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This paper describes what is termed the "generalized assignment problem". It is a 
generalization of the ordinary assignment problem of linear programming in which mul- 
tiple assignments of tasks to agents are limited by some resource available to the agents. 
A branch and bound algorithm is developed that solves the generalized assignment prob- 
lem by solving a series of binary knapsack problems to determine the bounds. Computa- 
tional results are cited for problems with up to 4 000 0 - 1  variables, and comparisons 
are made with other algorithms. 

1. Introduction 

The purpose of the classical assignment problem and many variations 
on it is to find optimal pairings of agents and tasks. Each task is assigned 
to a single agent, each agent is given a single task, and the suitability of 
a particular set of assignments is determined by a single criterion function. 
The assignment of several tasks to a single agent is possible only by en- 
larging the problem to include fictitious tasks and duplicate agents. 
There is, however, no way to restrict these multiple assignments. 

From an applications standpoint, a more useful model would allow 
the assignment of several tasks to a single agent, provided these tasks do 
not require more of some resource than is available to the agent. Prob- 
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lems that  can be accurately represented by this "generalized" assign- 
ment  model  include assigning software development  tasks to program- 
mers, assigning jobs to computers  in computer  networks [1], scheduling 
variable length television commercials i n t o  t ime slots, and scheduling 
payments  on accounts where contractual agreements specify " lump sum" 
payments.  Other applications include fixed charge plant location models 
in which customer requirements must  be satisfied by a single plant 
[7, 10], and c o m m u n i c a t i o n n e t w o r k  design models with certain node 
capacity constraints [9]. 

A mathematical  formulat ion of the generalized assignment problem 
is: 

minimize ~ ~ (1) i~ I  j ~ J  CijXij ' 
(P) 

subject to ~ <<. b i for all i ~ I ,  (2) j e J  r i jXo 

x i /= 1 for all j ~ J ,  (3) 
iEI  

x/j = 0 or 1 

In this f o r m u l a t i o n / =  (1, 2 .... , m) is a set of agent indices, J = {1, 2, ..., n)  
is a set of task indices, el/is the cost incurred if agent i is assigned task j, 
r/j is the resource required by agent i to do task j and b i > 0 is the amount  
of resource available to agent i. The natural interpretat ion of the decision 
variable is 

1 if agent i is assigned task j, 
x / j= 0 otherwise .  

This problem takes on more of the appearance of the classical assign- 
ment  problem when each constraint (2) is scaled by dividing bo th  sides 
of the inequality by the right-hand side value to obtain 

~< 1 (4) j E J  k i jXi j  ' 

where 

kij = rij/b i • 

It is apparent  that  the classical assignment problem is a special case of 
the generalized assignment problem in which ki /= 1 for all i ~ / ,  j E J 
and m = n. The stipulation vector of ones in (4) and (3) suggests that  the 
generalized assignment problem is a special case of the generalized trans- 
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portation problem [ 13] in the same way that the classical assignment 
problem is a special case of the pure transportation problem. Implicit 
enumeration algorithms that solve a series of generalized transportation 
problems have been used to solve the generalized assignment problem 
[1, 12]. 

The generalized assignment problem may be interpreted as a special- 
ized transportation problem in which the amount demanded at each 
destination must be supplied by a single origin if the parameter ri/is con- 
stant for each i (i.e., rij = rj for all i ~ / ) .  Algorithms for this special case 
of the generalized assignment problem have been developed by DeMaio 
and Roveda [4] and by Srinivasan and Thompson [ 14]. 

In Section 2 of this paper, a branch and bound algorithm is given for 
solving the generalized assignment problem. A numerical example is pro- 
vided in Section 3, and computational results are presented in Section 4. 

2. The branch and bound algorithm 

Our branch and bound algorithm is basically a conventional one of 
the Dakin type [31 with the novel feature that the bound is calculated 
in part by solving binary knapsack problems, rather than using linear 
programming. This approach greatly exploits the structure of the prob- 
lem and yields, in a direct way, an integer solution that tends to be fea- 
sible. The efficiency of the algorithm is based on the minimal effort re- 
quired to solve binary knapsack problems [8, 11 ] coupled with a LIFO 
treatment of candidate problems. 

The basic concept in the bounding procedure of the algorithm is best 
illustrated with reference to the initial relaxation of problem (P). The 
relaxation is a natural one in which tasks are assigned to the least costly 
agent without regard to the  limitations on multiple assignments. This re- 
laxation is 

minimize ~ i~ I  jEJ  CijXij ' 
(PR) 

subject to ~ xij = 1 for all j E J, 
iEl  

xi! = 0 or 1 . 

An obvious solution to (PR) is found by determining for all ] c J, an 
index l) ~ I such that cij j = m in i e i ( cq}  and setting xij j = 1 and xij= 0 for 
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all i E / ,  i 4= ij. This yields the lower bound 

z= ci/j. j ~ Y  

Each of the constraints (2) in (P) is then checked for feasibility using the 
solution to (PR). Except  for trivial problems, some of these constraints 
will be violated, and this fact can be used to further refine the lower 
bound. For notational convenience let 

J / =  {j: xij= 1, j E J} 

and let 

I '= ( i :  ~ >bi, i E I } .  J~Ji rqxq 

The lower bound Z can be increased by the sum of the values of the ob- 
jective functions obtained from solving for each i E I '  the problem 

~j, Pi Y ij , minimize Z i j . 
(PK i) 

subject to ~ rqyq >>- di, 

yq = 0 or 1 , 

where 

di =j~ej i rijxi] - bi, 

p]= min {%j cgj}" 

Each problem (PKi) is a binary knapsack problem the solution to which 
designates those tasks which must be reassigned from agent i to another 
agent in order to satisfy the resource restriction on agent L The parameter 
pj represents the minimum penalty that will be incurred if task j is reas- 
signed. The optimal solution to (PKi) , denoted y~y, indicates those reas- 
signments that lead to a minimal'increase, z i*, in" the value of  Z. Thus a re- 
vised lower bound for (P) is 

L B = Z +  ~ * 
iEI '  Zi " 

The " * solution Yij also may be used to construct a new solution which may 
be feasible for (P) and which has an objective function equal to the re- 
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vised lower bound. In particular, the variables xi] for which the corre- 
sponding Yii 1 should be set equal to 0, and a variable xk] whose asso- 
ciated coefficient Ck] satisfies p] = Ck]- Ci] ] should be set equal to one. 

Computing the lower bound for (P) in the manner just described can 
be viewed as a specific application of the concept of Lagrangean Relaxa- 
tion, a general approach for constructing lower bounds in integer pro- 
gramming [6]. We shall now develop the bound in terms of Lagrangean 
relaxation because it makes the validity of the revised lower bound LB 
obvious. 

The Lagrangean relaxation is obtained by associating a multiplier X! 
with each of the constraints Zieixi] = 1 to produce the problem 

minimize ~ ~ + ~ ~7 (1 - ~ xi]) i~I  j~J  CijXil ]EJ iEl  ' 
(PR x) 

subject to ~ <. b i for all i E I, i~J  rij xij  

x/] = 0 or 1 . 

Note that an equivalent form of the objective function is 

~ -  m a x [ i ~ :  i~I ~ (X' - ci')xijj " 

Thus (PR x) separates into a series of binary knapsack problems, one for 
each i ~ L 

The magnitude of the bound provided by (PR x) is clearly dependent 
upon the values of Xj.. A good choice for the ~. would be the values of 
the optimal dual multipliers of the constraints (3) in the continuous 
version of (P). However, considerable computational effort would be re- 
quired to solve the continuous version of (P) by linear programming. An- 
other suitable choice for the X/would be the set of optimal dual multi- 
pliers for the bounded variable linear program, 

(PR L) 

minimize ~ iEI j~Y  CijXi]' 

subject to ~ = 1 for allj ~ J, i~ l  x i j  

O<<.xij <. 1. 

It is particularly important to note that each optimal dual multiplier X/ 
for (PR r )  lies anywhere in the range Cl] ~< X] ~< c21 , where Cl1 and c2i are 
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respectively the smallest and second smallest value of cij for all i ~ / .  Op- 
timal Xj for (PR L) are, therefore, very easy to compute. 

The principal result of this Lagrangean analysis is that the lower bound 
LB is identical to the bound provided by (PRx) when each X/is set equal 
to c2j , the second smallest value of ci! for all i ~ / .  This assertion is easily 
verified if one substitutes (1 - x i j )  for Yij  in each (PKi), observes that 
p! = c2! - cl1 for all j ~ J, and observes that those xi] which are equal to 
zero in the solution to (PR) can be set equal to zero in (PRx). Thus, 
solving (PR) and subsequently solving (PKi) for all i ~ / '  yields a bound 
equal to that provided by (PRx) which is clearly a valid bound for (P). 

The solution set for (P) is separated into two mutually exclusive and 
collectively exhaustive subsets based on the 0-1  dichotomy of variable 
values. The variable chosen to separate on, x i , j , ,  is the one among those 
with y~. = 0 in the optimal solution to the (PKi) for which 

t i , j ,  = max ( p j / ( r q / ( b  i - E ] ~ y i  rij x i j ) )}  , 

where F i denotes the set of tasks assigned to man i. The variable chosen 
by this:rule represents a j ob ] that is best kept with agent i considering 
both the penalty for switching the job and the resources available to the 
agent. Separation creates two new candidate problems whose solution 
sets differ only in the value assigned to a particular variable. The candi- 
date problem in which the separation variable is fixed to one is the prob- 
lem examined next. 

It should be reemphasized that the solutions of the binary knapsack 
problems contribute to the fathoming of candidate problems in two 
ways. First, the objective function values refine the lower bound, and 
secondly the solutions indicate some reassignments of tasks to other 
agents that may lead to a feasible solution. Computational results indi- 
cate that if the resource constraints are not overly restrictive, then 
making these reassignments frequently produces a feasible solution. 

As the branching progresses, particularly as the algorithm proceeds 
down the "one-branch", an additional refinement can be made in the 
procedure for solving (PR). In identifying the least costly and second 
least costly agent for a given task, some variables may be forced to zero 
because rij > b i - -  ~ , j E F i  ri]xij, where F i designates those tasks assigned 
to agent i in the current candidate problem. This in turn may increase 
the bound obtained from (PR) as well as the penalties p / i n  the objec- 
tive function of the (PKi). 
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3. Numerical example 

The objective function values (cij) and the coefficients (rii) of the 
multiple assignment constraints for a problem with three agents and 
five tasks are shown in Table 1 below. An asterisk (*) indicates that the 
associated agent-task pair is not  permissible. In this example, the right- 
hand side values (bi) of the multiple assignment constraints are 28 for 
all i E Z 

Initially (PR) is solved to obtain x l l  = 1, x12 = 1, x33 = 1, x34 = 1, 
x15 = 1 and all other xii = 0. The lower bound on the optimal solution 
to (P) provided by this solution to (PR) is 92. 

Because the solution to (PR) is not feasible to (P) the binary knapsack 
problems 

minimize 35Yll + 35Y15 + 7Y12 , 

subject to 12Yll + 18Y15 + 19y12/> 21, 

Yl! = 0 or 1 for all j; 

minimize 16Y34 + 4y33 , 

subject to 22Y34 + 14y33 t> 8, 

Y3! = 0 or 1 for all J 

are solved, and the optimal solutions,are Yll  = 0, 12 1, Y15 = 1 and 
Y~4 = 0,  y *  = 33 1 respectively. The objective functions of  these knapsacks 
give a combined penalty of 46 which added to the lower bound 92 gives 
a revised bound of 138. 

The variable x 11 is selected as the separation variable, and the candi- 
date problem with x 11 = 1 is solved next. The solution to the relaxation 
of this candidate problem is Xll = 1, x32 = 1, X33 = 1, X34 = 1, X25 = 1 
and all other xii = 0 with Z = 134. However this solution is not  feasible 
for (P) and the knapsack problem 

Table 1 

Tasks Tasks 

1 2 3 4 5 1 2 3 4 5 
1 14 38 * 26 14 1 12 19 * 11 18 

Agents 2 49 * 20 46 49 Agents 2 6 * 11 15 18 
3 * 45 16 10 * 3 * 10 14 22 * 

Objective function Multiple assignment 
coefficients coefficients 
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m i n i m i z e  + ~  Y32 + 16Y34 + 4Y33 

subject to  10Y32 + 22Y34 + 14Y33/> 18, 

Y3! = 0 or 1 for all /  

is solved. The optimal solution is Y32 = 0, Y34 = 1, Y33 = 0, and the lower 
bound of 134 can be revised to 150. Note that when task 4 is reassigned 

to agent 1 we obtain the feasible solution to (P), x 11 = 1, x 32 = 1, x 33 = 1, 
x14 = 1, x25 = 1 with an objective function value of 150. Thus this can- 
didate problem is fathomed, and the candidate problem with Xll = 0 is 
considered next. 

The optimal solution to the relaxed candidate problem when x 11 = 0 

is X21 = 1, X12 = 1, X33 = 1, X34 = 1, X15 = 1 and all other xiy = 0. The 
bound provided by the relaxation is 127. Again the solution to (PR) is 
not feasible to (P) and the knapsack problems 

minimize 35Y15 + 7Y12 , 

subject to 18Y15 + 19Y12 I> 9, 

Y 1] = 0 or  1 ; 

minimize 16Y34 + 4Y33 , 

subject to 22Y34 + 14Y33/> 8, 

Y3] = 0 or 1 

are solved. The optimal " * = 1 y* * = * = solutions Y12 , 15 = 0 and Y33 1, Y34 0 
increases the lower bound from 127 to 138. The variable x15 is selected 
as the branching variable, and the process is repeated. 

The complete branch and bound tree for this example is in Fig. 1. The 
unlabeled numbers beside each node indicate the order in which the 
nodes were examined, and LB designates the lower bound on the node. 

Fig. 1. Branch and bound tree for the example• 
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4. Computational  results 

We have programmed our algorithm and solved a variety of  test prob- 
lems. To demonstrate the efficiency of  our approach relative to other 
algorithms, we have also solved subsets of  our test problems with a gen- 
eral purpose integer programming code, an integer generalized network 
code and a special purpose code designed for a related class of problems. 

The algorithm described in Section 2 has two characteristics which 
were exploited in implementing the algorithm. First, the LIFO treat- 
ment of  candidate problems is beneficial in terms of both magnetic core 
storage and solution time requirements. With this arrangement only 
those restrictions associated with the current relaxation must be stored, 
and updating the candidate list requires very little effort. Empirical evi- 
dence suggests that the heuristic rule of  examining the one branch first 
yields a good feasible solution early in the branching process. This in 
turn reduces the number  of  candidate problems that must be solved. 
The second important  feature is that knapsack problems can be solved 
very rapidly in a relatively small amount  of  magnetic core, and good 
bounds are easily computed. Moreover, it has been suggested to the 
authors that some candidate problems might be fathomed using the 
bound provided by the continuous solution to the knapsack problems. 
This bound is extremely easy to compute  and saves the time required to 
find an integer optimal solution to the knapsack problems. 

Our program was written in FORTRAN IV and was tested on a 
CDC 6600 with 72 000 words of  magnetic core available to the user. 
The program requires 4v + 7m + 1 On + 5300 words to solve a generalized 
assignment problem with m agents, n tasks and v variables. The solution 
times reported in the tables below were measured by a real-time clock 
accurate to one millisecond and do not  include time for input and out- 
put. The test problems include a number of  randomly generated prob- 
lems and one small problem which arose in an application. In the ran- 
domly generated problems, a uniform probabili ty distribution was used 
to create ri] values between 5 and 25 and ci] values between 10 and 50. 
To establish binding multiple assignment constraints, each b i w a s  set 
equal to 0.6 * (n/m) * 15 + 0.4 * R, where R = maxi~ I (2j~jrijxii} and 
the xi] are the solution to the initial relaxation. In general, based on the 
range of  values of  the rip one would expect  random problems to be in- 
feasible if each b i < (n/m) * 15 and trivial if each b i >~ R. 

The data in Table 2 below provide a comparison of  our algorithm 
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Table 3 

m n Variables DeMaio Klingman Ross and 
and Roveda and Stutz Soland 

5 50 250 0.031 1.765 0.048 
5 50 250 1.708 1.031 0.044 
5 50 250 TIME 5.215 0.200 
5 50 250 2.789 0.388 0.049 
5 50 250 0.033 0.104 a 0.031 
5 50 250 2.897 3.281 0.046 
5 50 250 0.111 1.887 0.322 

10 50 500 4.244 9.135 0.184 
10 50 500 28.385 9.228 0.141 
10 50 500 0.385 5.849 0.185 
10 50 500 0.938 9.850 0.129 
10 50 500 21.600 TIME 0.666 
10 50 500 0.244 0.825 0.077 
10 50 500 TIME TIME 0.500 

20 50 1000 8.139 TIME 0.292 
20 50 1000 CORE TIME 0.300 
20 50 1000 CORE TIME 0.372 
20 50 1000 0.948 14.931 0.347 
20 50 1000 10.941 TIME 0.508 
20 50 1000 0.598 3.919 0.227 
20 50 1000 0.032 1.451 0.207 

a For this problem the optimal solution to the initial generalized network relaxation was integer 
valued. 

against RIP30C [5], a general purpose integer programming code with 
an imbedded linear program for generating strong surrogate constraints. 
The application problem mentioned earlier in which m = 5, n -- 10 and 
v = 50 was solved for nine progressively more restrictive sets of values 
for the bi, the last set resulting in an infeasible problem. No randomly 
generated problems were solved using RIP30C because of magnetic core 
limitations. 

The data in Table 3 provide a comparison of our algorithm against 
IPNETG and against a special purpose program developed by DeMaio 
and Roveda [4]. IPNETG is an experimental integer generalized network 
code recently developed by Klingman and Stutz [-12]. IPNETG uses a 
branch and bound approach and solves generalized network problems to 
obtain the bounds. The algorithm of DeMaio and Roveda is designed to 
solve only the special case of the generalized assignment problem in 
which the parameter ri] is the same for each i ~ / .  The problems listed 
in Table 3 have this characteristic. The notation TIME indicates that a 
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code could not solve the problem in 50 seconds of central processor 
time, and the notation CORE indicates that a code required more than 
72 000 words of magnetic core storage in order to solve the problem. 

The data in Table 4 provide computational results for problems in 
which the parameter ri/varies for each i ~ / .  For each size problem in 
Table 4, seven randomly generated problems were solved. The median, 
minimum and maximum solution times are given, as well as the median 
values of the number of feasible solutions, nodes, knapsack problems, 
and length of the longest branch. 

The computational results clearly establish the superiority of our al- 
gorithm for the generalized assignment problem. The solution times are 
relatively stable for each problem size in comparison to those of the 
other algorithms tested. As problem size increases, solution time in- 
creases but at a relatively slow rate. The data in Table 2 show that solu- 
tion times tend to increase as the multiple assignment constraints become 
more restrictive, and that the algorithm is slow in determining that a 
problem has no feasible solution. 
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