
Mathematical Programming 8 (1975) 91-103.
North-Holland Publishing Company

A BRANCH AND BOUND ALGORITHM FOR THE
GENERALIZED ASSIGNMENT PROBLEM*

G. Terry ROSS
University of Massachusetts, Amherst, Mass., U.S.A.

and

Richard M. SOLAND
University of Texas, Austin, Tex., U.S.A.

Received 18 September 1973
Revised manuscript received 15 October 1974

This paper describes what is termed the "generalized assignment problem". It is a
generalization of the ordinary assignment problem of linear programming in which mul-
tiple assignments of tasks to agents are limited by some resource available to the agents.
A branch and bound algorithm is developed that solves the generalized assignment prob-
lem by solving a series of binary knapsack problems to determine the bounds. Computa-
tional results are cited for problems with up to 4 000 0 - 1 variables, and comparisons
are made with other algorithms.

1. Introduction

The purpose of the classical assignment problem and many variations
on it is to find optimal pairings of agents and tasks. Each task is assigned
to a single agent, each agent is given a single task, and the suitability of
a particular set of assignments is determined by a single criterion function.
The assignment of several tasks to a single agent is possible only by en-
larging the problem to include fictitious tasks and duplicate agents.
There is, however, no way to restrict these multiple assignments.

From an applications standpoint, a more useful model would allow
the assignment of several tasks to a single agent, provided these tasks do
not require more of some resource than is available to the agent. Prob-

* This research was partly supported by ONR Contracts N00014-67-A-0126-0008 and N00014-
67-A-0126-0009 with the Center for Cybernetic Studies, The University of Texas.

92 G.T. Ross, R.M. Soland/A branch and bound algorithm for the assignment problem

lems that can be accurately represented by this "generalized" assign-
ment model include assigning software development tasks to program-
mers, assigning jobs to computers in computer networks [1], scheduling
variable length television commercials i n t o t ime slots, and scheduling
payments on accounts where contractual agreements specify " lump sum"
payments. Other applications include fixed charge plant location models
in which customer requirements must be satisfied by a single plant
[7, 10], and c o m m u n i c a t i o n n e t w o r k design models with certain node
capacity constraints [9].

A mathematical formulat ion of the generalized assignment problem
is:

minimize ~ ~ (1) i~ I j ~ J CijXij '
(P)

subject to ~ <<. b i for all i ~ I , (2) j e J r i jXo

x i /= 1 for all j ~ J , (3)
iEI

x/j = 0 or 1

In this f o r m u l a t i o n / = (1, 2 , m) is a set of agent indices, J = {1, 2, ..., n)
is a set of task indices, el/is the cost incurred if agent i is assigned task j,
r/j is the resource required by agent i to do task j and b i > 0 is the amount
of resource available to agent i. The natural interpretat ion of the decision
variable is

1 if agent i is assigned task j,
x / j= 0 otherwise .

This problem takes on more of the appearance of the classical assign-
ment problem when each constraint (2) is scaled by dividing bo th sides
of the inequality by the right-hand side value to obtain

~< 1 (4) j E J k i jXi j '

where

kij = rij/b i •

It is apparent that the classical assignment problem is a special case of
the generalized assignment problem in which ki /= 1 for all i ~ / , j E J
and m = n. The stipulation vector of ones in (4) and (3) suggests that the
generalized assignment problem is a special case of the generalized trans-

G.T. Ross, R.M. Soland/A branch and bound algorithm for the assignment problem 9 3

portation problem [13] in the same way that the classical assignment
problem is a special case of the pure transportation problem. Implicit
enumeration algorithms that solve a series of generalized transportation
problems have been used to solve the generalized assignment problem
[1, 12].

The generalized assignment problem may be interpreted as a special-
ized transportation problem in which the amount demanded at each
destination must be supplied by a single origin if the parameter ri/is con-
stant for each i (i.e., rij = rj for all i ~ /) . Algorithms for this special case
of the generalized assignment problem have been developed by DeMaio
and Roveda [4] and by Srinivasan and Thompson [14].

In Section 2 of this paper, a branch and bound algorithm is given for
solving the generalized assignment problem. A numerical example is pro-
vided in Section 3, and computational results are presented in Section 4.

2. The branch and bound algorithm

Our branch and bound algorithm is basically a conventional one of
the Dakin type [31 with the novel feature that the bound is calculated
in part by solving binary knapsack problems, rather than using linear
programming. This approach greatly exploits the structure of the prob-
lem and yields, in a direct way, an integer solution that tends to be fea-
sible. The efficiency of the algorithm is based on the minimal effort re-
quired to solve binary knapsack problems [8, 11] coupled with a LIFO
treatment of candidate problems.

The basic concept in the bounding procedure of the algorithm is best
illustrated with reference to the initial relaxation of problem (P). The
relaxation is a natural one in which tasks are assigned to the least costly
agent without regard to the limitations on multiple assignments. This re-
laxation is

minimize ~ i~ I jEJ CijXij '
(PR)

subject to ~ xij = 1 for all j E J,
iEl

xi! = 0 or 1 .

An obvious solution to (PR) is found by determining for all] c J, an
index l) ~ I such that cij j = m in i e i (cq} and setting xij j = 1 and xij= 0 for

94 G.T. Ross, R.M. Soland/A branch and bound algorithm for the assignment problem

all i E / , i 4= ij. This yields the lower bound

z= ci/j. j ~ Y

Each of the constraints (2) in (P) is then checked for feasibility using the
solution to (PR). Except for trivial problems, some of these constraints
will be violated, and this fact can be used to further refine the lower
bound. For notational convenience let

J / = {j: xij= 1, j E J}

and let

I '= (i : ~ >bi, i E I } . J~Ji rqxq

The lower bound Z can be increased by the sum of the values of the ob-
jective functions obtained from solving for each i E I ' the problem

~j, Pi Y ij , minimize Z i j .
(PK i)

subject to ~ rqyq >>- di,

yq = 0 or 1 ,

where

di =j~ej i rijxi] - bi,

p]= min {%j cgj}"

Each problem (PKi) is a binary knapsack problem the solution to which
designates those tasks which must be reassigned from agent i to another
agent in order to satisfy the resource restriction on agent L The parameter
pj represents the minimum penalty that will be incurred if task j is reas-
signed. The optimal solution to (PKi) , denoted y~y, indicates those reas-
signments that lead to a minimal'increase, z i*, in" the value of Z. Thus a re-
vised lower bound for (P) is

L B = Z + ~ *
iEI ' Zi "

The " * solution Yij also may be used to construct a new solution which may
be feasible for (P) and which has an objective function equal to the re-

G.T. Ross, R.M. Soland/A branch and bound algorithm for the assignment problem 95

vised lower bound. In particular, the variables xi] for which the corre-
sponding Yii 1 should be set equal to 0, and a variable xk] whose asso-
ciated coefficient Ck] satisfies p] = Ck]- Ci]] should be set equal to one.

Computing the lower bound for (P) in the manner just described can
be viewed as a specific application of the concept of Lagrangean Relaxa-
tion, a general approach for constructing lower bounds in integer pro-
gramming [6]. We shall now develop the bound in terms of Lagrangean
relaxation because it makes the validity of the revised lower bound LB
obvious.

The Lagrangean relaxation is obtained by associating a multiplier X!
with each of the constraints Zieixi] = 1 to produce the problem

minimize ~ ~ + ~ ~7 (1 - ~ xi]) i~I j~J CijXil]EJ iEl '
(PR x)

subject to ~ <. b i for all i E I, i~J rij xij

x/] = 0 or 1 .

Note that an equivalent form of the objective function is

~ - m a x [i ~ : i~I ~ (X' - ci')xijj "

Thus (PR x) separates into a series of binary knapsack problems, one for
each i ~ L

The magnitude of the bound provided by (PR x) is clearly dependent
upon the values of Xj.. A good choice for the ~. would be the values of
the optimal dual multipliers of the constraints (3) in the continuous
version of (P). However, considerable computational effort would be re-
quired to solve the continuous version of (P) by linear programming. An-
other suitable choice for the X/would be the set of optimal dual multi-
pliers for the bounded variable linear program,

(PR L)

minimize ~ iEI j~Y CijXi]'

subject to ~ = 1 for allj ~ J, i~ l x i j

O<<.xij <. 1.

It is particularly important to note that each optimal dual multiplier X/
for (PR r) lies anywhere in the range Cl] ~< X] ~< c21 , where Cl1 and c2i are

96 G.T. Ross, R.M. Soland/A branch and bound algorithm for the assignment problem

respectively the smallest and second smallest value of cij for all i ~ / . Op-
timal Xj for (PR L) are, therefore, very easy to compute.

The principal result of this Lagrangean analysis is that the lower bound
LB is identical to the bound provided by (PRx) when each X/is set equal
to c2j , the second smallest value of ci! for all i ~ / . This assertion is easily
verified if one substitutes (1 - x i j) for Yij in each (PKi), observes that
p! = c2! - cl1 for all j ~ J, and observes that those xi] which are equal to
zero in the solution to (PR) can be set equal to zero in (PRx). Thus,
solving (PR) and subsequently solving (PKi) for all i ~ / ' yields a bound
equal to that provided by (PRx) which is clearly a valid bound for (P).

The solution set for (P) is separated into two mutually exclusive and
collectively exhaustive subsets based on the 0-1 dichotomy of variable
values. The variable chosen to separate on, x i , j , , is the one among those
with y~. = 0 in the optimal solution to the (PKi) for which

t i , j , = max (p j / (r q / (b i - E] ~ y i rij x i j))} ,

where F i denotes the set of tasks assigned to man i. The variable chosen
by this:rule represents a j ob] that is best kept with agent i considering
both the penalty for switching the job and the resources available to the
agent. Separation creates two new candidate problems whose solution
sets differ only in the value assigned to a particular variable. The candi-
date problem in which the separation variable is fixed to one is the prob-
lem examined next.

It should be reemphasized that the solutions of the binary knapsack
problems contribute to the fathoming of candidate problems in two
ways. First, the objective function values refine the lower bound, and
secondly the solutions indicate some reassignments of tasks to other
agents that may lead to a feasible solution. Computational results indi-
cate that if the resource constraints are not overly restrictive, then
making these reassignments frequently produces a feasible solution.

As the branching progresses, particularly as the algorithm proceeds
down the "one-branch", an additional refinement can be made in the
procedure for solving (PR). In identifying the least costly and second
least costly agent for a given task, some variables may be forced to zero
because rij > b i - - ~ , j E F i ri]xij, where F i designates those tasks assigned
to agent i in the current candidate problem. This in turn may increase
the bound obtained from (PR) as well as the penalties p / i n the objec-
tive function of the (PKi).

G.T. Ross, R.M. Soland/A branch and bound algorithm for the assignment problem 97

3. Numerical example

The objective function values (cij) and the coefficients (rii) of the
multiple assignment constraints for a problem with three agents and
five tasks are shown in Table 1 below. An asterisk (*) indicates that the
associated agent-task pair is not permissible. In this example, the right-
hand side values (bi) of the multiple assignment constraints are 28 for
all i E Z

Initially (PR) is solved to obtain x l l = 1, x12 = 1, x33 = 1, x34 = 1,
x15 = 1 and all other xii = 0. The lower bound on the optimal solution
to (P) provided by this solution to (PR) is 92.

Because the solution to (PR) is not feasible to (P) the binary knapsack
problems

minimize 35Yll + 35Y15 + 7Y12 ,

subject to 12Yll + 18Y15 + 19y12/> 21,

Yl! = 0 or 1 for all j;

minimize 16Y34 + 4y33 ,

subject to 22Y34 + 14y33 t> 8,

Y3! = 0 or 1 for all J

are solved, and the optimal solutions,are Yll = 0, 12 1, Y15 = 1 and
Y~4 = 0, y * = 33 1 respectively. The objective functions of these knapsacks
give a combined penalty of 46 which added to the lower bound 92 gives
a revised bound of 138.

The variable x 11 is selected as the separation variable, and the candi-
date problem with x 11 = 1 is solved next. The solution to the relaxation
of this candidate problem is Xll = 1, x32 = 1, X33 = 1, X34 = 1, X25 = 1
and all other xii = 0 with Z = 134. However this solution is not feasible
for (P) and the knapsack problem

Table 1

Tasks Tasks

1 2 3 4 5 1 2 3 4 5
1 14 38 * 26 14 1 12 19 * 11 18

Agents 2 49 * 20 46 49 Agents 2 6 * 11 15 18
3 * 45 16 10 * 3 * 10 14 22 *

Objective function Multiple assignment
coefficients coefficients

98 G.T. Ross, R.M. Soland/A branch and bound algorithm for the assignment problem

m i n i m i z e + ~ Y32 + 16Y34 + 4Y33

subject to 10Y32 + 22Y34 + 14Y33/> 18,

Y3! = 0 or 1 for all /

is solved. The optimal solution is Y32 = 0, Y34 = 1, Y33 = 0, and the lower
bound of 134 can be revised to 150. Note that when task 4 is reassigned

to agent 1 we obtain the feasible solution to (P), x 11 = 1, x 32 = 1, x 33 = 1,
x14 = 1, x25 = 1 with an objective function value of 150. Thus this can-
didate problem is fathomed, and the candidate problem with Xll = 0 is
considered next.

The optimal solution to the relaxed candidate problem when x 11 = 0

is X21 = 1, X12 = 1, X33 = 1, X34 = 1, X15 = 1 and all other xiy = 0. The
bound provided by the relaxation is 127. Again the solution to (PR) is
not feasible to (P) and the knapsack problems

minimize 35Y15 + 7Y12 ,

subject to 18Y15 + 19Y12 I> 9,

Y 1] = 0 or 1 ;

minimize 16Y34 + 4Y33 ,

subject to 22Y34 + 14Y33/> 8,

Y3] = 0 or 1

are solved. The optimal " * = 1 y* * = * = solutions Y12 , 15 = 0 and Y33 1, Y34 0
increases the lower bound from 127 to 138. The variable x15 is selected
as the branching variable, and the process is repeated.

The complete branch and bound tree for this example is in Fig. 1. The
unlabeled numbers beside each node indicate the order in which the
nodes were examined, and LB designates the lower bound on the node.

Fig. 1. Branch and bound tree for the example•

G.T. Ross, R.M. Soland/A branch and bound algorithm for the assignment problem 99

4. Computational results

We have programmed our algorithm and solved a variety of test prob-
lems. To demonstrate the efficiency of our approach relative to other
algorithms, we have also solved subsets of our test problems with a gen-
eral purpose integer programming code, an integer generalized network
code and a special purpose code designed for a related class of problems.

The algorithm described in Section 2 has two characteristics which
were exploited in implementing the algorithm. First, the LIFO treat-
ment of candidate problems is beneficial in terms of both magnetic core
storage and solution time requirements. With this arrangement only
those restrictions associated with the current relaxation must be stored,
and updating the candidate list requires very little effort. Empirical evi-
dence suggests that the heuristic rule of examining the one branch first
yields a good feasible solution early in the branching process. This in
turn reduces the number of candidate problems that must be solved.
The second important feature is that knapsack problems can be solved
very rapidly in a relatively small amount of magnetic core, and good
bounds are easily computed. Moreover, it has been suggested to the
authors that some candidate problems might be fathomed using the
bound provided by the continuous solution to the knapsack problems.
This bound is extremely easy to compute and saves the time required to
find an integer optimal solution to the knapsack problems.

Our program was written in FORTRAN IV and was tested on a
CDC 6600 with 72 000 words of magnetic core available to the user.
The program requires 4v + 7m + 1 On + 5300 words to solve a generalized
assignment problem with m agents, n tasks and v variables. The solution
times reported in the tables below were measured by a real-time clock
accurate to one millisecond and do not include time for input and out-
put. The test problems include a number of randomly generated prob-
lems and one small problem which arose in an application. In the ran-
domly generated problems, a uniform probabili ty distribution was used
to create ri] values between 5 and 25 and ci] values between 10 and 50.
To establish binding multiple assignment constraints, each b i w a s set
equal to 0.6 * (n/m) * 15 + 0.4 * R, where R = maxi~ I (2j~jrijxii} and
the xi] are the solution to the initial relaxation. In general, based on the
range of values of the rip one would expect random problems to be in-
feasible if each b i < (n/m) * 15 and trivial if each b i >~ R.

The data in Table 2 below provide a comparison of our algorithm

100 G.T. Ross, R.M. Soland/A branch and bound algorithm for the assignment problem

~ 0

0

I:~ ,.o

, ~ 0

[-~ ~ 0

0

~ 0
~ ' ~ ~

0

°

t~

Z~

G.T. Ross, R.M. Soland/A branch and bound algorithm for the assignment problem 101

Table 3

m n Variables DeMaio Klingman Ross and
and Roveda and Stutz Soland

5 50 250 0.031 1.765 0.048
5 50 250 1.708 1.031 0.044
5 50 250 TIME 5.215 0.200
5 50 250 2.789 0.388 0.049
5 50 250 0.033 0.104 a 0.031
5 50 250 2.897 3.281 0.046
5 50 250 0.111 1.887 0.322

10 50 500 4.244 9.135 0.184
10 50 500 28.385 9.228 0.141
10 50 500 0.385 5.849 0.185
10 50 500 0.938 9.850 0.129
10 50 500 21.600 TIME 0.666
10 50 500 0.244 0.825 0.077
10 50 500 TIME TIME 0.500

20 50 1000 8.139 TIME 0.292
20 50 1000 CORE TIME 0.300
20 50 1000 CORE TIME 0.372
20 50 1000 0.948 14.931 0.347
20 50 1000 10.941 TIME 0.508
20 50 1000 0.598 3.919 0.227
20 50 1000 0.032 1.451 0.207

a For this problem the optimal solution to the initial generalized network relaxation was integer
valued.

against RIP30C [5], a general purpose integer programming code with
an imbedded linear program for generating strong surrogate constraints.
The application problem mentioned earlier in which m = 5, n -- 10 and
v = 50 was solved for nine progressively more restrictive sets of values
for the bi, the last set resulting in an infeasible problem. No randomly
generated problems were solved using RIP30C because of magnetic core
limitations.

The data in Table 3 provide a comparison of our algorithm against
IPNETG and against a special purpose program developed by DeMaio
and Roveda [4]. IPNETG is an experimental integer generalized network
code recently developed by Klingman and Stutz [-12]. IPNETG uses a
branch and bound approach and solves generalized network problems to
obtain the bounds. The algorithm of DeMaio and Roveda is designed to
solve only the special case of the generalized assignment problem in
which the parameter ri] is the same for each i ~ / . The problems listed
in Table 3 have this characteristic. The notation TIME indicates that a

102 G.T. Ross, R.M. Soland/A branch and bound algorithm for the assignment problem

code could not solve the problem in 50 seconds of central processor
time, and the notation CORE indicates that a code required more than
72 000 words of magnetic core storage in order to solve the problem.

The data in Table 4 provide computational results for problems in
which the parameter ri/varies for each i ~ / . For each size problem in
Table 4, seven randomly generated problems were solved. The median,
minimum and maximum solution times are given, as well as the median
values of the number of feasible solutions, nodes, knapsack problems,
and length of the longest branch.

The computational results clearly establish the superiority of our al-
gorithm for the generalized assignment problem. The solution times are
relatively stable for each problem size in comparison to those of the
other algorithms tested. As problem size increases, solution time in-
creases but at a relatively slow rate. The data in Table 2 show that solu-
tion times tend to increase as the multiple assignment constraints become
more restrictive, and that the algorithm is slow in determining that a
problem has no feasible solution.

Acknowledgment

We gratefully acknowledge the helpful comments of A.M. Geoffrion
and Robert M. Nauss regarding both the Lagrangean relaxation interpre-
tation of the algorithm and its computational implementation. We would
also like to thank Professors DeMaio, Roveda, Klingman and Stutz for al-
lowing us to use their programs.

References

[I] V. Balachandran, "An integer generalized transportation model for optimal job assignment
in computer networks", Working Paper 34-72-3, Graduate School of Industrial Administra-
tion, Carnegie-Mellon University, Pittsburgh, Pa. (November, 1972).

[2] A. Charnes, W.W. Cooper, D. Klingman and R. Niehaus, "Static and dynamic biased qua-
dratic multi-attribute assignment models: solutions and equivalents", Center for Cyberne-
tic Studies, Research Report CS 115, The University of Texas, Austin, Texas (January,
1973).

[3] R.J. Dakin, "A tree search algorithm for mixed integer programming problems", Com-
puter Journal 8 (3) (1965) 250-255.

[4] A. DeMaio and C. Roveda, "An all zero-one algorithm for a certain class of transporta-
tion problems", Operations Research 19 (6) (1971) 1406-1418.

[5] A.M. Geoffrion, "An improved implicit enumeration approach for integer programming",
Operations Research 17 (3) (1969)437-454.

G.T. Ross, R.M. Soland/A branch and bound algorithm for the assignment problem 103

[6] A.M. Geoffrion, "Lagrangean relaxation for integer programming", Mathematical Pro-
gramming Study 2 (1974) 82-114.

[7] A.M. Geoffrion and G.W. Graves, "Multicommodity distribution system design by benders
decomposition", Management Science 20 (5) (1974) 822-844.

[8] H. Greenberg and R.L. Hegerich, "A branch search algorithm for the knapsack problem",
Management Science 16 (5) (1970) 327-332.

[9] M.D. Grigoriadis, D.T. Tang and L.S. Woo, "Considerations in the optimal synthesis of
some communication networks", Presented at the 45 th Joint National Meeting of the
Operations Research Society of America and The Institute of Management Sciences,
Boston, Mass., April 22-24, 1974.

[10] D. Gross and C.E. Pinkus, "Optimal allocation of ships to yards for regular overhauls",
Tech. Memorandum 63095, Institute for Management Science and Engineering, The
George Washington University, Washington, D.C. (May, 1972).

[11] G.P. Ingargiola and J.F. Korsh, "Reduction algorithm for zero-one single knapsack prob-
lems", Management Science 20 (4) Part I (1973) 460-463.

[12] D. Klingman and J. Stutz, "Computational testing on aninteger generalized network code",
Presented at the 45 th Joint National Meeting of the Operations Research Society of America
and The Institute of Management Sciences, Boston, Mass., April 22-24, 1974.

[13] J.R. Lourie, "Topology and computation of the generalized transportation problem",
Management Science 11 (1) (1964) 177-187.

[14] V. Srinivasan and G. Thompson, "An algorithm for assigning uses to sources in a speical
class of transportation problems", Operations Research 21 (1) (1973) 284-295.

