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An algorithm is presented for estimating the density distribution in a cross section of 
an object from X-ray data, which in practice is unavoidably noisy. The data give rise to 
a large sparse system of inconsistent equations, not untypieally 10 ~ equations with 104 
unknowns, with only about 1% of the coefficients non-zero. Using the physical interpre- 
tation of the equations, each equality can in principle be replaced by a pair of inequal- 
ities, giving us the limits within which we believe the sum must lie. An algorithm is pro- 
posed for solving this set of inequalities. The algorithm is basically a relaxation method. 
A finite convergence result is proved. In spite of the large size of the system, in the appli- 
cation area of interest practical solution on a computer is possible because of the simple 
geomelxy of the problem and the redundancy of equations obtained from nearby X-rays. 
The algorithm has been implemented, and is demonstrated by actual reconstructions. 

1. Introduction 

The problem of  reconstructing a three-dimensional distribution from 
its two-dimensional projections (shadowgraphs) has arisen in a large 
number of scientific and medical areas. The basic mathematical prob- 
lem was posed as early as 1917 by Radon [ 19] who has actually provid- 
ed a closed form solution assuming ideal mathematical conditions. In 
1956 Bracewell [ 1 ] considered this problem in relation to strip integra- 
tion in radio astronomy. In 1963 Cormack [3] pointed out the impor- 
tance of  the problem in radiology, and in 1968 DeRosier and Klug [4] 
attacked it from the point of  view of electron microscopy. Many dif- 
ferent methods have been proposed in these and other fields; for a sur- 
vey, see [10]. 

* A preliminary version of this paper has been presented at the VIII International Symposium 
on Mathematical Programming, Stanford University, Stanford, California. 

** This research has been supported by N.S.F. Grant G.J. 998. 
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In this paper we propose a method which has been designed with spe- 
cial attention to the fact that in practical applications the data supplied 
to a reconstruction method is invariably noisy. The paper has three 
parts. In the first we show how the noisy data gives rise to a system of  
inequalities regarding the densities of the object. We propose a relaxa- 
tion method (an iterative algebraic reconstruction technique) to solve 

the system of  inequalities. We prove that, provided there is a solution to 
the system at all, our method will find such a solution in a f i n i t e  num- 

ber of  iterations. In the second part we describe a computer  program 
based on the method introduced in the first part. In the final part we 
report on the performance of  our algorithm and compare it to three 
previously proposed algorithms, the ART2 algorithm of  [14],  the SIRT 

algorithm of  [7],  and the convolution method of  [20]. We find that the 
algorithm proposed in this paper is often advantageous to the other 
methods in case of  noisy data. A reconstruction using this method of  a 
canine left ventricle from X-ray data is also shown. 

2. Mathematical theory 

Although this is by no means necessary for our method,  for the sake 
of  simplicity of  explanation, we shall assume that the reconstruction of  
a three-dimensional object is to be done by a series of  reconstructions of  
two-dimensional slices. In other words, we assume that in the reconstruc- 
tion process the data has been obtained from X-rays which have been 
collimated to lie in one plane. From this data the density distribution 
in that plane is estimated, and the density distribution of  the object is 
obtained by a sequence of such reconstructions for parallel planes. (Al- 

though we shall use the word density throughout  this paper, in the X- 
ray application it is the distribution of  the coefficient of  X-ray absorp- 
tion that is being calculated. In other applications of  the reconstruction 
problem it is still other physical entities which take the place of  "densi- 

ty".)  
Consider Fig. 1. If we send an X-ray through the object, from the rel- 

ative intensity of  the X-ray at the source and at the detector  we can 
estimate the total X-ray absorption along the path of  the ray. A state- 
ment  of  this type is correct (with small variations) whether  or not  we 

assume the X-ray to be infinitely thin. 



G.T. Herman/Reconstructing objects from X-rays 3 

Reference 
Grid of N 2 
Pixe[s 

X-ray 
(~)~Source 

\1 
/ \ 

X ( 

\ 

) 
/ 

X-ray 
Detector 

Cross Sect ion of 

Object  to be 

- -  Reconst r rioted 

Fig. 1. Geometry fox the derivations of  the equations (1) which govern the Ieconstruct ion of a 
cross section from its X-ray projection. 

Let us assume for computat ional  purposes that the cross section to 
be reconstructed is enclosed in a square which is subdivided into N 2 
little squares (pixels). Let us also assume (and this is an important  as- 
sumption) that the density within each pixel is constant. Then we may 
write 

N 2 

~_, aiax s = bi, 1 <<. i < M, (1) 
j = l  

where x i is the (unknown) density of  the jth pixel, ai, j is a constant of  
proport ionali ty of  the contr ibution of  the jth pixel to the i t h  ray (for 

example, it can be taken to be proportional to the length of  the intersec- 
tion of  the i th  ray with the j t h  pixel), and b i is calculated on the basis of  

the estimated total X-ray absorption along the i th ray. For  the sake of  

simplicity of  the mathematical discussion we assume that all the equa- 
tions in (1) are normalized, i.e., that 

N 2 

( a i j )  2 = 1 1 ~< i~< M. (2) 
j =  1 ' 
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(Such normalization is not  necessary. Our algorithms are valid, with 
small alternations, without this assumption.) 

Since the aid can be calculated geometrically and the b i can be cal- 

culated on the basis of  our experimental measurements, it appears that 
equations (1) may now be simply solved by the techniques of  linear al- 

gebra. This is however not  so. Apart from the size of  the problem (quite 
possibly N = 100 and M = 100 000) we are faced with the problem that 

the equations are noisy, and hence more than likely inconsistent. There 
are three different types of  noise involved: 

(i) the b i are based on physical measurements which are invariably 
and unavoidably noisy, 

(ii) our assumption that the density in each pixel is uniform is un- 
likely to be perfectly valid, 

(iii) the calculation of  the aid usually involves some idealization of  
the nature of  X-rays (e.g., we usually ignore scattering). 

It appears therefore that a precise solution to equations (1) is gen- 
erally impossible. Even if such a solution existed, it does not  necessarily 
represent the original distribution, due to (i)-(ii i)  above. Rather than 
trying to satisfy equations (1), it appears more reasonable to try to find 
a solution to the following set of  inequalities: 

N ~ 

b i -  ei <~ "j~l ai'jxl <<" bi + el' 1 <~ i <~ M. (3 )  

Here we have taken care of the noise by requiring the equations to be 

satisfied only within a certain tolerance e i. The e i can be estimated 
either based on our knowledge of  the method of  data collection, or ex- 
perimentally. For example, in X-ray reconstruction, repeated measure- 
ments for the same geometric ray can help us to estimate the noise due 
to (i). In practical applications the choice of the e i is most important.  If 
they are chosen too small, the original distribution might not  satisfy the 
inequalities (3), or even worse, there may even be no solutions at all. If  
the e i are chosen too big, the inequalities provide us with very little in- 
formation about the object to be reconstructed. 

There is also another practical problem. If there is one solution to the 
inequalities (3), then there are usually many solutions, and the question 
arises which one to choose. We defer the discussion of this problem un- 
til the next section. In this section we restrict our attention to finding 
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an algorithm which, given a set of  inequalities (as in (3)), will find a 

solution, if there is one, to this set of  inequalities. 
There are already algorithms in the published literature to do exactly 

this. In fact our method is based on a finitely convergent relaxation 
procedure of  Motzkin and Schoenberg [ 18]. An explanation why we pre- 
fer our procedure will be given after the algorithm is described and our 
main theorem is proved. 

In our description of  the algorithm and in the proof  we use standard 
mathematical  notation. In particular, given two N 2-dimensional vectors 

N 2 
a = (a 1 . . . . . .  aN2 ) and x = (x 1 . . . . .  xlv2 ), we use (a, x )  to denote Zj=la j xj, 
and we use llxll to denote x/(x, x). Our algorithm produces a sequence 
x °,  x 1, x 2 . . . . .  of  N2-dimensional vectors. For the purpose of  the math- 
ematical discussion, x ° is arb i t rary .  

x 0 arbitrary~ 
k=-I / 

J i--O ] 
f=O 

k=k.  I 
i=~*1 [ 

r k = bi-(aj,xk) J 

" J" N 
I [Is rk>2¢ ? Is¢¢rk<2e ';' Is e~rk~ 2e ~ N 

I I 

Fig. 2. Flowchaxt of the mathematical algorithm for the reconstruction of objects from their 
projections. 
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Fig. 3. Geometrical interpxetation of the mathematical algorithm described in Fig. 2. 

The algorithm to find a solution of (3), assuming the normalization 
condition (2), is described by the flowchart in Fig. 2. 

What is described in this flowchart has a simple geometric interpreta- 
tion. Each of the equations in (1) determines a hyperplane in an N 2-di- 
mensional space. A point x is in the ith hyperplane if and only if it satis- 
fies the ith equation. Similarly, each of  the inequalities in (3) determines 
a "hyperslab" of  thickness 2e  i (see Fig. 3). 

The vectors x ° ,  x 1, x 2, . . . .  x k . . . .  are produced as follows, x ° is ar- 
bitrary. Then one-by-one we consider the inequalities in (3) for 1 ~< i < M .  

The variable f is a flag whose purpose will become clear below. In pro- 
ducing x k÷l from x k, we distinguish between three cases (see Fig. 3). 

(i) x k is more than 2 e  i away from the i th hyperplane. In this case, 
x/~+1 is obtained by dropping a perpendicular from x k onto the/th hy- 
perplane. 

(ii) x/c lies outside the ith hyperslab, but not more than 2 e  i from the 
central hyperplane. In this case, x k÷l is obtained by reflecting x/~ in the 
nearer face of  the hyperslab. 
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(iii) x k lies within the hyperslab. In this case, x k+ 1 = X k" 

In the first two cases we set the flag f equal to  1, to indicate that a 
change has been made. We repeat this process for all the inequalities in 

(3). When we are done, f = 0 if and only if only (iii) has been used, 

which happens if and only if all the inequalities are satisfied. In this case 

we stop, for we have found a solution to (3). Otherwise, we set f equal 

to 0 again, and we start the same procedure with the first inequality. 

Our principal result is that this procedure is guaranteed to terminate 

with a solution to (3), provided only that the e i are large enough. 

Theorem. I f  the  se t  K o f  all p o i n t s  w h i c h  sat is fy  the  inequal i t i es  (3)  is 

f u l l  d i m e n s i o n a l  (L e., n o t  a s u b s e t  o f  any  h y p e r p l a n e ) ,  t hen  the  a lgor i t hm  

d e s c r i b e d  a b o v e  converges  in a f i n i t e  n u m b e r  o f  s t eps  to an e l e m e n t  o f  K. 

Proof. If  the algorithm stops, the x k at that time is clearly an element of  
K. Otherwise, the algorithm provides us with an infinite sequence 
x °, x I , x 2 .... o f  points. We Shall now show that the latter case is impos- 

sible, since it leads to a contradiction. 
It is easy to prove (see Fig. 3) that for any point  z in the i th hyperslab 

it is the case that 

IIx k+l -z l l  ~ llx k -zl l .  (4) 

(Here we assume that for the k th step in the algorithm the i th hyperslab 

is used.) Since K is a subset o f  all the hyperslabs, the inequality in (4) 

holds for all points z in K and for all k. From this fact one can prove 

(see, e.g., [18, Lemma 1, Case 1 ] that if the sequence x k is infinite, then 
it converges to a point x*. Clearly, x* is in K. 

Consider a spherical neighborhood N of x* ,which is such that among all 

the hyperplanes of  the form (a i, x )  = b i + ce i (1 ~< i ~< M, c ~ { - 1 , 0 ,  1}) 
only those intersect N which go through x*. Since x k converges to x*, 
there exists a t such that if  k i> t, then x k ~ N. 

Assume k ~> t and x k+l 4: x k.  By the choice of  N and t, x k + l  must be 
a reflection of  x k in some plane through x*, and so IIx k+l - x *  II = 
IIx k - x*  II. It follows that for all k >1 t, IIx k - x*  II = [Ix t - x * [[. Since the 

x k converges to x*, this implies that x k = x* for all k ~> t, contradicting 
the assumption that the algorithm does not  halt. 
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This completes the proof  of  the Theorem. We wish to complete this 
section with a brief discussion of the reasons for proposing the algorithm 
described above. After  all, it is known (see, e.g., [18] ) that if  we used 
reflection in both cases (i) and (ii) above our theorem would remain 
valid. 

A general reason for not using reflection at every step is that Goffin 

[8, p. 115] has found that for rapid convergence it is a good strategy to 
use projections when we are far away from the hyperslab and reflections 
when we are near it. 

More specifically, there are good intuitive reasons in the case of  re- 
construction not to use reflections all the time. Each step in the 
algorithm is a readjustment of  the densities in those pixels which are in- 
tersected by the ray under consideration. If the density along the ray of  
the distribution proposed after the k th step is higher than the measured 
density along that ray, it is perfectly reasonable to lower the densities in 

the pixels, but it makes no sense to lower them so much that the density 
along the ray after the (k + 1)st iteration would actually become lower 

than the measured density. Intuition indicates and experience confirms 

that this would lead to distributions which will look "noisy"  with a salt 
and pepper type of  noise. We shall return to this point in the next section. 

Finally, we wish to point out  why our algorithm does not  use pro- 
jections onto the hyperplanes in every step. Such an algorithm has been 
proposed by us [9, see also 14]. It is clear that in the case when the 
equations (1) are inconsistent, such an algorithm cannot possibly con- 
verge. However, if we look only at every M th x k (i.e., the sequence 
x M, x 2M, x 3M, ...), this sequence does converge [14, Theorem 2U]. 

The problem is, as was pointed out by Gilbert [7] and confirmed by us 
[ 14], that the x* it converges to is usually a bad reconstruction in case 
of  noisy data. In [ 14], it is demonstrated that early values of  x k are 
reasonably good reconstructions, and a method for selecting an appro- 
priate k is proposed. However, as we shall see in the last section, for 
noisy data the algorithm proposed in this paper is consistently better 
than the algorithm proposed in [ 141. 

3. Computer  implementation 

The algorithm we have implemented on the computer  is based on but 
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is not  identical to the mathematical algorithm described in the last sec- 
tion. There are a number  of  practical reasons for this. 

First of  all, it was found that in general the algorithm converges very 
rapidly. In particular, even though the finite convergence may have 
taken as many as 20M-30M steps, there was insignificant difference be- 
tween the final result and the result obtained after the first 3M-4M 
steps. It makes therefore no sense computationally to run the algorithm 
until finite convergence is achieved, it should be stopped much earlier. 

In trying to insure that our final result is a good reconstruction, our 
computer  algorithm incorporates the following features: 

(i) an appropriate choice o f x  °, 
(ii) variable tolerance, 
(iii) constraining. 

We now discuss these features one by one. 

It is clear that the choice of  x ° is important.  It is intuitively reason- 

able and easy to show that, in general, the nearer x ° is being to a so lu-  

tion of  (3), the faster the algorithm converges. Further,  the choice o f x  ° 
influences the final result. This brings us back to the question: which of  

the many solutions of  the inequalities (3) we should be aiming at? 
It has been proposed in [6] and further explained in [ 14] that it is 

reasonable to look for the solution with smallest variance, since such a 
solution is least likely to contain artifacts not  forced on us by the data. 
It is shown in the Appendix of  [ 14] that mathematically this is equiv- 
alent to looking for the minimum norm solution, i.e., the x for which 
Ilx II is as small as possible. Although our algorithm does not  actually find 

the minimum norm solution, we can insure that the solution we find is 
nearly minimum norm, by starting with an x ° which has a small norm, 
and approaching our solution by making small changes in each step. 
This is a reason why reflection is not  used in every step of  the algorithm. 

It is also a reason for using variable tolerance. In order to insure that 
the changes in the individual steps are small, it is reasonable to have a 
high tolerance in the early steps of  the execution of  the algorithm and 
reduce the tolerance as we go along. It is sufficient to consult Fig. 3 to 
see that this will have the desired effect. 

The third feature we wish to discuss is the making use of  the fact that 
in nearly all application areas the density values x] cannot be negative. 
In many cases it is also known that x/ cannot be greater than a certain 
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Fig. 4. Flowchart of the computer implemented algorithm for the reconstruction of objects 
from their projections. 

positive number. Such information gives rise to additional inequalities 
which can be made use of  during the execution of  the algorithm in vari- 
ous ways. For  example, one may simply set xl equal to 0 whenever its 
value becomes negative. However, there are some bet ter  ways, see for 
example the ART2 algorithm in [14].  

There are a number  of  ways of  incorporating these principles into an 
algorithm. The flowchart in Fig. 4 describes the method used in our 
tests and comparisons described in the next section. In this implementa- 

tion, x ° is the output  of  the so-called summation method,  as described 

and demonstrated in [12].  This is a not  very accurate but  extremely 

fast reconstruction method which produces very smooth reconstruc- 
tions (see [12]) .  Hence it is a cheaply obtainable and good starting 
point  according to the criteria given above. 
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We also make use of the notation that if x --- (x  1 . . . . .  XN2 ), then 2 ' ;  
('2' 1 . . . . .  XN2 ), where for 1 <~ j <~ N 2, 

0 i f x ] <  0, 
~ . =  x!  if0~<x]~< U, (5) 

U ifxj > U, 

where U is the maximum possible value of the density in the object. 
Our estimate of the distribution is not the vector x at the time the 
algorithm stops, but rather the corresponding vector ~. We also drop 

the superscript k in the description of the algorithm. 6 i denotes the 
variable tolerance.  

In this implementation the algorithm (starting with the output of the 

summation method) runs for 3M steps. The tolerance 6i reduces from 
4e i in the first M steps to 2e i in the second M steps, to e i in the last M 
steps. Constraining is taken care of by using 2 ~ instead o fx  at the appro- 
priate point (see [ 14] for a justification). 

In spite of the very large size of the systems which one may have to 
deal with in many of the application areas, the computer algorithm de- 
scribed in Fig. 4 can obtain solutions surprisingly cheaply. The most 
time consuming part in the algorithm is the taking of the inner product 
(a i, '~), which is in the inner loop of the flowchart. However, due to the 
sparseness of the ai, this is not really very expensive. In fact, in our im- 
plementation the a i are not stored at all, but its nonzero components 
are recalculated every time from the simple geometry which determines 
the a i (see [9, Appendix A] for a similar case). In the X-ray reconstruc- 
tion application we are further helped by the fact that nearby X-rays 
give approximately the same information, and so by an appropriate or- 
dering of the equations one need not even do as many as 3M steps. Thus 
the reconstruction shown in Fig. 5, which involved over 4000 unknowns 

(N = 64) and over 10 000 equations, can be carried out for a cost which 
is of the order of one dollar. 

Finally, we wish to remark that the principles described in this paper 
have also been made use of in another computer algorithm which was 
especially designed to deal with binary distributions. Such distributions 
are encountered in electron microscopy and some areas of medicine. The 
performance of that algorithm has been reported on in [ 13]. 
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Fig. 5. Reconstruction of a cross section of a canine heart filled with barium paste. The ring 
inside one of the ventricles is an inserted catheter. The output has 642 pixels. The X-ray data 
has been collected using divergent rays from a source which has been moved around a circle in 
35 equal steps which altogether spanned 183.6 degrees. Each position of the source gave rise to 
300 measurements (M = 10 500), and the reconstruction shown has been obtained after 8 400 
steps, i.e., before all the data has been used. The redundancy of nearby X-rays has been made 
use of by estimating the (reducing) tolerance on the basis of local variations in the projection 

data. 

4. Results 

The method described in this paper has been implemented and used 
for the reconstruction from X-rays of cross sections of a beating heart 
(see [ 16], [ 17] or [21] for more detailed reports of this application), 
as well as for reconstructions from ultrasound projections [ 11 ]. A re- 
construction like the one shown in Fig. 5 gives one some idea of  the per- 
formance of  the method, especially since the original heart can be sliced 
and the reconstruction may be compared to the original (see [ 16, 17, 
21 ] ). However, for a precise evaluation of the algorithm, it appears to 
be more appropriate to study its performance on test patterns and com- 
puter generated data, provided that the data generation is done careful- 
ly to reflect the type of situation which may arise in applications. 

We have therefore chosen 4 test patterns, computer  printer produced 
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Fig. 6. A 64 × 64 i e c o n s t r u c t i o n  o f  the heat  dis t r ibu t ion  descr ibed  in equa t i on  (6). All recon-  
s t ruc t ions  are f r o m  the same data set: 16 pro jec t ions  in a full  range  wi th  parallel  rays  and  
Gauss ian  wh i t e  noise  wi th  10% s t anda rd  deviat ion.  

(a) Original  d i s t r ibu t ion .  
Co) R e c o n s t r u c t i o n  us ing  A R T 2 .  
(c) R e c o n s t r u c t i o n  us ing  SIRT.  
(d) R e c o n s t r u c t i o n  us ing convo lu t ion .  

half-tone displays of  which are shown in Fig. 6a, and Fig. 8a, b, c. These 

test patterns have been used by us before to compare algorithms [ 15]. 
All but the last (Fig. 8c) have been originally proposed by other authors. 
For example, the pattern of  Fig. 6a has been used by Sweeney [22] in 
his holographic interferometric reconstruction studies as an example of  
a likely distribution of  heat in a cross-section of  a liquid which is being 
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Fig. 7. Reconst ruct ion of  the heat  distr ibution of  equat ion (6) using ART3 from the same data 
as in Fig. 6. Four  stages of  the  reconstruct ion process are shown: at k = 0, M, 2M and 3M (final 
result). The actual mean  density is the same at all four  stages but ,  due to its rather tow value 
and the fact tha t  below a certain positive threshold the  computer  printer s imulated half-tone is 

blank, the  earlier stages appear to have a lower mean  density. 

heated by two sources. The underlying equation is of the form 

f i x ,  y )  = 0.9 e x p { - O . 5 [ x  2 + ( y  - 0.5)21} 

+ 0 .6  e x p { - O . 5 [ x  2 + ( y  + 0 . 5 ) 2 1 ]  . (6) 

As opposed to the heart reconstructions, where the X-rays were di- 
verging from a point source and were assumed to be infinitely thin, our 
simulated data collection was done by parallel rays of  thickness approx- 
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imately the size of  the sides of  the pixels. Such data collection (strip in- 
tegration) is appropriate for the applications in electronmicroscopy, 

rhdio-astronomy, etc. 
The data collection was done by numerically integrating the given 

distribution within the strips. (For  the purpose of  numerical integration 
a very fine digitization was used, in which each pixel was further sub- 
divided into 112 = 121 smaller pixels.) After  this the data was made 
noisy, by multiplying by a random number  from a normal distribution 
with mean 1 and standard deviation s, where s was either 0.03 or 0.1. 

in all our reconstructions we have chosen 

e i = ( s  + 0.01)bi, (7) 

i.e., the tolerance was slightly larger than one standard deviation of  the 
noise. The algorithm used was precisely the one given in Fig. 4. We shall 
from now on refer to this algorithm as ART3, since it is clearly a variant 
of  the Algebraic Reconstruction Techniques proposed in [9]. The 
working of  ART3 is demonstrated in Fig. 7. This is a reconstruction of  
Sweeney's pattern (Fig. 6a) from 16 sets of  parallel rays (i.e., 16 projec- 
tions) equally spaced between 0 ° and 180 °. Since there are 642 pixels 
and a projection contains 64 to 127 rays, there are less than half as 
many equations than unknowns. In addition, the data was noisy with 
standard deviation 10% (i.e., s = 0.1). In spite of  this, a reasonable re- 

construction was achieved, as can be seen from Fig. 7, which shows four 

stages of  the reconstruction process, at k = 0, M, 2M and 3M (the final 
result).. 

In comparison, Fig. 6b, c, d shows the reconstructions from the same 
data using the ART2 method of  [ 14], the SIRT method of  [7] and the 
convolution method of  [20],  respectively. (All three methods are de- 
scribed as we implemented them in [15] .) In considering the rather bad 
quality of  the reconstruction in the convolution method,  one should 
bear in mind that the result may be improved by filtering the noisy 
data, a device which we have not  used. Ten iterations of  the SIRT 
algorithm were used (see [7] ). 

Clearly, ART3 gives in this particular situation a better reconstruction 
than either ART2 or the convolution method,  but  not  as good a recon- 
struction as SIRT. It is in the nature of  the SIRT algorithm to handle 
whRe noise very effectively (see [15]).  However, the SIRT algorithm 
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Table 1 
Normalized root mean square distance of reconstructions from original patterns 

Pattern # views Range Noise ART3 ART2 SIRT CONV 

full 1 0  0.34* 0.52* 0.24* 1.32" 
Fig. 6a 16 -22.5 °, 22.5 ° 10 0.46 0.77 0.42 3.09 

full 3 0.42 0.43 0.43 0.64 
10 full 10 0.61 0.70 0.54 1.19 

Fig. 8a full 3 0.29* 0.44 0.37 0.26 
25 full 10 0.60 0.91 0.45 0.66 

6 full 10 0.22* 0.30 0.27 0.86 
Fig. 8b 12 full 10 0.24 0.41 0.24 0.67 

3 0.31 0.34 0.45 0.47 
Fig. 8c 8 -35° '+35°  10 0.33* 0.33 0.46 0.59 

Best 4 0.5 4.5 1 
Worst 0 2 0 8 
Difference 4 -1.5 4.5 - 7  

costs over twice as much to run. For this reconstruction, the ART3 
algorithm was not only better, but also somewhat cheaper than the 
ART2 algorithm. The convolution method is the cheapest of  the four 
(less than half the cost of  ART3), but in this case the convolution meth- 
od gave such a bad reconstruction that the saving in cost is immaterial. 

Since the relative timings described above are typical for all experi- 
ments, we shall report only on the accuracy of  reconstruction in the 10 
experiments we have carried out. In Table 1 we tabulated the values of  

= N2 t 1/2 (x i _~/)2 
6 

N2 (8) 

i__~l (Xi--X) 2 

where x i and ~i :are the average densities in the i th pixel of  the test pat- 
tern and reconstruction, respectively, and 

N 2 

is the average density of  the pattern. 6 is the normalized root mean 
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Fig. 8. Some reconstructions using ART3. In all patterns 25 × 25 pixels ate used. 
(a) A test pattern proposed in [7] .  
(b) A test pattern proposed in [8] .  
(c) A test pattern proposed in [6] .  
(d) Reconstruction of  (a) from 25 projections in a full range with parallel rays and 3% noise. 
(e) Reconstruction of  (b) from 6 projections in a full range with parallel rays and 10% noise. 
(f) Reconstruction of(c)  from 8 projections in a 70% range with parallel rays and 10% noise. 

square distance of  the reconstruction to the original. The appropri- 
ateness o f  such a measure has been justified in [5] .  In all our experi- 
ments the angle o f  the views were equally spaced in the range specified. 
Full range means that the views are equally spaced between 0 ° and 180 ° . 
The noise is the value o f  s as explained above (i.e., 3% noise means s = 
0.03). 

At the bottom of  the table it is indicated in how many of  ten experi- 
ments a~particular method was the best or the worst, and the difference 
between these two numbers is also given. Although the exact values of  
these figures are not  to be taken too seriously, the general conclusion 
that SIRT and ART3 are the best, convolution is the worst and ART2 
is somewhere in between for this kind of  noisy data seems to be well 
established. One must however bear in mind the possible improvement 
to the convolution method by filtering, especially in view o f  its inex-  
pensiveness and its excellent performance on noiseless data (see [ 15] ). 
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For example, suing the Fourier space cut off proposed by Bracewell and 
Riddle [2], which is lower than the one discussed in [20] and [15], 
we obtain the values 6 = 0.60 and 0.44 for reconstructions of Fig. 6a 
from 10 and 25 views and 10% noise. ART3 can be considered to be 
preferable to SIRT because of the reduced cost. 

Finally, on Fig. 8d, e, fwe show some reconstructions using AR•3 on 

the patterns in Fig. 8a, b, c. The values of 6 for the reconstructions 

which are shown in this figure are marked by an asterisk in Table 1. 

5. Conclusions 

The method proposed in this paper can be used to produce inexpen- 
sive and accurate reconstructions from noisy X-ray projections. It has 
been implemented and found useful in the reconstruction of a beating 
heart. It can similarly be used in other application areas of the recon- 
struction problem. 
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