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This algorithm for global optimization uses an arbitrary starting point, requires no derivatives, 
uses comparatively few function evaluations and is not side-tracked by nearby relative optima. 
The algorithm builds a gradually closer piecewise-differentiable approximation to the objective 
function. The computer program exhibits a (theoretically expected) strong tendency to cluster 
around relative optima close to the global. Results of testing with several standard functions are 
given. 
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I. Introduction 

The max imiza t ion  m e t h o d  p r o p o s e d  in this p a p e r  is a sequent ia l  search,  that,  

unl ike  g rad ien t  me thods  and  o ther  sequent ia l  techniques ,  can es t imate  arbi t rar i ly  

closely the value  and  the loca t ion  o f  the g loba l  m a x i m u m  of  a mu l t imoda l  funct ion 

o f  several  var iables .  It needs  no ' f avo rab le '  s tar t ing po in t  to avo id  converging to a 

non-g loba l  relat ive m a x i m u m .  In all  but  the  wors t  cases it can find a close est imate 

with many  fewer sample  po in ts  than  a gr id  search.  The me thod  is a genera l iza t ion  

o f  an a lgor i thm of  S.A. Pi javskii  [3] and ,  i ndependen t ly ,  o f  B. Shuber t  [4] for a 

funct ion  o f  one var iable .  

In  the next  sect ion we give some def ini t ions  and  the s impl i f ied  sampl ing  rule, 

which is enough  to show convergence ,  for  example ,  but  which  needs  to be made  

specific in o rde r  to pe r fo rm  computa t ions .  The specifics and  thei r  jus t i f icat ions  are 

p resen ted  in Sect ion 3. In  Sect ion 4, convergence  and  op t imal i ty  o f  the me thod  are 

p roved  and  in the last  sec t ion c o m p u t e r  t imings  and  accuracy  for  several  funct ions  

o f  two var iab les  is d iscussed.  

2. The sampling rule 

We will denote  by R N, Eucl idean N-space  with the usual norm, [Ix-El] = 
x/~iNl (x i _ffi)2, where x =  (x 1, x 2 , . . . ,  xN).  R N+I will be, for  this paper,  the car- 
tesian product ,  R N × (z-axis), i.e., R N+I = {(x 1, x 2 . . . . .  x N, z ) l x  ~, z c R } .  
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Let f be a real-valued function defined on an N-cube,  I N =  {xlAi <<-xi<~ B~}, in 
R N and satisfying the strict Lipschitz condition that, for all x, ~ ~ I N, 

I f (x)  - f ( x ) l  < K II x -  ~ II, 

where K is a real, positive constant. We wish to solve the maximization problem: 

M a x f  subject to x c I  N . 

The problem has a solution since f satisfies the Lipschitz condition. 
We now define the sampling sequence, Xo, x ~ , . . . ,  x , , . . . .  Let Xo be an arbitrary 

point in I u. We define Fo, the approximating function, by 

Fo(x) = g l l x -  xoll + f(xo), 

and its maximum, 

Mo = max Fo(x). 
X E I  N 

The next point, Xl, is chosen so that 

F o ( X I )  = M0. 

(Any such point will do.) Continuing in this way, having chosen x,, we define 

F . ( x ) =  min {gllx,xj l l+f(xj)},  M . = m a x F . ( x ) ,  
j=O, . . . ,n  

and choose x.+~ so that F.(X.+l) = M.. 
The graph of Fo in R s+l is an N-dimensional  cone with vertex, (xo, f(xo)), 

bounded by I N, with axis of  symmetry parallel to the z-axis and such that sections 

orthogonal to this axis are spheres. For the remainder of  this paper,  a cone will be 
assumed to have these properties. (For N = 2, it is a right circular cone with slope 
K.) 

The graph of  F. is made up of several intersecting cones which approximate the 

graph of f ;  we will call the graph of F. the approximating surface at step n. It is 
intuitively clear (at least for N = 2) that at each successive step F. is a better 
approximation o f f  and consequently the sequence M. converges to the maximum. 
This will be made precise in Section 4. 

In using this sampling rule for computations, one must find the maximum of F. 
at step n. For N = 1, this is easy [4]. For N > 1, this amounts to finding the peaks 
of the approximating surface, which are cone intersections, and, of  those, the one 
which is highest. In the next section a painless way of finding the relative maxima 
of F. is shown. 

3. Computational refinements 

We wish to make finding M., the approximate maximum at step n, computationally 
precise. We will prove that finding the points of  relative maximum of the approximat-  
ing surface means finding the points of  intersection of the cones making up the 
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surface. Furthermore,  this can be done by solving a set o f  N linear equations and 

a quadrat ic  equat ion (Theorem 3.1). 
Let vi = (v~, v ~ , . . . ,  v~,  hi), be any point  in I N, then 

2 . .  v 2 ' , 0 )  ~ ( v i ) = ( v ~ ,  v i , .  , 

is the project ion o f  vi to R N. 

Let G = {(x, z)lz  = K II x - 1r(v~)II + hi}. 
Let C = {Gl i  = 1 , . . . ,  m} be any finite collection o f  cones with the property that 

no vertex is on or above the surface o f  any other cone in C. 
The vertices vi, i = 1 , . . . ,  m will be called N - 1 coplanar if their projections to 

R N are contained in a plane of  d i m e n s i o n ~  < N - 1 .  

Let F be a funct ion on RN, defined by 

F ( x )  = mix {K II 7r(vi) - x H + hi}. 
i ~ m  

Proposition 3.1. I f  the vertices, vi, are N -  1 coplanar then (-'l C~ cannot contain a 
point o f  relative max imum o f  F. 

Proof. Suppose (-'l Ci is non-empty,  and suppose the cone vertices are N - 1  co- 

planar. Then the projections,  {Tr(vi)}, are contained in an N -  1 plane, Q ~ R N. The 

cone vertices are contained in the N plane, Q '  = Q x (z-axis). 

Let P'[-'Ii~M G, P = 7r(p'). Let D(e ,  p ) c  R N be an arbitrarily small N-disk  cen- 
tered at p with radius e > 0. Let R be the line in R N through p or thogonal  to Q. 

See Fig. 1. Then there exists a point  q c D ( e , p ) c ~ R  such that I Iq-Tr(vi) l ]> 

l i P -  ~r(vi)]l for all i =  1 , . . . ,  M. Thus, for all i, 

K II q - ¢r(vi)ll + hi ~ K ]1P - 7r(vi)]l + hi ~ F ( p ) .  

Therefore,  

F ( q )  = min{K II q - 7r(vi)II + hi} ~ F ( p ) .  
i ~ m  

See Fig. 1. Since s can be arbitrarily small, this proves that p is not  a relative 
maximum o f  F. A similar argument  shows p is not  a relative minimum, thus not a 

critical point. For  our  purposes  we need only the proposi t ion as stated. 

Proposition 3.2. Suppose two N-cones are defined by z=Kllx-vll÷h and z =  

K IIx-  ~11 + t;, then the cone intersection is contained in the plane defined by 

N ( ~ - h )  ~ ' - _ h  2 N 
E 2 ( e i - v ' ) x ' - 2 ~  zq K z ~ [(zT')Z-(vi)23 =0 .  

i = l  i ~ l  

Proof. The derivation o f  this plane equat ion consists o f  some tedious algebraic 
manipulat ions.  One would  think it already exists in some analytic geometry text; 

but  since I could find no such reference, I include a sketch o f  the derivation here. 
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Fig. 1. 

The coordinates x ~, i=  1 , . . . ,  N of the intersection of the 
hereafter C1 and C2, are determined by the equation 

K IIx-  vii + h = K IIx-  ~11 +/7, 

Kx/E ( x ' -  v')2+ h = K~/E ( x ' -  ~,)2+/7, 
i i 

~"i (xi  - v i ) 2 -  ~'i (xi  - vi)2 ( / 7 -  h 2 K ~---~--']~" (/7 h) (x i_  ~7,)2, 

two given cones, 

~/. [4(/7i - Vi)2 4 (~_h)2 ]  (xi) 2 

+ 8 ~ .  (~i _ v~)xi (~j  _ vJ)x  ~ + linear terms in x i + constant term = O. 
i C j  

The general plane equation, for the plane, P, is 

~, cixi + cz + d = O. 
i 

(1) 
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i The coordinates, x ,  of  the intersection of  a plane and C~ are given by: 

d - Y.  cix' 
gllx-vll+h, 

c 

I i J t  " ~,, ( c ~ - c 2 K 2 ) ( x i )  2q-2 Z Z  cix cjx q-~i 2v'c2K2xi 
i \ i~ j  " 

+ 2 ( d + c h ) ( ~  c S ) - ~  c2K2(vi) 2q- d2+ 2cdhWc2h2=O. 

Comparing the squared terms gives 

2 --  c2K 2 = 4(~' - vi) 2 - 4  ( /7-  h)2 
Ci K 2 ' 

and we obtain a possible solution: 

(2) 

( /7-  h) 
c, = 2(~3 ~ - v~), c = - 2  K ~  (3) 

which checks for the mixed terms in both representations of the intersection, 
equations (1) and (2). The constant, 

7 h 2 
d g ~ _ •  [(~i)2 _ (vi)2], (4) 

i 

was obtained from comparing the linear and constant terms of C1 ~ P with those 
of (72 n P, assuming the above values for c~ and c. These values for c~, and c, and d 
also check for the linear and constant terms of equations (1) and (2). 

Proposition 3.3. Given the collection, C, defined above, with m = N + 1, let P~ be the 
plane of  cone intersection, CN+I c~ C~, i = 1 , . . . ,  N. I f  (-~ Pi has dimension > 1 or i f  
dim ( ~  Pi = 1 and the line of  intersection is parallel to R N, then the cone vertices, v~, 
are N -  1 coplanar. 

Proof. If(-~i Pi contains a line disjoint from R n (i.e. points on the line are equidistant 
from RN), then parallel translation in each P~ gives lines R~ in Q~ = P~ c~ R N. Let L~ 

be the line segment connecting the projected vertices, rr(vN+l), 7r(vi). Considering 
L~ to be a vector with j - th  component,  VJq+l-  V/J, then from the plane parameters 
of(3)  and (4) in Proposition 3.2, the plane Q~ has equation Y. (v~v+l - vi)x  ~ + d / 2  = O, 
with normal vector, L~. Thus Q~ is orthogonal to Li (hereafter Qi± L~). Thus we 
have Rg± L~. I f  the vertices, {v~}, are not N - 1  coplanar, then the members of  
L = {Lili = 1 , . . . ,  N}, as vectors, form a basis of  an N-plane  with origin at rr(VN+l). 
But then it cannot be that Ri 3_ L~, all i ~ N. For the parallel translations in R N of 
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Fig. 2. 

Ri to ~r(vN+~) must be the same line, R, since the Ri are all parallel. But then R Z L~, 
all i, contradicting the assumption that L formed a basis for an N-plane. Thus 
{viii= 1 , . . . ,  N + I }  must be N - 1  coplanar. See Fig. 2. 

Thus, the proposition is proved for the case (-'/i Pi is a line parallel to R N. If 
dim f-l~ P~ > 1, then f-~i P~ contains a line disjoint from R n and the proof  is complete. 

Theorem 3.1. A n y  point o f  relative m a x i m u m  o f  F n is a solution to a set o f  N linear 

equations and a quadratic equation. I t  is the unique solution which has larger z-value. 

Proof. By Proposition 3.1, if p is a relative maximum of F,, then p is in the 
intersection of at least N +  1 cones, since the vertices of N or fewer cones are a 
priori N - 1  coplanar. By Proposition 3.2, p is in the intersection of N planes. By 
Proposition 3.3, that intersection is a line which intersects R N. Thus p is the 
intersection of that line and a cone, with vertex (v, h), and defined by the positive 
root of 

( z - h )  2 
g 2 = E ( x J - v 9  2. 

J 
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We may now rewrite the algorithm in a precise way, which can be used for 

computer implementation. 
The j th  iteration of the algorithm consists of  the following steps which culminate, 

as described in Section 1, in selecting a new sample point, Xj+l, and estimate, f(ffj+~), 
and deciding to stop or reiterate. 

Suppose we have the sample point, 2~j c I N (xo in I s chosen arbitrarily) such 

that Fj x(ffj) = M~-I, the global maximum of Fj_ a. A new sample point, Xj+a, will be 
chosen from among the points of  relative maxima of Fj, which are those of Fj 1 
minus the point (~j, M~_~) plus intersections of  the j th  cone, Cj, at (~j,f(ffj)) with 

the cones Co, C a , . . . ,  Cj_I. According to Theorem 3.1, we find these intersections, 
denoted Pq, by first storing plane coefficients, ci, d, of  Y . ~  c~x~+ cN+lz+ d = 0 for 
each o f j  cone intersections. 

Select N planes at a time from among these j planes and the boundary planes, 
defined by x ~=A~ and x g= B~, i =  1 , . . . ,  N, then obtain a solution space to the 
resulting system of N linear equations in N +  1 variables. This solution space is 
invalid for our purposes if it has dimension >1 (the coefficient matrix has rank 
< N -  1) or if it is a line disjoint from R N (the parametric equations for the solution 
line include z = constant). Thus an allowable parametric linear solution is of the 

X 1 + aaz = bl, 

o r  

form: 

xk~ q- al  Xk = bl, 

X N q- aN  z = bN, X kN-~ -[- a N _ a X  k = b N _ l ,  

z b a N  X k = bN, 

where l<~k<~N and { k l , . . . , k N  a} is some arrangement of  the superscripts 
{ 1 , . . . ,  N } - { k } .  

The second form can be converted to the first and then the variables x i, i = 1 , . . . ,  N, 

are substituted into the equation for the cone, Cj, which is then solved for z. This 
yields two points which are the intersection of the line with the upper  and lower 
halves of the cone defined by (z _ f (g j ) )2=  K2(Hx_ )~j H2). We choose the point with 
larger z-value. This gives us a point, Pij = (xq, zq), which might or might not be on 
the approximating surface. I f  zq > K [[xq - xk [[ +f (xk )  for any k = 0 , . . .  , j  - 1, then 
this cone intersection is above the current approximating surface and need not be 
stored. 

Next, from the set of  points, 

P=Pik ,  k = 0 , . . . , j ,  i = l , . . . , i k ,  

the one with maximum Zig is chosen. The corresponding point, x~k, is Xj+l. We take 
an estimate, f(~j+~), and set z~k =f(gj+l) .  The set, P, is thus the collection of all 
critical points of  Fj+l. 

The stopping rule for this procedure is based on the convergence theorem of 
Section 4. Let 

4~, = max{f()~k)[ k = 0 , . . . ,  n}, 



R.H. Mladineo / An algorithm for the global maximum 195 

then Theorem 4.1 implies that M,  - qS, i> 0 converges to 0. Thus if Mj - 05j < e, e the 
previously chosen al lowed error, then the procedure  is terminated. The estimate for 

the maximum o f f  is 05j+1 = max{f(g j+0 ,  05j} which occurs at some Xko. The actual 
max imum is located somewhere  in the region of  uncertainty, 

{xlFj+~(x)>~05j+l=I N -  (._J D(r~,Tr(vi))}, 
i = 0 , j + l  

where v~ is the vertex o f  C~ and ri = (05 j+1- f (~ i ) ) /K >i O. 

4. Effectiveness of the algorithm 

It can be shown that the method of  Section 2 converges to the max imum of  f 

and that the method is a minimax among sequential search rules with regard to 

estimate error. 

Theorem 4.1. Let 05 be the global maximum o f f ,  • the set o f  points in I N at which 
the maximum is attained, xn, Mn defined as in Section 2, then 

lim f ( x , )  = 05, 
n-+oo 

{Mo, M 1 , . . . ,  M , , . . . }  is non-increasing and converges to 05, and 

lira inf IIx-xnll  =0  
n-+oo XE¢/~ 

Proof.  First, Mo, M 1 , . . . ,  M , , . . .  is non-increasing by construction:  Mi is chosen 

as max Fi and graph Fi+l consists of  erecting a cone at (x~,f(x~)) on the surface o f  

graph  f, thus approximat ing  graph f even closer; thus M~+I = max F~+I ~< Mi. The 
fol lowing is similar to Shubert ' s  [4], but  with some changes and is included for the 

sake o f  completeness.  Given {xi} as above, let X = {xlx = x~, some i} (x~ may be 

dupl icated in {x~} but not  in X) .  
Case 1 : X is infinite. Thus there exists a limit point,  y ~ I n, o f  X, by compactness  

o f  I N. Suppose f ( y )  is not  the maximum,  i.e., there is e such that 

f ( y ) < M - e  where M = l i m M n .  
n ~ o o  

Let x,,, x ,2 , . . ,  be a sequence in X which converges to y and let k~ > 0 such that  

k >  k ~ l [ x ,  k -y [ [  < e /2K .  Then, for all k >  k~, 

K I I x . k -  Yll +T(Y) < 2 + f ( y )  < M -  z f(x,,k) 

Thus,  for all k >  k~, if n >1 nk and ]]x-x,~l  I <~ e / 2 K ,  then F , ( x )  < M. 

But M .  > M for all n, so  that  for n > nk, X, cannot  be in the disk {x] I [ x -  x,  k II ~< 
e / 2 K } ,  contradict ing the assumption that y is a limit point  of  X. Thus for all e > 0, 

f ( y )  > M - e, and since f ( x )  ~ M for all x c I N, then f ( y )  = M for all limit points,  

y, of  {X,}. 
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Since f ( x , )  <~ 49 <~ M, then l imn_,~f(x,)  = ~b, and limn_,oo Mn = th. The third con- 
clusion follows from the assumption that X is infinite. 

Case 2: X is finite. I f  for some i > j ,  xi = xj, then, by definition, 

M, ~ M/_ 1 = F,_l(xj) =f(x~) =f(xi) ,  

thus 

M~ =f(x,) .  

So, the next choice, x~+l, must be x~ or some other Xk, where F~(Xk) =f(x i ) .  In any 
case, for all m > i, 

Mm = Mi =f(xi)  <~ M. 

Since M, is non-increasing, we have M m = M and for m/> k/> i, 

M = Mm = F m ( X  k)  = f ( x  k) ~ M, 

so f (xk)  = M all k >/i. 
Thus follows the first and second conclusion. The third follows by assumption 

of a finite number  of  values in {x,}. 
The rate of  this convergence is worst for a constant function [4]; for such a 

function our search rule amounts to a grid search. However, for non-constant 
functions which we are considering, the rate of convergence is faster. I f f (xk+l)> 
f(Xk) then points generated by Ci+I c~ Ck will be closer to Xk+~ than to Xk, SO that 
our method clusters around high points [see Section 5]. A grid search or random 
search ignores the relation f(Xk+O >f(Xk). A gradient search uses this information 
and for domains of  higher dimension most likely converges faster than our method, 
but need only converge to the global minimum for unimodal functions. 

The proof  that the algorithm is minimax [4] or optimal in one step [5] in the 
class, S, of  all sequential sampling rules with respect to the estimate error, q5 - 49,, 
is similar to Shubert's. However, there are inherent differences which necessitate a 
proof  here. 

Let So, s ~ , . . . ,  s,-1 denote a sampling sequence (the points at which a function, 
f, has been evaluated). Let s* denote the sequence generated by our algorithm, 
denoted s*. Let L(K)  be the set of  functions, f, satisfying the global Lipschitz 
condition with Lipschitz constant, K. Assume each f is defined on the cube I N, 
where 0 < ~ x ~  1. 

We will show that, at the nth iteration, s* minimizes the worst possible estimate 

error for functions in L(K) .  

Theorem 4.2. Let en( f s )=globa l  maximum of f - m a x { f ( s i ) ] i = l , . . . , n } =  

th(f) - 49n(f s); then 

inf sup e , ( f  s ) =  sup e , ( f  s*). 
sES f ~ L ( K )  f E L ( K )  

Proof. Let Fk(X)--minj_o....,k{f(sj)+ Kllx-sj[I}, Mk =maxx~i-  Fk(X), and Yk= 
maxf(s~),  i = 1 , . . . ,  k. The set {X~Ij = O, 1 , . . . ,  nk} denotes the collection of points 
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at which Fk(.~ j )  = M k. Let D k - -  Dro,~ a neighborhood of £o such that Fk(X ) > Yk, 

for all x ~ Dk. (Any of the XJk are candidates for Sk+~,* " ~0 was chosen arbitrarily.) 
At the nth iteration, if s. ~ D~-I; then, since F._l(X) is an upper  bound for values 

o f f ( x ) ,  f ~  L(K), and, given the choices up to now, we have: 

sup e.( f  s ) =  s u p ( M n _  1 - y . ) =  M . - 1 - Y . - b  
f 

attained by f such that f(s.)=Y.-I- Call the subset of  L(K) consisting of such 
functions, /-~(K ). 

On the other hand, if s.~D._l then the maximum er ro r  for fcL,(K) is 

m a x { M ' _ l -  Y.-1, P~ . -  Y.-1} where M ' - I  = maxx~o._~ F._l(x) and Ps. = 
maxx~o . .  F.(x)[see Fig. 3]. P~. is the height of  the highest corner formed by 
intersections of  the cone at s. with graph (F._~) in D._~. Since M'_~ <~ M._~ and 

P~. ~< M._~, then supi~£(K ) e.( f  s) is minimized by choosing s. ~ D._I,  including 
the choice s* -o -o = x . .  More specifically, if M '  . ~< p_0 then s. = x .  minimizes P~. I f  n - - i  ~ x n ,  n 

t - 0  M n _ I > P ~ ,  then any s, in a small enough neighborhood of x ,  minimizes 
s u p s e . ( f  s). 

Mn- 1 

4o 

Sn X n Sn- 1 

Fig.  3. 

Many optimization methods have been developed which minimize the largest 
interval of  uncertainty [2, 6]. In our case this becomes meaningless. For let qb be 
the set in I "  on which f attains its maximum, q~,, the region of uncertainty at step 

n (see Section 3), and m ( q ~ , - ~ )  be Lebesgue measure of  the difference. Let 
rn,(f, s) = m ( ~ ,  - ~ )  for some function, f, and sequential search, s. Then 

inf sup m,(f ,  s) = vo l ( I  N) 
s f 

is achieved for functions such that f(xi)=f(x0), i <~ n, and such that ~b = m a x f ( x )  
is attained at most at a countable number  of  points. Thus any sequential search 
rule is minimax with respect to this measure of  effectiveness. 

5. A numerical example 

The algorithm was implemented for the case N = 2 in a computer  program written 
for the DEC 2060. We give here details in timing and accuracy for several functions 
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that  were tried. The cases, N > 2, will be handled  by a similar p rogram currently 
being tested. The program being developed must  consider intersecting only 'close '  

cones to avoid increasing C P U  time for each iteration. 

The funct ion o f  two variables, 

f ( x ,  y) = 4xy sin 47r y, 

has a global max imum o f  f(1.0,  0 .6250)= 2.5 in the region 0 ~< x ~< 1, 0 <~ y ~< 1. 

The Lipschitz constant,  K, was approximated  by finding upper  bounds ,  B~, B2, 
for Of/Ox and Of/Oy and letting K = ~ .  In general, assuming a rectilinear 

region, I u =  {xlai <~ xi<~ hi}, and upper  bounds ,  B~, on the first partial derivatives, 

IOf/Oxl, in I N we can choose K =~/~ B~ because of  the following: 

]af]-- y . (Of~ zlxi ( t h e t r u n c a t e d T a y l o r e x p a n s i o n a t x o ~ / N )  
\ ax / xo I 

< E  n, lx'l 

<~/~2~2x/Y~ (Axi) 2, by the Schwarz inequality. 

The selection o f  K influences execution time so it should be estimated as closely 

as possible. The program stops in a few iterations when K is too small (since xj is 

found  such that F(xj) <f (x j ) ) ,  thus K can be adjusted until a suitable upper  bound  

is found.  
For  example,  gross estimates o f  

Of= 4y sin 4~ry <~ 4 and 0 i =  4x sin 41ry + 16"rrxy cos 4Try ~< 4 +  31 
Ox Oy 

give K = 39. For  this value o f  K and for  another  test value, K -- 28, the program 

determined an answer, with an error o f  0.5 in Table 5.2. In Table 5.1, a better 

estimate, K = 25, is used, clearly giving better computer  times. 

Table 5.1 shows the number  o f  iterations, J, required to end the program and the 
C P U  time (in units equal to the time to evaluate the funct ion S Q R I N  1000 times 

[1]) for different functions:  

Table 5.1 

Max. (scaled) J S TIME 
computer actual K (iteration) (0.57 sec.) 

FUNCT (1.00, 0.6250, 1.0000) (1.000, 0.6250, 1.0) 8.4 100 37 

FUNCT 2 (0.1173, 0.9836, 0.99753) (0.1427, 0.9757, 1.0) 2.9 100 49 

-GOLDPR (0.4841, 0.2433, 0.99997) (0.5000, 0.2500, 1.0) 4.0 25 4 

-RCOS (0.5415, 0.1593, 0.99985) (0.5428, 0.1350, 1.0) 10.0 100 35 
(0.1298, 0.7933, 0.99904) (0.1239, 0.8017, 1.0) 32.1 100 42 
(0.9920, 0.2495, 0.97380) (0.9617, 0.0150, 1.0) 60.0 100 37 
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Table 5.2 

K J S TIME 

25 112 44 
28 177 119 
39 400 833 
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• : . - . .  

Fig. 4. {xili <~ 42} for GOLDPR, * = maximum. 

. . . .  .: . . .-... 

O •  

O 9 O O 

Fig. 5. {xili~ 100} for RCOS, *=  maximum. 
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F U N C T  = 4XlX 2 sin 4 ~r x2, discussed above; F U N C T  2 = sin(2xl + 1) + 

2 sin(3x2 + 2); G O L D P R  and RCOS are f rom [1 ]. The variables and function values 

were scaled to be in the range [0, 1] and [ -  1, 1 ] respectively. It appears  that a fast local 

g r ad i en t - -o r  o the r - - sea rch  method,  following the relatively slower global search 
would lead to closer approximat ion  of  the solution in some cases. Tests o f  - R C O S  

showed clustering a round  all three global maxima.  Stopping the program at different 

iterations al lowed each max imum to be selected separately. 

Figures 4 and 5 show the sampling sequence chosen by the computer  program 
for two functions,  G O L D P R  and RCOS,  exhibiting p ronounced  clustering a round  

the global maxima.  
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