy the capacity constraint. The goal is to minimize the total distance traveled. When the capacity of  
the vehicles is large enough, this problem reduces to the famous traveling salesman problem (TSP). A 
variant of the problem in which each client is visited by at least one vehicle, called the graphical vehicle 
routing problem (GVRP), is also considered in this paper and used as a relaxation of CVRP. Our 
approach for CVRP and GVRP is to extend the polyhedral results known for TSP. For example, the 
subtour elimination constraints can be generalized to facets of  both CVRP and GVRP. Interesting classes 
of facets arise as a generalization of the comb inequalities, depending on whether the depot is in a 
handle, a tooth, both or neither. We report on the optimal solution of two problem instances by a cutting 
plane algorithm that only uses inequalities from the above classes. 

Key words: Vehicle routing, polyhedron, facet, branch and cut. 

1. Introduction 

The term Vehicle Routing refers to a wide class of  managerial problems in which 

a fleet of  vehicles located at a central depot is dispatched to visit a set of  clients 

with known requirements for pick up or delivery. For example, it arises in situations 

of  public concern such as school bus routing, mail delivery, and garbage collection. 

In the private sector as well, the importance of this problem has been demonstrated. 

A study [18] reports annual distribution costs of  about $400 billion in the United 
States. As a basic example,  consider the following problem: given (i) a road network 
and travel costs on each link, (ii) a fleet of  identical vehicles with given capacity 
located at a central depot, and (iii) client demands and locations, construct routes 
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for the vehicles in order to meet the client demands at minimum travel cost while 
satisfying the vehicle capacity constraints. Two versions of the problem arise depend- 
ing on whether the client demands can be split among several vehicles or not. 

Traditionally, such problems have been addressed using heuristics, see, for instance, 
Toth [32], Magnanti [26], and Christofides [4]. Recently, however, some instances 

of significant size were solved to optimality. For example, Fisher [9] describes a 
branch-and-bound algorithm based on a Lagrangian relaxation. In [24], Laporte, 
Nobert and Desrochers give a cutting plane algorithm based on inequalities related 
to the so-called subtour elimination constraints. In spirit, the approach in [24] is 

similar to the groundbreaking work of Dantzig, Fulkerson and Johnson [8] on the 
Traveling Salesman Problem (TSP). First, a relaxed linear program is solved. Then 
the relaxation is strengthened by adding a set of violated inequalities to the formula- 
tion. Finally, a branch-and-bound algorithm is applied, based on the resulting linear 
programming bounds. Other exact approaches have been developed to solve vehicle 
routing problems and are discussed in the surveys of Christofides [4], Laporte and 
Nobert [23], Bodin, Golden, Assad and Ball [2]. 

For some time now, polyhedral combinatorics has established itself as a powerful 
tool for solving combinatorial optimization problems. In particular, impressive 
results have been obtained with the TSP. This problem, the most basic version of 

the vehicle routing problem (one vehicle with infinite capacity), has received special 
attention throughout the years. The book [25] provides an excellent review of the 
literature on the TSP. In the last 10 to 15 years, a better understanding of the 
underlying integer polyhedron has paved the way for the solution of large instances 
of the TSP. Instead of searching for violated inequalities among subtour elimination 

constraints only, other classes of valid inequalities have been considered, such as 
comb and clique tree inequalities, and have been found to be effective in strengthen- 

ing the linear programming relaxation (Chv~tal [6],  Gr6tschel [15], Gr6tschel and 
Padberg [16], Padberg and Hong [30], Gr6tschel and Pulleyblank [17], Padberg 
and Rinaldi [31]). Despite the obvious analogy between the TSP and the vehicle 
routing problem, very little is known about the structure of the vehicle routing 
polyhedron. The motivation for this paper stemmed from the desire to narrow this 
gap by exploiting the knowledge about the facial structure of the traveling salesman 
polyhedron and the belief that, for some vehicle routing problems, a better under- 
standing of the underlying integer polyhedron will also lead to the solution of  larger 
instances. It turns out, as will be seen later, that there are striking structural 
similarities between these two combinatorial problems. Initial investigations along 
these lines were performed by Fleischmann [ 10 ], Laporte [ 20 ], Laporte and Nobert  
[22], Laporte and Bourjolly [21], Laporte, Nobert and Desrochers [24]. 

We briefly outline the notation used in this paper. Given an undirected graph 
G = (V, E)  and W ~  V, we denote by E ( W )  the set of edges with both ends in W 
and by 6 ( W )  the set of edges with exactly one endnode in W. For the sake of 
brevity, 6(v)  denotes 6({v}) for v 6 V. The graph (W, E ( W ) )  induced by the node 
set W is denoted by G(W).  Given edges el, • • •, e, c E, not necessarily distinct, and 
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given the multiset T = { e l , . . . ,  e,}, we denote by V(T)  the set of  nodes incident 

with at least one edge of T. The graph (V(T) ,  T) induced by the multiset of edges 

T is denoted by G(T) .  A graph is a simple cycle if it is connected and all its nodes 

have degree 2; it is a cycle if it is connected and all its nodes have even degrees. 

An edge with endnodes u and v is denoted by uv. For U, W_c V such that U c~ W = 0, 

then (U, W) denotes the set of  edges uw where u E U and w •  W. I f  J is a finite 

set, then NJ denotes the set of  vectors x = (xj , j  • J) where xj is a real number  for 
each j • J. Given elements j l , . . .  , j ,  • J, not necessarily distinct, and the multiset 

U = {J l , . . .  ,J,}, then x u denotes the vector of  R J where x y  is the number  of  times 

t h a t j  • J appears in the multiset U. In the case where U c j is a set, then x u simply 

represents the characteristic vector of  the set U. Given a multiset U -  { j~ , . . .  ,j~} 

and a vector c • N  J then c(U)  denotes ~i=1 9,' In the case where U ~ J  is a set, 

then this notation states that e (U)  = Y.j~ u cj. 

Consider an undirected graph G = ( V, E),  where IV I = n + 1. A distinguished node 
Vo• V is called the depot. The nodes j c  Vk{vo} are called the clients. A cost vector 
c • NE indexes the edges of  G and a positive demand vector d • R v\~0~ indexes the 

clients. Finally, consider k vehicles, each with capacity C >  0. A multiset of  edges T 

is said to be a simple k-tour if it can be parti t ioned into k nonempty  multisets 

T 1 , . . . ,  Tk such that 

(i) for i = 1 , . . . ,  k the graph G(T~) is a simple cycle and vo• V(T~); 

(ii) each j • Vk{vo} belongs to exactly one of the sets V(Ti), 1 ~<i~ < k; 
(iii) for i= 1 , . . . ,  k, d(V(T~)\{Vo})<~ C. 
The multiset T~ is called the ith route of the simple k-tour and the clients in 

V(T~)\{v0} are said to be assigned to the route T~. Note that the only purpose of 
multisets in the definition of  a simple k-tour is to allow for routes with a single client. 

Conditions (i) and (ii) imply that Vo is incident with exactly 2k edges of  T and 

each j • Vk{vo} is incident with exactly two edges of  T. Checking whether there 
exists T satisfying conditions (i) and (ii) in a general graph G is NP-complete,  even 
for k = 1 (it is a Hamiltonian cycle problem). So it is usually assumed in the literature 
that the graph G is complete. 

Condit ion (iii) above guarantees that the sum of  the demands  of  the clients assigned 

to a route does not exceed the vehicle capacity. Checking whether this condition 

can be satisfied is a bin packing problem (see [14]) with " i tems" of  "size" dj and 

identical "b ins"  of  capacity C. So finding a simple k-tour, even when G is a complete 
graph, is an NP-hard  problem. 

The capacitated vehicle routing problem, denoted by CVRP, is to construct a simple 
k-tour T of minimum cost c(T) ,  when the underlying graph G is complete. In the 

case where k = 1 and C >! d(V\{vo}) ,  CVRP reduces to the TSP. When we need to 
refer to the case where G is a general graph, we will use the notation CVRP(G).  

For a set S _  V\{vo} of clients, we denote by r(S) the smallest number  of  vehicles 
needed to meet the demands of the clients in S, given the vehicle capacity C and 
the client demands d~, j • S. In other words, r(S)  is the solution of  a bin packing 
problem with items of  size dj, for j ~ S, and identical bins of  capacity C. Note that 
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the clients that are not in S are ignored when computing r(S). A related quantity, 
denoted by R(S), is the smallest integer t such that $1,. • . ,  S . . . . .  , Sk is a partition 
of V\{vo} satisfying d(Si) <~ C, for 1 ~< i <~ k, and S c_ UI=I Si. Clearly 

[d(S)/C] ~ r(S)~ R(S) 

where [a ] denotes the smallest integer at least as large as a. The inequalities above 

can be strict. For example, let k = 4, C = 7, dl = 5, d2 = d3 = de = 3, d5 = 2, d6 = d7 = 
ds = 4 and consider S = {1, 2, 3, 4}. It is easy to check that rd(S)/C ] = 2, r(S) = 3 
and R(S) = 4. 

An integer programming formulation of CVRP can be stated as follows. 

Min 

s.t. 

cx (1) 

x(fi(Vo) )=2k, (2) 

x(6(v))=2 for v e  V\{vo}, (3) 

x(6(S))~Zr(S)  for Sc_V\{vo}, S ¢ 0 ,  (4) 

xee{0,1} f o r e e E ( V \ { v 0 } ) ,  (5) 

xe e {0, 1, 2} for e ~ 6(v0). (6) 

Expressions (2) and (3) are the degree constraints, which state that each route must 
start and end at the depot and that each client must be visited by exactly one vehicle. 
Expressions (4), called the capacity constraints, ensure the connectivity of the graph 
induced by each vehicle route and impose the capacity requirements. Finally, 
conditions (5) and (6) specify the integrality restrictions on the variables. Condition 

(6) allows for routes containing a single client. 
Computing r(S) in the capacity constraints (4) requires the solution of a bin 

packing problem. So one may ask whether a "simpler" integer programming formula- 
tion exists for this problem. In fact, a valid integer programming formulation of 
CVRP would still be obtained by replacing r(S) in (4) by [d(S)/C].  The reason 
is that the edges with xe> 0 still induce k simple cycles Ti. Let S, be the set of clients 

assigned to T~. The capacity constraints x(c~(S) ) >~2[d(S)/C] applied to the sets 
S=  Si, imply d(Si) <~ C for 1 ~< i ~< k. So it is valid to replace r(S) by Fd(S)/C~ in (4).  
At the opposite, one may argue that a more useful formulation will be obtained if 
the right-hand side of  (4) is increased to its maximum value, namely 2R (S).  The 
only reason for not using the value R (S) in (4) is that it may be harder to compute 
than r(S). Although r(S) is also NP-hard to compute, it is often relatively easy to 

obtain for typical values of k such as 2 ~< k~< 10. When neither R (S) not r(S) can be 
computed within a reasonable amount  of  time, then ~d(S)/C~ can be used instead. 

It should be emphasized that although the above formulation is closely related 
to that of the TSP, the vehicle capacities introduce new complexities. In fact, just 
checking whether the above vehicle routing problem has a feasible solution is 
NP-complete, even under our assumption that the underlying graph G is complete. 
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This is because checking whether k vehicles suffice to meet the client demands is 

a bin packing problem, as pointed out earlier. It follows that finding the dimension 
of the capacitated vehicle routing polyhdron CVR P ~  conv{x c RE: x satisfies (2)- 

(6)}, is NP-hard. Furthermore, due to constraints (2) and (3), the polyhedron CVRP 
is never full dimensional which renders the situation even more complicated. As 

usual when dealing with a non full dimensional polyhedron, it is convenient to 
embed it into a full dimensional one which contains it as a face. This approach has 
the merit of simplifying the analysis and of  providing a useful structural insight. 

For instance, the study of the graphical relaxation of  the traveling salesman polyhe- 
dron (Cornuejols, Fonlupt and Naddef  [7], Fleischmann [11], Fonlupt and Naddef  

[12], Naddef  and Rinaldi [27, 28]) has lead to the discovery of new valid inequalities 
and facets for the TSP, such as the path inequalities and the path-tree inequalities. 
The recent results of Naddef  and Rinaldi bring out clearly some useful connections 
between the classical traveling salesman polyhedron and the graphical traveling 
salesman polyhedron. In addition to the convenience for analysis, there are practical 
reasons for relaxing the CVRP formulation. 

Frequently, in applications, there is no reason to require that each client be on 
exactly one route. Instead, it is sufficient (and sometimes desirable) that each client 
be on at least one route. Two versions of the problem which are of interest occur 

depending on whether the client demands can be split among several vehicles or 
not. Both cases arise in practice. Here, we restrict our attention to the case where 
demand splitting is not allowed. Another practical consideration is that the graph 
G = (V, E)  usually represents a sparse network with some structure (for example a 
planar road network) and therefore it may not be desirable to replace it by a complete 

graph, as we have assumed in defining CVRP. Now we will define the graphical 
vehicle routing problem for a general graph G =  (V, E). 

A multiset of edges T is said to be a k-tour if it can be partitioned into nonempty 
multisets T 1 , . . . ,  Tk so that 

(i) for i = 1 , . . . ,  k, the graph G(T,)  is a cycle (not necessarily simple) and 
v0~ V(Ti); T, is called the ith route; 

(ii) each client j c V\{vo} belongs to at least one of the sets V(T~), 1 ~<i~ < k; 
(iii) eachj  ~ V\{vo} is assigned to exactly one of the routes T~ such tha t j  ~ V( ~ ) ;  

(iv) each route T~ has a nonempty set Si of clients assigned to it, and for 
i :  1 , . . . ,  k, d(Si)<~C. 

The graphical vehicle routing problem, denoted by GVRP, is to construct a k-tour 
T of minimum cost c(T).  The vector x T c R E where x [  denotes the number of times 
that the edge e appears in the multiset T is also called a k-tour. The convex hull 
of the k-tours will be denoted by GVRP(G).  When G is a complete graph, this 
polyhedron will simply be denoted by GVRP. Since every simple k-tour is also a 
k-tour, it follows that CVRP~ GVRP. In fact, CVRP is a face of the polyhedron 
GVRP. It is worth noting that the knowledge of a k-tour T (or x T) is usually not 

sufficient to uniquely determine which clients are assigned to each route, nor even 
what the routes are. In other words, for a k-tour T the partition T ~ , . . . ,  Tk may 
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not be unique. This is unlike the situation for CVRP where T is sufficient to define 
the k routes completely. It is not hard to see that if an integral vector x is a k-tour, 
then it satisfies 

(i) xe~>0 for e~E, 
(ii) x(3(vo))>~2k and even, 

(iii) x(c~(v) ) >/2 and even, for v ~ V\(vo), 
(iv) x(6(S))>~Zr(S) f o r S  _ V\{vo), S # ~ .  

However, the converse is not true as pointed out by Fleischmann [10]. Consider 
the following example (Figure 1.1), where k = 2 ,  C =4,  and the number besides 
each client n o d e j  indicates its demand dj. It is easily verified that the solution xe = 1 
for e ~ E satisfies conditions (i)-(iv) but is not a 2-tour. Note that changing r(S) 
into R(S) in (iv) would not resolve this difficulty. 

4 

Fig. 1.1. 

Given an inequali tyfx ~>fo defined on ~ ,  the following sets will be useful throughout 

the paper. 

H Y = { T :  T is a simple k-tour a n d f x  r =fo}, 

T S = { T :  T is a k-tour andfxr=fo}. 

The basic polyhedral properties of CVRP and GVRP(G) are given in Section 2, 
including conditions under which the capacity constraints yield facets. Section 3 
deals with path inequalities for GVRP(G).  Section 4 describes the related comb 
inequalities for CVRP. Finally Section 5 illustrates the use of these inequalities as 
cutting planes. Although several of  the conditions introduced in this paper to 
guarantee that an inequality defines a facet are hard to check, it must be stressed 
that these conditions need not be checked in a cutting plane algorithm since the 
inequalities we consider are always valid. 

The reader not familiar with the basics of polyhedral theory is invited to consult 
[25] or [29]. 
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2. Basic properties 

In this section our main interest is to develop basic polyhedral properties of both 
GVRP(G)  and CVRP. For that purpose, it is assumed in the remainder of this paper 

that the bin packing problem defined by demands dj, j = 1 , . . . ,  n, and bin capacity 
C has a feasible solution with k bins. 

Theorem 2.1. Let G = (  V ,E)  be a connected graph. Then d imGVRP(G) - - IE] .  I f  
f x  >~fo is a valid inequality for GVRP(G),  then fe >1 0 for e ~ E. 

Proof. Our assumptions (G is connected and there exists a feasible solution to the 

bin packing problem) imply the existence of a k-tour, say 9~. We produce IEI 
additional affinely independent k-tours z e as follows: z e= )~+2y e where ye is the 

unit vector such that y;  = 1 and y~ = 0 fo r j  # e. This shows that dim GVRP(G) = IEI. 
Since f x  >~fo is valid, fff ~>f0. Assume fe < 0 for some e c E. Then )~ + 2My ~ is also 

a k-tour and f ( ~ + 2 M y e ) < f o  for a large enough positive integer M, a 
contradiction. [] 

Theorem 2.2. Let G = ( V, E)  be a connected graph. The nonnegativity constraint xe >t 0 
defines a facet of GVRP(G) if  and only if  the graph ( V, E\{e}) is a connected graph. 

Proof. Suppose that (V, E\{e})  is connected and let ~ be some k-tour of G such 
that 97e=0. From 9~ we construct IE I -1  k-tours z j as follows: z J = ~ + 2 y  j, j ¢ e ,  
where yJ is the unit vector such that yj = 1 and y,J = 0 for i # j .  Hence we have 

produced IEI affinely independent k-tours satisfying xe = 0. 

Now, suppose that (V, E\{e})  is disconnected. Let S___ V\{vo} be the node set of 
one of the connected components of ( V, E\{e}). Since Xe ~> 2r(S) > 0 in every k-tour, 
the inequality xe ~>0 is dominated. [] 

Now we turn our attention to the capacity constraints. The inequality x ( 6 ( W ) )  >~ 
2R(W)  where W e  V\{vo}, W # 0 ,  always defines a nonempty face of GVRP but 
this may not be the case for GVRP(G) when G is not complete. For example, when 
G is a star graph with edges VoVi for i =  1 , . . . . ,  n, the inequality x(3(W))~> 2[ W I 

is valid and may strictly dominate x(/~(W))/> 2R(W).  The next theorem gives simple 
conditions guaranteeing that x ( 6 ( W ) )  >~ 2R(W)  defines a facet of GVRP(G).  

Theorem 2.3. Let G be a connected graph and let W ~ V\{vo}, W # 0 .  

(a) I f  G ( W )  and G ( V \  W) are connected graphs, then the inequality x(6( W)) >1 
2R(W)  defines a facet of GVRP(G).  

(b) I f  G ( V \  W) is a disconnected graph, then the inequality x (6 (W) )>~2R(W)  
does not define a facet of GVRP(G).  
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(C) I f  G( W) is a disconnected graph, then the inequality x(~5( W)) >~ 2r(W) does 
not define a facet of GVRP(G).  

Proof. (a) Assume that both G(W)  and G ( V \  W) are connected. Then, it follows 
from the definition of R ( W )  that a k-tour such that x ( 8 ( W ) ) = 2 R ( W )  exists. In 

fact, for each j ~ 6(W),  we can construct a k-tour x j such that xj = 2R(W) and 
x£ = 0 for every h c 3( W)\{j}.  Let x'  be one of the 16( W)I k-tours just defined. We 
shall produce [E\6(W)]  additional k-tours z e, e ~ E \ 6 ( W ) ,  from x' as follows: 
z e = x '+  2y e, for e ~ E \ 3 ( W ) ,  where ye is the unit vector such that ye = 1 and ye = 0 

for i #  e. Thus, we have [E[ affinely independent k-tours all satisfying x ( 6 ( W ) ) =  

2R(W) ,  which completes the proof of (a). 

(b)o Assume that G ( V \  W) is disconnected. Let W3 be the node set of a connected 
component  of G ( V \ W )  that does not contain vo. Since G is connected, W3 is 
connected to W. This implies that 6 ( W u  W3)c 6(W)  and the inclusion is strict. 
Therefore, x(6( W u  W3)) ) 2R( W u  W3) dominates x (6 (W))  i> 2R(W) ,  showing 

that this inequality is not facet inducing. 
(c) Assume that G(W)  is disconnected, let W~ c W be a node set which induces 

a connected component of G ( W )  and let W2 = W\  W~. Then, the edge cutset 3 (W) 

is partitioned into 6(W~) u 6(W2). Thus x(6(W))>~2r(W)  is identical to or domi- 

nated by the sum of the valid inequalities x(6(W~))>~2r(W~) for i=  1, 2 since 
r( W~ u W2) <~ r(W~) + r(W2). It follows that it is not a facet defining inequality. [] 

Note that, in the special cases where I WI = 1 or n, we get necessary and sufficient 
conditions for the degree constraints to be facet inducing for GVRP(G).  

Naddef  and Rinaldi [28] observed a fundamental relation between the traveling 
salesman polyhedron (TSP) and the graphical traveling salesman polyhedron 
(GTSP) on a complete graph. They showed that, under some conditions, facets of 

GTSP also define facets for TSP. As will be seen below, a similar relation persists 
to a large extent in our context. For that purpose, it is worthwhile to review some 
basic concepts which were essential in [28]. We begin by defining the tightly 

triangular inequalities in our setting. 
In what follows, it is assumed that the graph G is complete. 

Definition 2.4. An inequality fx  >~fo defined on R E is said to be tightly triangular 
(henceforth abbreviated by TT) if: 

(i) f~w ~<fu~ +fuw for every triplet u, v, w of distinct nodes of V, 
(ii) As(u)=--{vw~E: v, we  V\{u} andf~w=f,~+fuw} is nonempty for all u c  V. 

It is easy to check that the nonnegativity constraints xe >~ 0, e ~ E, and the degree 
constraints x(c~(v0) ) ~> 2k and x(c~(v) ) >/2, v ~ V \  {v0}, are not TT inequalities. The 
following analogue of Proposition 2.2 in [28] shows that all other facet inducing 

inequalities for GVRP are TT inequalities. 
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Proposition 2.5. A facet inducing inequality fx  >~ fo of GVRP is either an inequality 
Xe >1 O, a degree inequality, or a TT inequality. 

Proof. Let fx  >~fo be a facet inducing inequality for GVRP. I f  condition (i) is not 

satisfied then there exists a triplet u, v, w of distinct nodes such that f~w >fur +fuw. 
r Assume there exists a k-tour Tc  T y with Xvw>O. Denote the routes of  T by T~, 

i = 1 , . . . ,  k, and assume w.l.o.g, that T1 contains edge vw. Construct from Ti another 
route T~ = (Tlk{vw}) w {uv, uw} but do not reassign the demand of node u. It follows 

that the resulting k-tour T' with routes T~, T2, . . . ,  Tk is feasible and fxT'<fo, a 
contradiction. Thus x~r~ = 0 for every T ~ T f Therefore, the facet inducing inequality 

fx>-fo must be the inequality xo~>~0. 
Now, suppose Ay(u) is empty for some u c V but condition (i) holds. Then for 

every pair  of  distinct nodes v, w in V\{u}, fu~ +fuw >f~w. By condition (i), we have 

fuo +fwo ~>fuw and therefore we deduce fuo > 0. Assume that u is distinct from the 
depot  (u is the depot, respectively) and suppose there exists a k-tour T6 T y such 
that xT(6(u))i>4 (~>2k+2, respectively). Let us first suppose that u has degree 4 

or greater in one of the graphs G(T~), where T,, 1 ~< i<~ k, are the routes of  T. G(T~) 

being a connected Eulerian graph, there is a cycle F that contains each edge of T~ 

exactly once, say F = ( . . . , y ,  et, u, et+l, z , . . . ) .  Define Tl=(Tik{e,e ,+l})u{yz} 
when y ~ z and ~ = 7 ; \  (et, et+ l) when y = z. In both cases, the degrees of  the nodes 
in G(TI )  remain even. Furthermore, G(TI )  is still connected. So TI still induces a 
connected route. The new k-tour T'  with routes T~, j = 1 , . . . ,  k where T~ = Tj for 

j # i, satisfies fxr '<fo,  contradiction. (When y = z above, we use f,y > 0 and when 

y # z, we use f,y +fu~ >fyz.) Next, suppose that u ~ Vk{vo} belongs to two different 

routes T~, Tj. Since no demand splitting occurs in problem GVRP, the demand du 

is assigned to only one route, say Tj. Then consider the other route T~ and proceed 

as before to find y, z, TI and finally T' such thatfxr '<fo.  Hence, in every k-tour 

of  T y, node u has degree 2 (2k, respectively) and the facet inducing inequality must 
be x(3(u)) >12 (x(6(u)) >12k, respectively). 

This shows that the degree constraints are the only facets of  GVRP which satisfy 

(i) but not (ii) in the definition of a TY inequality. [] 

For the traveling salesman problem, dim TSP = IE[ - I V  I and dim GTSP = ]E[. For 

CVRP, the situation is slightly more complex. We still have dim G V R P =  IE[ by 

Theorem 2.1, but we can only state that dim C V R P ~  < IEI-] El. This follows from 
the observation that, in a complete graph with more than two nodes, the degree 
constraints are affinely independent  but, here, the capacity constraints may reduce 
further the dimension of the polyhedron CVRP. To guarantee that CVRP has the 
maximum possible dimension we generalize notions that appeared in [28]. 

Definition 2.6. A k-tour T is an almost simple k-tour if either 

(i) node v0 has degree 2 k + 2  in the graph G(T) and every node of V\{vo} has 
degree 2, or 
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(ii) node Vo has degree 2k, some node u e V\{vo} has degree 4 and every node 
of V\{vo, u} has degree 2. 

Let f x  >~fo be a facet inducing inequality of GVRP. A basis o f f x  >~fo is a set of 
[El affinely independent points in T f A basis is canonical if it contains IEI-IV] 
simple k-tours and I VI almost simple k-tours. 

The next result follows as a consequence of this definition. 

Lemma 2.7. Let fx>~fo be a facet inducing inequality of GVRP. I f  fx>~fo has a 
canonical basis and there exists at least one simple k-tour "2 such that f,2 >f0,  then 
fx  >~fo also induces a facet of CVRP. Furthermore, dim CVRP = IEI - I  VI. 

Proof. I f f x  >-fo has a canonical basis, then by definition, there are [E[- iVl  affinely 
independent simple k-tours satisfying f x  =f0. Since CVRP is not entirely contained 

in the hyperplane f x  =fo,  it follows that dim CVRP>~ IE I -  I VI. Since dim CVRP~ 
IE[-IVI always holds, we conclude that d i m C V R P = I E I - I V  I and that f x ~ f o  
induces a facet of CVRP. [] 

Definit ion 2.8. Let e---vw and h : y z  be two distinct edges and u a node of 
V~(v, w, y ,z}.We say that e and h are f-adjacent in u if 

(i) e and h belong to Af(u), 
(ii) there exists an almost simple k-tour, say T e T f that contains the edges uv, 

uw, uy and uz, 
(iii) ( T\{uv, uw}) w {vw} and ( T\{uy, uz}) ~ {yz} are simple k-tours. 

A set of edges J~ c zlr(u ) is f-connected in u if ILl ~ 2 and for every pair of distinct 

edges hi, h2 ¢ J, ,  there exists a sequence e ~ , . . . ,  er of edges in J,  with el -= hi and 

er --- h2 ,  such that e~ is f-adjacent in u to e~+l, for i = 1 , . . . ,  r -  1. 

Lemma 2.9. Let fx  >~ fo be a facet inducing TT inequality for GVRP, and let J, ~ Af( u) 
be f-connected in u. Then, there exists an almost simple k-tour T ~ T f such that, for 
every edge vw e J~, the vector s u~w e R ~ (called shortcut) defined by 

~ ~ 1 if e = vw, 

s e = l - 1  i f e = u v o r u w ,  
0 otherwise, 

can be expressed as a linear combination of  x T and points xn for H in H f 

Proof. Let yz~  J,,. From Definition 2.8, it follows that the shortcut s uyz can be 

expressed as 

S uyz  = X H - - X  T 

where T ~ T f is an almost simple k-tour containing uy, uz and H = (T\{uy, uz}) w 
{yz} belongs to H (  So the lemma holds for edge yz. 
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Now let vw =h2 be an edge of J ,  distinct from yz=h~. Note that hi and h2 can 

have a common endpoint. Since h~ and h2 are f -connected in u, there exists a 

sequence hi ---- e ~ , . . . ,  er -= h2 such that e~ is f -adjacent  in u to ei+~ for i = 1 , . . . ,  r -  1. 
Let e~ = viw~ and e~+l = Vi+lW~+~. Their f -adjacency in u implies the existence of an 

almost simple k-tour T~ c T f containing uv~, uw~, uv~+l, uw~+~ and such that 

H i  = ( T i \ { u v i ,  u w i } ) u { v i w i }  and H '  i ~-- -  ( r / \ { u v i + l ,  uWi+l})k_){Vi+lWi÷l}  

are two simple k-tours in HJl It follows that the shortcut s "~'÷'w'+~ can be expressed 

as 

SUV~+~ W~+l = X H; -- xH~ -[- SUV~wl. 

By induction, the shortcut s " ~  can be expressed as a linear combination of simple 

k-tours in H f and s "y~. [] 

Lemma 2.10. Let f x  >~ fo be a facet inducing TT inequality for GVRP and, for every 

u ~ V, let Ju c_ AT(U ) be f-connected in u. I f  there exists a basis B offx>~fo such that 
every k-tour in B can be transformed into a simple k-tour in H f by adding shortcuts 

s u~w where vw c Ju, then f x  >~fo has a canonical basis. 

Proof. By Lemma 2.9, for every u 6 V, there exists an almost simple k-tour T u ~ T f 

such that, for every vw~Ju, s "vw can be expressed as a linear combinat ion of T ~ and 

simple k-tours in H f viewed as points in R E. Therefore our assumptions in L e m m a  

2. l 0 imply that every k-tour in B can be expressed as a linear combinat ion of  { 7-": 

u~ V} and simple k-tours in H ( Consider the affine ranks of  these sets. Since 
a r a n k B = [ E [ ,  a r a n k H f < ~ [ E l - [ V [  and [{T": u ~ V } I = ] V [ ,  it follows that 

arank H i =  [El - [ V[ and { T~: u ~ V} is a set of  ] V] additional affinely independent 

points. Hencefx>~fo has a canonical basis. [] 

A partition of V\{vo} into k nonempty sets $1 . . . .  , Sk is called a tight k-partition 
relative to W c_ V\{  v0} if d (Si) ~< C for i = 1 , . . . ,  k and { t: W ~ S, # 0} has cardinality 

R(W). 

Theorem 2.11. Let We_ V\{vo}, 2~lWl~[Vl-2, be such that, for every triplet of  
clients i, j, l c  V\{v0}, there exists a tight k-partition relative to W, say $ 1 , . . . ,  Sk, 

where i, j, l ~ $1. Then x(8(  W))  >~ 2 R ( W )  induces a facet of  CVRP. 

Proof. Using Theorem 2.3(a) and the fact that G is a complete graph, it follows 
that x ( 6 ( W ) )  >12R(W) induces a facet of  GVRP. It will be convenient to denote 

this inequality by f x  >~fo in this proof. We will show that there is a canonical basis 

for f x  >~fo and that a simple k-tour ~ satisfying fff > f0  exists. Applying Lemma 2.7, 
it then follows that f x  >~fo induces a facet of  CVRP. 

Claim 1. A simple k-tour ~ satisfying f~ >f0  exists. 

Proof Every simple k-tour x satisfying f x  =fo has the property that each route 
contains 0 or 2 edges of  6(W).  Therefore, to prove Claim 1, it suffices to exhibit a 
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k-tour ff with a route containing at least 4 edges of  6(W).  Since 2<~tWI ~<IV f - 2 ,  
there exist three distinct clients i, j, l with i, j ~  W and le  V \ (Ww{vo} ) .  By 

assumption,  there exists a tight k-partition relative to W such that i, j, l e $1. 

Construct a simple k-tour where route T1 visits first the client i, then l and then j 

followed by the remaining clients in $1 in any order. We have [TlC~6(W)t>~4, 

proving the claim. 

Claim 2. f x  >~ fo has a canonical basis. 
Proof To prove this claim, we use Lemma 2.10. We will show that zlf(u) is 

f -connected in u for every u c V and that all k-tours used in the proof  of Theorem 

2.3(a) can be transformed into simple k-tours of  H j by only adding shortcuts s uvw 

where vw c A1(u). These statements are proved in Claims 3 and 4 respectively. 

Claim 3. ai(u) is f -connected in u e V. 

Proof We consider three cases according to whether u is in W, V\(  W u  {vo)) or 
{M. 

First assume u e W. Then Ai(u) consists of all edges vw where w e W\{u}  and 
v c V\{u, w}. Consider j e W\{u}.  I f  [W] >~ 3, let i ~ W\{u , j } .  By hypothesis, there 

exists a tight k-partition relative to W where i, L u c $1. Therefore there exists an 

almost simple k-tour T c T j where the route T1 contains edges yoU, uj, ju, ui. 
This yields two simple k-tours in H y, namely H~=(T\{voU, uj})w{Voj} and 

H2 = (T\{ ju ,  ui})w {ji}. Therefore the edges voj and ji  are f -adjacent  in u. So all 

edges vw where w ~ W\{u}  and v e {Vo}w(W\{u,  w}) are f -connected in u. Now, 
for I W[ ~> 2, consider j c W\{u}  as before and i c V\(  W u  {vo}). There exists a tight 

k-parti t ion relative to W where i, j, u ~ S~. Therefore there exists an almost simple 

k-tour in T s where the route T1 contains edges iu, uj, ju, ul where, w.l.o.g., 

l c {vo} w (W\{u,  j }). It follows that the edges / j  and jl  are f -adjacent  in u. Since the 

choices o f j ~  W\{u}  and i e V \ ( W u  {v0}) are arbitrary, we conclude that di(u)  is 

f -connected in u. 
Now assume u c V \ ( W u  {v0}). Then At(u) consists of  all edges vw where v 

V \ ( W w { u ) )  and w e V \ { u , v } .  I f  ]WI~<]V]-3, let j ~ V \ ( W u { u ,  vo}), and let 

i c V\{u, j ,  Vo}. By hypothesis there is a tight k-partition relative to W where i, j, 
u ~ $1. Therefore there exists an almost simple k-tour in T s where route T1 contains 

the edges yoU, uj, ju, ui. It follows that voj and ji  are f -adjacent  in u. There also 

exists an almost simple k-tour in T f where route T1 contains the edges iu, UVo, yoU, 
uj. It follows that Voi and voj are f -adjacent  in u. Therefore all edges vw where 
v e  V \ ( W w { u } )  and w e  V\{u ,v}  are f -connected in u. Now, for ] w [ = l v I - 2 ,  
consider j c  V\{u, vo} and ic  V\{u, j ,  Vo}. There exists an almost simple k-tour in 

T s where route T~ contains the edges ju, UVo, yoU, ui. It follows that voj and voi 
are f -adjacent  in u. We conclude that a i (u)  is f -connected in u. 

Finally, assume u = Vo. Then zlr(u) consists of  all edges vw where v e V\(  Ww {Vo}) 
and w c V\{v, Vo}. Consider j c V\(  W w  {Vo}). I f ]WI  = IV] -2 ,  let i, I be two distinct 
nodes in W. There exists an almost simple k~tour in T I where route T~ contains 

the edges ivo, voj, jvo, vol and therefore ij and jl  are f -adjacent  in u. I f  I WI <~ I V[ - 3, 
let i c V\ (  W w  {L Vo}) and 1 ~ V\{i ,L Vo}. Again, there exists an almost simple k-tour 
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in T f where route 7"1 contains the edges ivo, voj, jvo, Vo 1. Therefore /j and j l  are 

f-adjacent  in u. This shows that As(U) is f -connected in u. 

This completes the proof  of Claim 3. 
Claim 4. All k-tours used in the proof  of Theorem 2.3(a) can be transformed 

into simple k-tours of  H f by only adding shortcuts s ~w where vw ~ Zls(U). 

Proof  First we describe a recursive procedure for transforming a k-tour T ~  T f 

into a simple k-tour. Let T~ be any route of T, Ci an Eulerian cycle with edge set 
T~, and Si the set of clients assigned to T~. If  vu and uw are consecutive edges of  
Ct and u~ St U{Vo} then apply the shortcut s uvw. Similarly, if vu and uw are 

consecutive edges and, when starting from Vo, node u ~ St u {Vo} has already been 
visited in Ci, then apply the shortcut s uvw. Modify T appropriately and repeat the 
above procedure until no shortcut can be found. This yields a simple k-tour. Consider 
any shortcut s ~w used in the above procedure. If  vwCAy(u) ,  then the resulting k-tour 

T' (obtained by applying s "~w on T) satisfies f ( T ' )  <fo ,  because x (6 (W))  ~> 2R (W) 

is in TT form. Claim 4 follows. 
This completes the proof  of the theorem. [] 

Applied to the TSP ( k =  1, C=  ov ), Theorem 2.11 shows that x ( ~ ( W )  ) >/2 induces 

a facet whenever both W and V\ W have cardinality at least 2, i.e., for every TSP 

with four or more nodes. 
The question of finding a necessary and sufficient condition for x (6 (W))  ~> 2R(W)  

to induce a facet of CVRP is open. A different proof  technique would be required. 
The above results can be simplified when all the demands are equal and the capacity 

is expressed as the maximum number  of  clients in a subtour. 

Corollary 2.12. A s s u m e  that k >~ 2, C >1 3, k + 4 <~ n <~ k C  and dt = 1 for  i = 1 , . . . ,  n. 

Then 

(1) dim C V R P = I E I - I V I ,  
(2) xe ~ 0 induces a face t  o f  CVRP, 
(3) x(~(w))>~2YIW[/C] induces a face t  o f  CVRP for  W c  V\{v0}, 2<~lwl<~ 

( C / (  C -  l ) ) ( n - k - 1 ) ,  IWl ~ p C  and p C - 1 ,  p = 1 , . . . ,  k. 

Proof. (1) follows from Lemma 2.7 and the fact that at least one set W satisfies the 
conditions of Theorem 2.11. For example, we can choose [WI=4  if C - -3  and 
I W] = 2 if C ~> 4. (2) can be proved directly as in [16] for the TSP. We prove (3) by 
showing that the conditions of Theorem 2.11 are satisfied. These conditions require 
the existence of a simple k-tour where [I W [ / C  ] routes intersect W, k -  [[ W I / C  ] 

routes do not and, for any {i,j, l} c_ V\{vo}, some route contains {i,j, l}. 

When i, j, l~ W, this simple k-tour exists if there are at least k -~ [  WI /C~+2  
clients in V~W, i.e., n - [ W [ > ~ k - ( [ W I / C q + 2 .  This is implied by [W[~< 
( C / ( C  - 1))(n - k - 1) and I WI ¢- pC. When I{i,L l} n WI = 1 or 2, the simple k-tour 
exists as a consequence of I WI # pC, ] W] ~ p C  - 1 and of the previous condition. 
Finally, in the case {i,j ,  l} ~_ W, the conditions of Theorem 2.11 hold without further 
restriction on [WI. [] 
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Corollary 2.12 is related to results of Campos, Corberan and Mota [3] and of 
Araque [1]. In [3], the variables x, for e incident with the depot are split into two 
0, 1 variables, whereas in [1] the number of vehicles is not fixed. In both cases, all 
clients have equal demand. Theorems 8 and 10 in [3] contain conditions similar to 

(3) of Corollary 2.12 above. It is interesting to note that, in both [1] and [3], the 
capacity inequalities are shown to induce facets even when I wI = p C - 1  (in [3], 
this result is stated under the restriction that n/> (k - 1)C + 3). This case is still open 
for our version of CVRP. When I WI =pC,  it is easy to check that the capacity 
inequalities do not induce facets. 

Checking whether an inequality x ( 6 ( W ) )  >~ a is valid for the polytope CVRP is 
NP-complete in general. In the case of equal demands, this is easy to check, but it 
is not known whether the "constraint identification problem" [29] for capacity 

constraints is polynomially solvable. 

3. Path inequalities 

The purpose of this section is to characterize families of facets of GVRP(G) related 
to the path, wheelbarrow and bicycle inequalities of the graphical traveling salesman 
polyhedron GTSP(G).  We then relate facets of GVRP and CVRP using the ideas 
developed in the preceding section. We use the notation given in Cornuejols, Fonlupt 

and Naddef  [7]. 
A path configuration is defined by an odd integer s/>3, integers ni >~ 2 for i =  

1 , . . . ,  s, and a partition of V into sets A, Z, B~ for i=  1 , . . . ,  s and j =  1 , . . . . ,  n~ 

such that 
(i) B~ is nonempty and G(Bj)  is a connected graph for i =  1 , . . . ,  s and j = 0 ,  

1 , . . . ,  n~ + 1, and 
(ii) the edge set (B~, i Bj+1) is nonempty for i=  1 , . . . ,  s and j = 0 ,  1 . . . .  , n~, 

where, for convenience, we use the convention B~-= A and Bn,+l =- Z for i = 1 , . . . ,  s. 
Then, the path inequality corresponding to this configuration is 

2 feXe >~fo, (7)  
ecE 

where the right-hand side fo and the coefficients f~, e c E, are defined by 

fo = 1 +  ~ n~+l 
i=1 h i - - 1  

and 

el 

IJ-pl 

for e ~ (A, Z) ,  

for e ~ (B~, B~), i = 1 , . . . ,  s, 

n i -- 1 

max - 1 ' n I 1 n/ n i - 1  n l - 1  

and j ~ p such that IJ - P l  <~ ni, 

for e ~ ( B j ,  BIp), i ¢  l , j =  1 . . . .  , ni, 

and p = 1 . . . .  , hi, 

otherwise. 
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Two related configurat ions are the whee lba r row and bicycle configurat ions.  Wheel- 
barrows cor respond  to the case where  Z is empty.  Then  condi t ion (i) above is 

required only for  j = 0, 1 , . . . ,  n~, condi t ion (ii) only for  j = 0, 1 , . . . ,  n~ - 1, and the 

fol lowing addi t ional  condi t ion  must  hold: 
B i+1"~ is n o n e m p t y  for  i 1, s, (iii) (B~n . . . . . . .  = . . . .  

S - t - t  _ _  t where,  by convent ion,  B ....  = B,,  for t = 1, . . . ,  s. 
Bicycle configurat ions cor respond  to the case where  bo th  A and Z are empty.  

Condi t ion  (i) must  hold  for  j = 1 , . . . ,  ni, condi t ion  (ii) for j = 1 , . . . ,  n~ - 1 and,  in 

addi t ion,  we must  have condi t ions  (iii) and  
B i B i+2 ] = (iv) (Bi~ W + l a  (Bil  BI +e) and ( ,, are n o n e m p t y  for  i 1, s. 

, U l  J ~  , ~ n i + 2 /  • . . , 

The coefficients in the inequal i ty  fx  ) f o  associa ted  with whee lba r row or bicycle 
configurat ions are the same as for  pa th  inequalit ies.  The path,  whee lba r row and 

bicycle inequali t ies a lways define facets o f  G T S P ( G ) .  

Since G V R P ( G ) _  G T S P ( G ) ,  it follows that  the path,  whee lba r row and bicycle 
inequali t ies are valid for  G V R P ( G ) .  It  turns out that  these inequali t ies preserve 

their  facetial  proper t ies  as s tated below. 

Theorem 3.1. Consider a path, bicycle or wheelbarrow inequality fx  >~ fo. Let Bj be the 
set that contains the depot and S = V\ Bj. Assume that R ( S )= 1. Then the inequality 
fx  >~ fo defines a facet of G V R P ( G ) .  

Proof.  Follows directly f rom Theorems  3.2 and  3.5 in [7], by noting that  only one 
vehicle is needed  for  the clients in S. [] 

A natura l  quest ion is the following: Are inequali t ies (7) still facet inducing 

when R(S)> 1 in T h e o r e m  3.1? We will p roceed  to answer  this quest ion by distin- 

guishing be tween  two cases, depend ing  on whether  the depot  is in some inner set 

Bj ,  for  i = 1, . . . ,  s, a n d j  = 1 , . . . ,  ni, or in a pole set (either A or Z) .  For  simplicity 
of  exposi t ion,  we assume that  A ~ 0 and Z # 0. We start  by the case where  the depot  
is located in a pole set, say A. 

Let P~ = B~ u • • • w Bi,, for  i = 1 , . . . ,  s. We define a tight k-partition relative to a 
pa th  conf igurat ion to be  a par t i t ion of  V\{vo} into k n o n e m p t y  subsets $ 1 , . . . ,  Sk 
such that  

(a) d(S,)<~ C for  t = 1 , . . . ,  k; 

(b) for  every i = 1 , . . . ,  s, there exists t c {1 . . . .  , k} such that  P~ _ S, ; 
(c) the set S~ contains  an odd  n u m b e r  (~>3) of  Pi 's ($1 is called the odd set of  

the k-par t i t ion) ;  for  t = 2 , . . . ,  k, the set S, contains  an even n u m b e r  (possibly 0) o f  
P/'s; finally the sets S, which  contain  no P~ are conta ined  in A. 

The fol lowing condi t ion will be used in the next  theorem.  

Condition (C). For  every i ~ { 1 , . . . ,  s}, there exists a tight k-par t i t ion  where Pi is 
con ta ined  in the odd set. Fur thermore ,  if  G has an edge jo in ing B~ to Bq h for  i ¢ h, 
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1 <-j <~ hi, 1 <~ q <~ nh, then there exists a tight k-part i t ion where Pj w Ph is conta ined 

in the odd  set. 

Theorem 3.2. I f  a path inequality with the depot in set A satisfies Condition (C), then 

it defines a facet o f  G V R P ( G ) .  

Proof. The p roo f  follows the lines o f  that  o f  Theorem 3.2 in [7]. Let f x  >~fo be a 

path  inequality. Consider  an inequali ty cx>~fo which defines a facet o f  G V R P ( G )  

and contains the face defined b y f x  >~fo. In the fol lowing steps, we prove that Ce =fe 
for all e ~ E. 

Let z ~ Z  and b~c B~ for t =  1 , . . . ,  s and j =  1 , . . . ,  n,. For  convenience,  let bo=  Vo 
and t . . . ,  = . ,  b , , + l = Z  for t = l ,  s. Define k - t o u r s x  i ~ R  E as follows, for i 1 , . .  s. 

t t 2 for e =  b~u, all t =  1 , . . . ,  s, all j = 0 , . . . ,  n t + l  and all u~  Bj \{b j} ,  

i i 2 for e =  bjbj+l, all j =  1 , . . . ,  n,, 
Xie ~ 

1 for e =  b~b~+l, all t #  i and all j = 0 , . . . ,  n~, 

0 otherwise. 

Note  that f x  ~ =f0  and, as a consequence  of  Condi t ion  (C), x ~ is a feasible k- tour  

where Pi is conta ined in the odd  set. (Recall that  the routes can go th rough  nodes 

that are not  assigned to them. Here node  z belongs to all k routes but  is only 

assigned to one.) 

Since f x  ~ =f0 ,  x; also satisfies cx ~ =fo .  N o w  consider  an edge e with both  ends 

in the same B~ for some t = 1 , . . . ,  s and j = 0 , . . . ,  n~+l .  Another  k- tour  is x ' =  

x ~ + 2y e where ye is the unit vector  such that y~ = 1 and yT~ = 0 for h # e. Since fe = 0, 

f x '  =f0 and therefore x '  also satisfies cx' =fo. This implies ce= 0. 
Next,  we show that ee has the same value for all edges e in (B~, B~+I). Cons ider  

x ~, i # t. Let el = b~b~+~. Modify  x ~ so that it contains another  edge o f  (B~, B~+~), 

say edge e 2 instead o f  ca. In  order  to still have a k-tour,  we have to change x ~ within 

B; and B;+~, but  we can keep x e unchanged  anywhere  else. Since both  k-tours 

satisfy f x  =fo  (and therefore ex =f0),  we must  have ce, = c¢~. The k- tour  x ~ has the 
i i i i 0 for e c  (A, Bi~) and x ~ = 2  for e = bjbj+~, j> /1 .  Another  k- tour  proper ty  that  x~ = 

satisfying f x  =f0 is obta ined f rom x ~ by setting Xe = 2 for e = vob~ and x~ = 0 for  
i i e = bjbj+~ for some j ~> 1. Note  that this can be achieved without  reassigning the 

clients to different subtours so that feasibility of  the k-tour is maintained.  Therefore,  

for e 6  (Bj,  Bj+~), the value o f  e¢ does not depend  on j, but  only on i =  1 , . . . ,  s. 

These s values satisfy the system of  s equat ions cx ~ =fo .  Its unique solution is 

e~ = 1 / ( n i - 1 )  for e 6 (Bj,  B~+,). 
So far, we have shown that  c~ =f~ for every edge e with both  ends in B~ or for 

e c (B~, B~+I) for all t andj .  These edges define the skeleton of  the path configuration. 

N o w  consider  an edge e ~ (B~, Biq) where q>~j+2.  There exists a k- tour  x'  such 
that fx '  =f0  which only contains the edge e and edges of  the skeleton. (Such a k-tour  
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i i can be obtained from x ~ by modifying Xh for edges h with endpoints in Up Bp  and 

without reassigning the clients.) Since cx' =fo  we get ce =f~. 
Finally, consider e •  (Bj,  B h) for i ~ h, 1 <<- j <~ n~, 1 ~ q <~ n h. By Condition (C), 

there exists a tight k-parti t ion where Pew Ph is included in the odd set. This implies 

that there exists a k-tour x" satisfying f x"  =fo which only contains the edge e and 

edges of  the skeleton. Again this implies c~ =f~. [] 

Now we assume that G is a complete graph. In the next theorem, use will be 

made of the condition stated below. 

Condition (C'). For every i, j, l e { 1 , . . . ,  s} and t, y, z c Z u A \ { v o } ,  there exists a 

tight k-partit ion where P~ u Pj u PI u {z} is included in the odd set, and one where 

Pi w Pj u { t, y, z} is included in the odd set. 

Theorem 3.3. Let  f x  >- fo be a path inequality with the depot in the set A. I f  Condition 

(C') holds, then f x  >~ fo defines a facet  o f  CVRP. 

Proof. Since the underlying graph G is complete, it is easy to construct a simple 

k-tour ff such that fg  >f0  (strictly). So, by Lemma 2.7 and Theorem 3.2, it suffices 

to show that fx>~fo has a canonical basis. In order to do this, we use Lemma 2.10. 

This requires showing that, for each u • V, some Ju c_ 3 f ( u )  is f -connected in u (this 
will be done in Lemmas 3.4 and 3.5). Then we must show that every k-tour used 
in the proof  of  Theorem 3.2 can be transformed into a simple k-tour in H f by 

adding shortcuts s uow where vw • J, (this will be done in Lemma 3.6). [] 

Lemma 3.4. Let  u • A u Z. I f  Condition (C') holds, then Af (u)  is f-connected in u. 

Proof. First, let u c A. It can be readily verified that any edge e = vw of Af(u)  has 
at least one of its endpoints in (A\{u}) u (UT=l Bil). Furthermore, if v c BI,  then 

w • V\ (PI  u {u}) and if v • Ak{u} ,  then w • Vk{u, v}. This follows from the definition 

of the coefficients fe, e • E. We consider two cases. 
Case I. A = {v0}. Let v • Bil , w • B J1, y • Bll where i ~ j ~ I and z • Pj\{w} iflB~l >i 2, 

z • Pj if [n~l -- 1. By Condit ion (C'), there exists a tight k-partition where P~ u P: u/°i  

is included in the odd set. So one can construct an almost simple k-tour T u • T f 

containing the edges uv, uw, uy and uz. Such a k-tour can be obtained from a k-tour 
of  T f that uses only edges of  the skeleton by shortcuts that preserve the partition 
and the re la t ionfx =fo.  Furthermore,  T u can be chosen so that H1 = (TU\{uv, uw}) u 

{vw} a n d / / 2  = (TUk{uy, uz}) w {yz}  are simple k-tours of  H y. It follows that the two 

edges vw and yz  are f -adjacent  in u. By induction, this shows that the edges of  
A:(u) with no endpoint  in Z are all f -connected in u. Now consider z • Z and let 

v c B~, w • B~ and y • Btl. By Condition (C'), there exists a tight k-partit ion where 
P~ u P: w Pl w {z} is included in the odd set. The argument above shows that vw and 
yz  are f -adjacent  in u. It follows that all the edges of  dr(U) are f -connected in u. 
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Case 2. IAl~>2. Let v 6 B i l ,  w e B { ,  y c a \ { u }  and z e ( A u ~ u Z ) \ { u , y , w }  if 

IB{]/> 2 and z ~ (A u Pj u Z ) \ { u ,  y} if IB{I = 1. By Condition (C'), there exists a tight 

k-partition where P~ u Pj u {u, y, z}\{v0} is included in the odd set. This implies the 

existence of an almost simple k-tour, say T u ~ T s, containing the edges uv, uw, uy 

and uz such that H1 = (TU\{uv, uw}) u {vw} and/ /2  = (TU\{uy, uz}) u {yz}  are simple 

k-tours of H f. This implies that the edges vw and yz are f -adjacent  in u. By varying 

the choice of i, j, v, w, y, z, it follows that the edges of  Zls(U) with at least one 
endpoint  in AN{u} are all f -connected in u. Note that H~ = (T~\{uv, uz}) w {vz} and 

H'2 = ( T " \ { u w ,  uy}) u {yw} are also simple k-tours of  H (  This implies that vz and 

yw are f -adjacent  in u. So the edges of  As(U) with one endpoint in B~ are f -connected 

in u to those with one endpoint in AN{u}. It follows that all edges of  Zts(U) are 

f -connected in u. 

Now suppose that u e Z It follows from the definition of f~, e c E, that z!r(u) 

consists of  the edges vw with v ~ B~,, w ~ V\(P~ u {u}) and those with v ~ Z \ { u } ,  

w E V\{u ,  v}. Again we consider two cases. In the case where Z = {u}, Condition 

(C') implies that, for i # j  ~ l, there exists a tight k-partition where P~ u Pj u Pt w {z} 

is included in the odd set. By choosing v e B~,,, w c B{j and y c B~,, and using the 

same argument as in Case 1 above, we get that the edges of  As(U) with no endpoint 

in A are f -connected in u. Next, let t c A. By Condition (C') there exists a tight 

k-partit ion where P~ u Pj u {t, u} is included in the odd set. Let P~ be a path included 

in the odd set which is distinct from P~ and Pj, and let v ~ B i,,,, y ~ B~,  w c B~,.t 
There exists an almost simple k-tour T" ~ T s containing edges uv, uw, uy, ut and 

simple k-tours in H i H l = ( T " \ { u v ,  u w } ) u { v w }  and H z = ( T ~ \ { u y ,  u t } ) u { y t } .  

Therefore vw and yt are f -adjacent  in u. It follows that all edges of  As(U) are 

f -connected in u. In the case where [Z[ ~> 2, we let v ~ B ~ B j ~, w ~  , ,  y c Z \ { u }  and 

t ~ {A  u Pj u Z ) \ { u ,  y, w} if [B~j 1/> 2 and t ~ {A u Pj u Z ) \ { u ,  y} if IBg = 1. The same 

argument as in Case 2 above shows that As(U) is f -connected in u. [] 

Lemma 3.5. Let u ~ Bj where l ~ i ~ s and l <~ j <~ n~. Then J~ = { vw ~ E ( V \  { u } ): 

v c B~q , w ~ Bi~ where O <~ q <<. j <~ r <~ ni + l and r -  q <~ n~} is f-connected in u. 

Proof. Let z ~ Bj+1 and y ~ Bj, y # u. (If  Bj = {u}, then let y ~ Bj_I. ) Now, let vw c J~ 

where at least three of  the nodes v, w, y, z are distinct. By Condition (C') there 
exists an almost simple k-tour T u e T f which contains the edges uv, uw, uy and uz. 

In addition the two simple k-tours H l = ( T U \ { u v ,  u w } ) w { v w }  and /-/2 = 
(TU\{uy,  u z } ) w { y z }  belong to H (  Therefore yz  is f -adjacent  in u to any v w c J u .  

This shows that J,  is f -connected in u. [] 

Lemma 3.6. Every k-tour used in the proof  o f  Theorem 3.2 can be transformed into a 

simple k-tour o f  H / b y  adding only shortcuts s uvw with vw e zi f(u)  for  u e A w Z and 

vw e Ju as defined in L e m m a  3.5 for  u ~ V \ ( A u  Z ) .  

Proof. First we show that the k-tour x i, defined in the proof  of  Theorem 3.2, can 
be transformed into a simple k-tour of  H f by only adding shortcuts s u~w of the 
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type claimed in Lemma 3.6 (referred to as valid shortcuts).  I f  b~ has degree greater 

than two in x ~ for some 1 ~< t ~  < s and 1 <~j~< n,, the required shortcut  is s "~w where 

u = b~ and v and w are the nodes just before and just after the second visit o f  node  

u in an Eulerian cycle traversing the k- tour  x ~. It is easy to verify that the edge vw 

so defined belongs to J ,  as defined in Lemma 3.5 and therefore is a valid shortcut.  

Such shortcuts are applied recursively until the only nodes o f  the tour  with degree 

greater than two occur  in A u Z. Then valid shortcuts s ~ with u c A u Z and 

vw ~ As(u)  are per formed to complete  the t ransformat ion  of  x ~ into a simple k- tour  

o f  H (  Figure 3.1 illustrates the t ransformat ion  of  a k- tour  x ~ into a simple k- tour  
o f  H f 

A 

B 

Z Z Z 

Fig. 3.1. Initial 2-tour x ~, 2-tour after shortcuts for u ~ V\(A u Z), and final simple 2-tour. 

The next family o f  k-tours used in the p r o o f  o f  Theorem 3.2 is x ~ + 2 y  e where 

e c E ( B ~ ) .  For  these k-tours,  one may apply two valid shortcuts s u~w in order  to 

obtain x i and then the earlier a rgument  can be used. ( If  IB~I>~ 3, we can choose u, 
t ~ t + l  t l v, w c B ~ a n d i f [ B ~ l = 2 ,  we can choose u , v ,  c B j a n d  w ~ _ j  o r B j  .) 

N o w  consider  the k-tours used in the p r o o f  o f  Theorem 3.2 to show that all edges 

e e (Bj, 'B~+~) have the same coefficient value ee. These k-tours are identical to x i 

except within Bj w Bj+ ~. So these k-tours can also be t rans formed  to simple k-tours 

o f / agby  using only valid shortcuts.  

The same argument  can be made  for the k-tours used in the p r o o f  o f  Theorem 
i i 3.2 to show that c~ for  e c  ( B j ,  Bj+1) only depends  on i. 

N o w  consider  an edge e ~ (B~, B~q) where q ~>j+2  and the k- tour  x '  used in the 

p r o o f  o f  Theorem 3.2 which contains only edge e and edges o f  the skeleton. We 

first apply  shortcuts s uvw where u ~ V \ ( A u  Z )  and vw c Ju as defined in Lemma 

3.5. This t ransforms the k- tour  x '  into a k- tour  where the only nodes  with degree 

greater than two occur  in A u Z. Then shortcuts s u~w with u ~ A u Z and vw c As(u)  

are pe r fo rmed  to complete  the t ransformat ion o f  x '  into a simple k-tour. 

Finally, consider  the k- tour  x" used in the p r o o f  o f  Theorem 3.2. Let e = rt be 
the unique edge of  this k- tour  which is not  an edge o f  the skeleton. We have 



40 (3. Cornuejols, F. Harche / Vehicle routing 

rt ~ ( B~, B h) for i ~ h, 1 ~ j <~ ni and 1 <~ q <~ n h .  We can assume w.l.o.g, that each of 

the nodes r and t has degree 2 in the k-tour x". So shortcuts of  the form s ~'~ or 
s 'rw for w c V\{r,  t} are not needed. It follows that by first applying shortcuts s "~w 

where u c V \ ( A ~ Z ) ,  v w c J ,  as defined in Lemma 3.5, and then shortcuts with 

u c A w Z and vw c Af(u), we can transform x" into a simple k-tour of  H s which 

contains the edge rt. [] 

By analogous arguments, we may prove the following result for a path configur- 

ation where the depot is located in an inner set B) for 1 <~ i <~ s and 1 ~<j <~ n~. 

Theorem 3.7. Consider a path inequality such that the depot belongs to B~ for 1 <<- i <- s 
i and 1 <~j <~ n~. Assume that R ( ( V \ B ~ )  w {t, y, z}) = 1 for any t, y, z ~ Bj\{v0}. Then 

the path inequality defines a facet  o f  CVRP. [] 

In the remainder of  this section, we consider a variation of path configurations 
which leads to a new class of inequalities for GVRP(G)  and CVRP. In contrast 

with the situation for the previous path inequalities, these new inequalities are not 

valid for GTSP(G) .  Their validity for GVRP(G)  depends on the capacity restrictions 

and therefore they can be expected to play a significant role in the solution of tightly 

capacitated vehicle routing problems. To simplify the exposition, we focus on the 

case where n~ = 2 for all i = 1 , . . . ,  s. 
A eapacitated path configuration is defined by an odd integer s ~ > 2 k + l  and a 

partition of V into sets A, Q, Z, B~I for i = 2 k , . . . , s  and B~ for i = l , . . . , s  such 

that, using the convention A ~ B~ for i = 1 , . . . ,  s, Q -  B~ for i = 1 , . . . ,  2 k -  1 and 

Z=B~ for i =  1 , . . . ,  s, 

(i) the node set Bj is nonempty and G ( B ) )  is a connected graph for i = 1 , . . . ,  s 

and j = 0 ,  1, 2, 3; 
(ii) the edge set (Bj, B)+~) is nonempty for i = 1 , . . . ,  s and j = 0, 1, 2; 

(iii) v0EQ, R ( V \ ( Q ~ B ~ ) ) = k f o r i = l , . . . , 2 k - 1 .  

See Figure 3.2. 
The capacitated path inequality corresponding to this configuration is 

Y~ f~Xe >~ fo, (S) 
e c E  

where f o = 3 s - 2 k + 3  and 

t'0 i f e c E ( B j )  for i = l , . . . , s  and j = 0 ,  1, 2, 3, 

1 i f e c ( A , Z )  or e~(B~,B~+,)  f o r i = l  . . . . .  s and j = 0 ,  1,2, 

fe=4 2 i f e c ( B ~ ,  i B j+2) for i =  1 , . . . ,  s and j = 0 ,  1 or 

i f e ~ ( B ~ , B ~ )  for i C h  a n d j = l  or 2, 

3 i f e c ( B ~ , B ~ ) f o r i ¢ h .  

When either A = 0 or Z = 0, we say that (8) is a capacitated wheelbarrow inequality 
and when A -- Z = 0, we say it is a capacitated bicycle inequality. 
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Fig. 3.2. 

Theorem 3.8. The capacitated path, wheelbarrow or bicycle inequality (8) is valid for 
GVRP(G) .  

Proof. Let 2 be a k-tour such that f2  achieves the smallest possible value. I f  Z = 0, 
introduce a node in Z with 0 demand connected to B~, 1 ~<j ~< s. Similarly, if A = 0, 

introduce a node in A with 0 demand connected to B], 1 ~<j <~ s. Now consider any 

edge uv such that f ~  = 2 (3 respectively) and xu~ > 0, if any. It follows from the 

definition of  the coefficients fe that there exists a path P~o connecting u to v which 

contains 2 edges, say el and e2, such that fel =fe2 = 1 (respectively 3 edges, say el, 

e2, e3, such that fel =f,~ =fi3 = 1) and all other edges of  P~  satisfy fe = 0. We get a 
new k-tour with the same value fg  by reducing 2~  by 1 and increasing 2, by 1 for 
the edges e in the path P,~. Therefore, we can assume w.l.o.g, that the k-tour 

achieving the smallest value of f~ contains only edges e c E such that fe = 0 or 1. 
As a consequence of the subtour elimination constraints for B{, B~ and B{ w BY, 

we get 

X((A, B{) w (B{, B~) w (B~, Z))  ~> 3 f o r j  = 2k,...,  s. 

Furthermore,  the subtour elimination constraints 2(6(B;2))/>2 must hold for i = 
1 , . . . ,  2k - 1. Adding up these inequalities yields 

f2>~ 3 s - 2 k  + l + 2((A, Q))+ X((A,Z)) .  

Note that if 2(~(B;2))/> 4 for at least one index i, 1 ~< i ~< 2 k - 1 ,  then the inequality 
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fg  ~> 3s - 2k + 3(=)Co) follows. To comple te  the proof ,  it only remains  to consider  the 
case where  Y~(6(B~2)) = 2 for  every i = 1 , . . . ,  2 k -  1, since Y~(6(B~)) is even. 

First assume ~((A,  Q ) ) =  0. Since R ( V \ ( Q  ~ Bi2))= k for  i =  1 , . . . ,  2 k -  1, it fol- 

lows f rom ,Y(6(B~2))= 2 that  each route of  ff visits at least two of  the sets B~, 
1 ~<j ~< 2 k -  1. Since there are k such routes,  we have a contradict ion.  

N o w  assume ff((A, Q ) ) =  1. The fact that  Y~(6(A)) is even implies  that  ei ther 
X ( ( A , Z ) ) ~ > I  or g ( ( A , B ~ ) u ( B ~ , B ~ ) ~ ( B ~ , Z ) ) ~ > 4  for  some j = 2 k , . . . , s .  The  
inequali tyf~>~3s-2k+3 follows. [] 

U2k+j--I l~2k+j--I for  j = 1, t. We define a tight Define t = s - 2 k + l  and P j = ~ - I  u,-,2 . . . ,  

k-partition relative to a capac i ta ted  pa th  conf igurat ion to be a par t i t ion of  V\{v0} 

into k n o n e m p t y  subsets Sa , . . . ,  Sk such that  

(a) d(Si)<~ C; 
(b) for  every j =  1 , . . . ,  t, there exists i t { I , . . . ,  k} such that  P j _  Sj; 
(c) S~ contains exact ly one of  the sets B~, l < - j < ~ 2 k - 1 ,  and  an even n u m b e r  

(~>2) of  sets Pj, l < ~ j ~  t. $1 is called the odd set; 
(d) for  2 ~  < i~< k, the set S~ contains  exact ly two sets B~, 1 ~ j  ~< 2 k - 1  and an 

even n u m b e r  (possibly 0) o f  sets Pj, 1 ~ j  <~ t. I f  Si contains no Pj, then  S~ c~ A = 0. 

The  sets S~, 2 ~< i ~< k, are called the even sets. 
We now introduce a sufficient condi t ion for  a capac i ta ted  pa th  inequal i ty  to 

induce a facet  o f  G V R P ( G ) .  

Condition (D). (i) For  every B~, 1 ~ i ~ 2 k -  1, and every Pj, 1 ~<j <~ t, there exists a 

tight k-par t i t ion  where  B 2 u  P; is inc luded in the odd  set. 

(ii) For  every P~, Pj, 1 ~ i, j ~< t, there exists a tight k-par t i t ion where  P~ w Pj is 

inc luded in the odd set. 
(iii) For  every B~, B~, 1 <~ i, j <~ 2 k - 1  and i ¢ j ,  there exists a tight k-par t i t ion  

where  B~ w B~ is inc luded in an even set which has an empty  intersect ion with Z. 

Theorem 3.9. A capacitated path inequality which satisfies Condition (D)  induces a 
facet of  G V R P ( G ) .  

Proof .  It  is very similar  to the p r o o f  of  Theo rem 3.2. The k- tours  x '  needed  here 

are defined as follows. Let y c A, z c Z and b~ 6 B~ for  j = 2 k , . . . ,  s and  b~ c B~ for  
j = 1 . . . .  , s. For  convenience,  let b~ = Vo for  j = 1 . . . .  , 2 k -  1, b~ = y and  b~ = z for  

j = l  . . . . .  s. 

2 for  e = b~u, all j = 1 , . . . ,  s, all l = 0 ,  1, 2, 3 and all u ~ B~\{b~}, 
i i for  e = blbt+l, all l =  1, 2, 

xie= 1 f o r e - b t b l + l ,  a l l j ¢ i a n d a l l l = l ,  2, 
for  e = ~ / ~ ,  a l l j = 2 k  ..... s w h e n  l ~ i < ~ 2 k - 1 ,  

all j ¢ i when  2k ~< i ~< s, 

otherwise.  

The  p r o o f  that  ce=fe for  the edges e in E(B~), a l l j = l  .... , s, a l l / = 0 ,  1, 2, 3, and 
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in (BI, B~), all j = 1 , . . . ,  s, all 0<~/< h <~ 3, carries over from the proof  of Theorem 

3.2 using the k-tours x i. 
Now consider eE (Q, B~) for j = 2 k ,  . . . .  s and l =  1, 2. By Condition (D), there 

exists a tight k-partition where Pj is included in the odd set. This implies the existence 

of a k-tour in T s containing edge e and edges of the skeleton. We deduce ee =fe. 
For e c  (B h, B]) where h = 1 , . . . , 2 k - I  a n d j = 2 k , . . . ,  s and 1= 1, 2, the result 

follows from Condit ion (D)  (i).  For e ~ (Bq h , B j) where 2k ~< h < j  <~ s and q, 1 = 1 
or 2, the result follows from Condition (D)  (ii). 

Finally consider e ~ (B h , B j) for 1 ~< h < j  ~ 2k - 1. By Condition (D)  (iii) there 

exists a k-tour in T f containing edge e and edges of the skeleton. This shows 

Ce=fe. [] 

One can find sufficient conditions in the spirit of  Conditions (C') under which 

the capacitated path inequalities (8) define facets of CVRP, but these conditions 
are more technical and we omit them here. 

4. Comb inequalities 

In the preceding section we derived sufficient conditions under which valid 

inequalities related to the path inequalities define facets of CVRP. In this section 

we demonstrate how the comb inequalities of the symmetric traveling salesman 
problem can be generalized to facets of CVRP depending on whether the depot is 

in a handle, a tooth, both or neither. Comb inequalities were introduced by Chv~ital 
[6], and later generalized by Gr6tschel and Padberg [16]. For CVRP, the simplest 

but important case where the depot belongs neither to the handle nor to the teeth 
was addressed successively by Laporte and Nobert  [22], and then Laporte and 

Bourjolly [21]. In what follows, the graph G is complete and k~>2. Let us now 
define the comb inequalities in our setting. 

Formally, let Wo, W I , . . . ,  Ws ~- V satisfy 
(i) [W~\Wol~>l, i = l , . . . , s ,  

(ii) [W/n Wo[~>l, i - - - a , . . . , s ,  
(iii) [W~c~ Wj[=0, l ~ i < j < ~ s ,  

(iv) s odd and />3. 

The corresponding comb inequality is ( )3s+1 
x(E(W~))<~ y. IW~[ - + a ( k - 1 ) ,  (9) 

i = 0  i =o 2 

where 

i = O  

if Vo ~ Wo\ U W/ or v0 ~ Wj\ Wo for some j = 1 , . . .  , s, 
i = l  

if Vo ~ Wjn Wo for some j = 1 , . . . ,  s. 
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Theorem 4.1. The comb inequality (9) is valid for CVRP and induces the same face 
of CVRP as the path, wheelbarrow or bicycle inequality defined by ni = 2for i = 1 , . . . ,  s 

v ~ w ,  ~ ' w ~ \ W o ,  ~=  . .  a n d a =  \ U i = o W ~ , Z  = o\U,=~W~,B1 = B2 W~c~Wofori=l,  . ,s. 

Proof. The degree constraints for CVRP imply 

Wl-½x(8(W)) if Vo~ W, 
x ( E ( W ) ) =  W l + ( k - 1 ) - ½ x ( a ( W ) )  if VoC W. 

Therefore 

x ( E ( W i ) )  = ~ (IW~l-ax(~(W~)))+~(k-1), 
i = 0  i=O 

where a is as defined in (9). Now the definition of fe in (7), applied to the path, 

wheelbarrow or bicycle configuration A, Z, Bi~, B~, 1 <~ i ~ s, as stated in Theorem 
4.1, implies that 

E Lxe = E x(~(v¢,)). 
e~E i = 0  

It follows that the path, wheelbarrow or bicycle inequality ~ecE f exe ~ 3S + 1 induces 
the same face of CVRP as the comb inequality (9). [] 

As a consequence of this result, Theorems 3.3 and 3.7 directly translate into 
facetial results for comb inequalities (9). 

When Vo e WI\ Wo and the comb satisfies 
(v) R ( V \ W O = p ;  

in addition to conditions (i)-(iv), then the comb inequality can be strengthened as 

follows. 

x(E(W~))<~ IW~ - 3 s + l + k - p .  (10) 
i~O i= 2 

Theorem 4.2. I f  vo e WI\ Wo and (v) holds, then the comb inequality (10) is valid for 
CVRP. 

Proof. First, note that for i - - 2 , . . . , s ,  x ( E ( W i ) ) ~ I W / I - 1 ,  x(E(W~\Wo))~ 
IWAWoI-1 and x(E(W~c~ Wo))~]W~c~ Wo]- l .  Moreover, by condition (v), we 
have x ( E ( W 1 ) ) ~ I W I I - I + k - p ,  x ( E ( W I \ W o ) ) ~ I W I \ W o I - I + k - p  and 
x(E(  WI c~ Wo)) ~ [W1 r~ Wol - 1. Adding these inequalities and the degree contraints 
for the nodes in Wo, applying a weight of 1 and rounding up the resulting fractional 
coefficients yields the result. [] 
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Checking condition (v) is an NP-hard problem but inequality (10) remains valid 
if p is replaced by [ d ( V \  W1)/C ]. This is the inequality that we recommend using 
in practice (instead of (9) or (10)), when roe W1\Wo. 

Now we introduce combs where several teeth can intersect. These combs are 
interesting because of  their special form and intrinsic structure. The corresponding 
inequalities will be shown to be valid for CVRP but are not valid when the capacity 
constraints are dropped. For this reason, we call them capacitated comb inequalities. 
Let Wo, WI , . . . ,  W2k,..., Ws c_ V satisfy (i), (ii), (iv) and the following conditions. 

(iii') W / n W j = O ,  l<~i<~s, 2k<-j~s, i# j ;  
(vi) W~n Win W0=0, l<~i<j<~2k-1; 

(vii) W~\ Wo=Q for i= l , . . . , 2 k - 1 ;  
(viii) vo~Q, R(V\W~)=k for i = l , . . . , 2 k - 1 .  

Then the corresponding inequality is 

x ( E ( ~ ) ) < ~  IW, - - - 3 s  1 . (11) 
i = 0  i 0 

This comb inequality can be derived from the capacitated path, wheelbarrow or 
bicycle inequality (8). 

Theorem 4.3. The capacitated comb inequality (11) is valid for CVRP. 

Proof. First, note that x(E(W~))=lWi]-½x(6(Wi)), for i = 0 ,  2k , . . . , s  and 
x(E(~)) -= I W~l- lx(~(w,))  + ( k -  1) for i = 1 , . . . ,  2 k -  1. It follows that 

s 

2 x(E(W,))= E ( l ~ l - ½ x ( ~ ( ~ ) ) ) + ( 2 k - 1 ) ( k - a ) .  
i = 0  i = 0  

Now, it can be verified that Y~=0x(3 (W/) )=~e~efexe+(2k-2 )x (6 (Q) ) .  Since 
Ze~Efex~ ~>3(S+ 1 ) - 2 k  by Theorem 3.8, and x(6(Q))  >~2k by condition (viii), it 
follows that 

i~_oX(E(Wi))<-(i~olWil) -(3s;----~l)+l. [] 

Finally, we note that the capacitated comb inequalities can be transformed into 
a different form, using the degree constraints. In this equivalent form, the depot 
belongs to the handle Wo and exactly 2 k - 1  teeth W1 , . . . ,  Wzk-1- Formally, 
Wo,. . . ,  Ws satisfy conditions (i), (ii), (iv), (iii'), 

(vi ') (WAWo) n ( W j \ W o ) = 0  , l<~i<j<~Zk-1; 
(vii') Q = W o n W ~ ,  l~<i~<2k-1 ;  

and (viii). Then the inequality 

( )3 +1 
~ ( ~ ( w ~ ) ) ~  ~ I~1 - + k (~2) 

i=0 i=o 2 

is valid for CVRP. 
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In this section, we discuss the solut ion of  two examples ,  using the results presented  

previously.  It will also serve to highl ight  some of  the difficulties inheren t  to vehicle  

rout ing problems.  In the first example ,  we are given a set o f  18 customers  whose  

demands  are all equal  to one unit  to be served f rom a depot.  The vehicle  capaci ty  

is ten units. Table  5.1 gives the symmetr ic  dis tance matr ix in which  0 denotes  the 

depot .  

Table 5.1 

Distance matrix for the 18-customer problem 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

0 126 76 51 39 63 65 107 38 61 79 70 73 110 16 23 97 80 115 
1 98 148 94 118 146 52 164 133 206 173 198 20 121 133 65 50 38 
2 125 42 121 53 52 100 127 138 146 141 94 86 98 115 54 113 
3 83 37 115 145 62 23 87 25 67 128 39 28 96 112 124 
4 79 60 68 72 85 114 106 111 81 45 57 85 44 93 
5 127 126 90 16 122 60 104 98 46 46 60 92 90 
6 105 66 127 95 129 105 137 81 88 145 97 152 
7 140 138 181 170 179 55 109 122 94 34 79 
8 82 42 67 41 148 49 44 134 116 154 
9 111 44 91 113 45 40 77 104 106 

10 79 24 190 88 80 173 158 194 
11 56 154 61 48 121 137 149 
12 181 77 67 159 153 183 
13 103 115 46 40 23 
14 13 85 78 106 
15 92 91 115 
16 64 30 
17 59 

It is clear  that  at least two vehicles  are necessary to visit all the customers.  Here ,  

we solve to opt imal i ty  the 18-customer C V R P  for three different values of  k, i.e., 

k = 2, 3, 4. The me thod  we use is a l inear  p rog ramming  based cutt ing p lane  t echn ique  

which proceeds  in the fo l lowing manner .  First, a re laxed l inear  p rog ram which 

consists o f  the object ive  funct ion,  the degree constraints  and the upper  b o u n d  

constraints  is solved. I f  the op t imal  solut ion cor responds  to a k- tour  we are done.  

Else, we s trengthen the re laxat ion  by adding  a set o f  facetial  inequal i t ies  to the 

formula t ion .  Fo l lowing  this, we solve the augmen ted  l inear p rogram and p roceed  

as before.  We generate  the facets by hand  f rom the current  op t imal  LP-solut ion.  So 

far, no au tomat ic  t echniques  for ident i fying v io la ted  facets o f  C V R P  are avai lable  

to our  knowledge.  Of  course,  we wou ld  need  to devise such procedures  in order  to 

solve large problems.  The  facet  ident i f icat ion procedures  wou ld  then  be e m b e d d e d  

in a cutt ing p lane  a lgor i thm in the spirit  o f  the b ranch-and-cu t -a lgor i thm of  Padberg 

and Rinald i  [31]. 
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Let us now present the solution of this example. In what follows, a violated 
capacity constraint will be designated by its client set W and right-hand side 
RHS = [ W [ - r ( W ) .  It should be noted that we will use the capacity constraint 
x ( 6 ( W ) )  >~ 2r(W) in the equivalent form x ( E ( W ) )  <~IW]- r (W) .  When r(W) = 1 
for some W, we refer to the corresponding inequality as a subtour elimination 
constraint. 

We begin by investigating the case when k = 4. The starting LP-solution, which 
is not a 4-tour, has value 767.0. The optimal 4-tour with length 807 was found after 
three iterations. It required the addition of one subtour elimination constraint, 
W = ( 1 ,  7, 13, 16, 17, 18} with RHS = 5, and two capacity constraints, W={1, 3, 5, 
8, 9, 10, 11, 12, 13, 16, 18} with R H S = 9  and W={1,  3, 5, 7, 9, 10, 11, 12, 13, 16, 
17, 18} with RHS = 10. 

When k = 3, the optimal 3-tour with length 767.0 was obtained after five iterations 
by imposing two subtour elimination and five capacity constraints. Now we turn to 
the tighter case k = 2 .  At the first iteration, the LP-solution value is 697.0. In 
subsequent iterations listed below, we added the following inequalities. 

Iteration 2. Capacity constraint: 

W =  {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18} ,  R H S =  14. 

LP-solution value: 719.5. 

Iteration 3. Capacity constraint: 

W = {3, 5, 8, 9, 10, 11, 12, 14, 15, 16, 18}, 

LP-solution value: 720.0. 

RHS = 9. 

Iteration 4. Subtour elimination constraint: 

W =  {1, 13, 16, 17, 18}, RHS = 4. 

LP-solution value: 721.00. 
Iteration 5. Subtour elimination constraint: 

W = {1, 7, 13, 16, 17, 18}, RHS = 5. 

LP-solution value: 726.5. 

Iteration 6. Capacity constraint: 

W =  {1, 2, 3, 5,7,9,  11, 13, 16, 17, 18}, 

LP-solution value: 727.5. 

RHS = 9. 

Iteration 7. Capacity constraint: 

W =  {1, 2, 4, 5, 6, 7, 9, 13, 16, 17, 18}, 

LP-solution value: 738.66. 

RHS = 9. 
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Iteration 8. Capacity constraint: 

W =  {1, 3, 5, 7, 9, 10, 11, 12, 13, 16, 17, 18}, R H S =  10. 

LP-solution value: 740.5. 

Iteration 9. Subtour elimination constraint: 

W = {8, 10, 12}, RHS = 2. 

LP-solution value: 741. 

The current solution represents a 2-tour satisfying the capacity constraints and is 

therefore optimal. The routes are 

route 1: 0 - 1 4 - 1 5 - 5 - 9 - 3 - 1 1 - 1 2 - 1 0 - 8 - 0 ,  

route 2: 0 - 4 - 17 - 16 - 18 - 13 - 1 - 7 - 2 - 6 - 0. 

The subtour elimination and capacity constraints were sufficient to solve all three 

instances of  this 18 customer problem. Of  course, in general, other inequalities, 

such as comb inequalities, are needed to solve vehicle routing problems to optimality. 

We encountered instances where the following type of inequalities had to be used. 

We say that F ~ E is a hypo-tour if F does not contain a simple k-tour but F u {e} 

does, for some e ~ E \ F .  Accordingly, we define 

x ( F ) < ~ n + k - 1 ,  (13) 

the hypo-tour  inequality. Clearly, this inequality is valid for CVRP. Moreover, by 

taking a maximal set F (with regard to inclusion), we get stronger hypo-tour  

inequalities. It is important  to observe that the validity of  the hypo-tour  inequalities 

depends explicitly on the value of the vehicle capacity. 
As it appears from the numerical example presented above, the addition of the 

subtour elimination and capacity constraints to the linear program has proven very 

powerful. Next, we attempt to investigate further the computational  value of the 

capacity constraints by solving exactly a 50-customer benchmark test problem [5]. 
The solution procedure that we adopt  is a two-phase method. The first phase, which 
can be viewed as a priori cut-generation, is used to rapidly generate potential capacity 

inequalities that might be necessary to cut off fractional points at low computational  

cost. This is achieved in the following manner. 

Step 1. Construct a minimum spanning tree T on the set of all client nodes. Then, 

identify capacity inequalities f rom the tree T as follows. It  is clear that the removal  
of  any edge of the tree T will partition the node set of T into two nonempty subsets, 
say, $1 and $2. One can then associate a capacity inequality with either $1 or $2. 
Repeatedly removing single edges of  the tree T will yield a number  of  capacity 

inequalities. 
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Step 2. Adjoin to the spanning tree T a set of 2k (cheapest) edges incident to 
the depot. Identify capacity inequalities that prevent the occurrence of illegal sub- 
tours (cycles). Observe simply that the addition of 2k edges (incident to the depot) 
to the spanning tree T may result in a number of subtours possibly infeasible. 

The second phase is essentially identical to the solution procedure used to solve 
the 18-customer problem, except that the initial relaxed linear program is 
strengthened by adding all the valid inequalities found in the first phase. The purpose 
of this combined technique is to get as quickly and cheaply (in terms of computational 
effort) as possible a good lower bound on the integer optimum. Let us now illustrate 
this method by considering the 50-customer problem. To solve this problem, we 
considered the addition of four classes of cutting planes that include subtour 
elimination constraints (SEC), capacity constraints (CAPC), comb inequalities 
(TCOMB) without the depot, and comb inequalities (VCOMB) which contain the 
depot in some tooth only and are of the form (10). Let us note that the minimum 
number of vehicles needed for this problem is five. Moreover, the best heuristic 
solution that uses five vehicles has length 521.0, see [13]. Let it be remarked that 
the length of the relaxed linear program consisting only of the objective function, 
the degree constraints and the upper bound constraints is equal to 481.5. Therefore, 
the initial gap between the continuous and the integer (heuristic) solutions is 36.5. 
Now let us proceed to phase 1. In the first step, we have generated from the spanning 
tree 34 capacity inequalities out of which 11 are simple subtour elimination con- 
straints. In the second step, we have derived 45 capacity inequalities. Therefore, the 
first phase has enabled us to identify 79 valid inequalities. Adding these inequalities 
to the relaxed linear program yields a solution of length 510.28. The gap is then 
substantially reduced to 10.72. Now we continue with the second phase. At the 
current fractional solution we have identified, using visual inspection, 23 violated 
capacity inequalities. The linear program is solved after adding these cuts and a 
lower bound of value 512.2 is obtained. Subsequently, we added a set of 71 violated 
cuts which includes 49 CAPC, 14 TCOMB and 8 VCOMB. The LP-solution is now 
516.42. Note that the gap has been reduced to 4.58. At this point, we resort to 
branch-and-cut [31] using the GAMS system [19]. The optimal solution found at 
node 10 of the search-tree has value 521 (identical to the heuristic) and required 
the enumeration of 21 additional nodes to prove its optimality. During the enumer- 
ation of the 31 node search-tree, a total number of 45 cuts were generated consisting 
of 3 SEC, 37 CAPC, 3 TCOMB and 2 VCOMB. Overall, a set of 218 inequalities 
were generated out of which 177 are capacity inequalities. A summary of the 
search-tree is shown in Figure 5.1. Here the number besides and inside each node 
of the tree represents the lower bound obtained and the number of cuts added, 
respectively. This example clearly illustrates the computational value of the cuts 
considered, especially the capacity inequalities. These partial findings which are 
quite encouraging indicate that larger instances of CVRP may be solved using the 
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Fig. 5.1. Branch-and-cut search tree. 

p r o p o s e d  m e t h o d .  F u t u r e  r e s e a r c h  w o r k  wil l  be  f o c u s e d  on  d e v i s i n g  an  a u t o m a t i c  

f a c e t  i d e n t i f i c a t i o n  p r o c e d u r e .  
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