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A branch and bound algorithm is presented for the problem of scheduling n jobs on a single 
machine to minimize tardiness. The algorithm uses a dual problem to obtain a good feasible 
solution and an extremely sharp lower bound on the optimal objective value. To derive the dual 
problem we regard the single machine as imposing a constraint for each time period. A dual 
variable is associated with each of these constraints and used to form a Lagrangian problem in 
which the dualized constraints appear in the objective function. A lower bound is obtained by 
solving the Lagrangian problem with fixed multiplier values. The major theoretical result of the 
paper is an algorithm which solves the Lagrangian problem in a number of steps proportional to 
the product of n 2 and the average job processing time. The search for multiplier values which 
maximize the lower bound leads to the formulation and optimization of the dual problem. The 
bounds obtained are so sharp that very little enumeration or computer time is required to solve 
even large problems. Computational experience with 20-, 30-, and 50-job problems is presented. 

1. Introduction 

The  o n e - m a c h i n e  schedu l ing  p r o b l e m  requ i r e s  a spec i f i ca t ion  of  the  o r d e r  in 
w h i c h  n j o b s  are  to be  p r o c e s s e d  on a single mach ine .  The  p r o c e s s i n g  t ime and 
due  da te  of  e ach  j o b  are  k n o w n  in tegers ,  and  a j o b ' s  t a rd ines s  is the  a m o u n t  by  
w h i c h  its c o m p l e t i o n  t ime  e x c e e d s  its due  date .  A n  op t ima l  so lu t ion  is a s e q u e n c e  
fo r  p e r f o r m i n g  the j obs  in wh ich  the  sum of  the  t a rd ines s  ove r  all j obs  is 
min imum.  This  difficult  c o m b i n a t o r i a l  p r o b l e m  has  a long h i s to ry .  A l g o r i t h m s  
have  b e e n  p r o p o s e d  b y  E l m a g h r a b y  [4], E m m o n s  [5], He ld  and K a r p  [14], L a w l e r  
[19], and  S r in iva san  [24]. B a k e r  and  Mar t in  [1] r e p o r t  c o m p u t a t i o n a l  e x p e r i e n c e  
us ing  s o m e  of  t he se  a lgo r i thms  on p r o b l e m s  of  up to 15 jobs .  

W e  will  d e s c r i b e  an a lgo r i thm for  the  o n e - m a c h i n e  schedu l ing  p r o b l e m  which  
has  p e r f o r m e d  r e m a r k a b l y  wel l  on a s a m p l e  of  large and  difficult  p r o b l e m s .  The  
h e a r t  of  the  a lgo r i thm is a m e t h o d  for  ob ta in ing  an e x t r e m e l y  sharp  lower  b o u n d  
on  the  op t ima l  o b j e c t i v e  va lue .  This  l o w e r  b o u n d  is u sed  fo r  f a t h o m i n g  in a b r a n c h  
and b o u n d  p r o c e d u r e .  The  b o u n d  is o b t a i n e d  us ing  a dua l  p r o b l e m  of  the  t y p e  
d e s c r i b e d  in F i s h e r  [6] fo r  the  m o r e  gene ra l  r e s o u r c e - c o n s t r a i n e d  n e t w o r k  
schedu l ing  p r o b l e m .  In  this  dua l  p r o b l e m  we  r ega rd  the  mach ine  on wh ich  j obs  are  
to be  p r o c e s s e d  as  i m p o s i n g  a c o n s t r a i n t  fo r  e ach  t ime in t e rva l  [t, t + 1] fo r  
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t = 0, 1, 2 . . . . .  A dual variable is associated with each of these constraints and 
used to form a Lagrangian problem in which the dualized constraints appear in the 
objective function. In reference [5] Emmons has given results for determining a 
partial ordering of the jobs which is satisfied by at least one optimal solution. The 
feasible region of the Lagrangian problem is the set of non-negative integer 
starting times for the n jobs which satisfy the Emmons partial ordering. Solution 
of the Lagrangian problem with any fixed values for the dual variables produces a 
lower bound on the optimal objective value. The dual problem is to find values for 
the dual variables for which the lower bound is maximum. Our objective in this 
derivation is to obtain a Lagrangian problem which contains much of the 
information in the constraints of the original problem and yet is easy to solve. The 
major theoretical result of this paper is an algorithm which solves the Lagrangian 
problem in a number of steps proportional to the product of n 2 and the average 
job processing time. As a practical matter, the magnitude of the average 
processing time can always be controlled if one is willing to accept a sufficiently 
coarse unit of measure for process times. Good or optimal solutions to the dual 
problem are obtained using a subgradient method of Held, Wolfe and Crowder 
[16]. This method uses the Lagrangian algorithm as a subroutine. 

Because of the underlying nonconvexity of the one-machine scheduling prob- 
lem, the optimal value of the dual problem may not equal the optimal value of the 
one-machine problem and we must resort to branch and bound to obtain the 
optimal solution. However, the dual bounds are sufficiently sharp that the optimal 
solution is usually obtained with little, if any, branching. We will use a particular 
50 job problem as an illustrative example throughout the paper. (This problem is 
described in the third line from the bottom of Table 3 in Section 5.) Our 
computational experience with this problem is typical. The optimal value is 1464 
and the lower bound obtained from the dual problem is 1459. Even though this is 
one of the more difficult of the problems we solved (only 5 of 75 problems had 
longer solution times), the enumeration tree contains only 30 nodes and is given in 
Section 4 in its entirety. 

Generally, we have focused on large problems in our computational work. A 
recent text on sequencing theory ([2], p. 65] suggests that the solution of problems 
with more than 20 jobs might be prohibitively expensive with existing algorithms. 
The algorithm given here has been applied to a sample of 75 problems equally 
distributed over 3 problem sizes, n = 20, 30, and 50. Optimal solutions were 
obtained for all problems on a 360-67 in average times of 2.82, 10.08, and 63.49 
seconds respectively for the three problem sizes. The lower bound obtained from 
the dual problem was on average equal to 99.6% of the optimal value. Addition- 
ally, a feasible solution is generated each time a Lagrangian problem is solved by 
sequencing jobs in order of their starting times in the Lagrangian solution. The 
value of the best feasible solution generated before any branching was on average 
equal to 100.2% of the optimal value. Using the algorithm in this way to generate 
feasible solutions would appear to allow the practical solution of very large 
problems since a comparitively small amount of time is required to obtain these 
solutions. 

The general approach which we use is applicable to many combinatorial 
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problems. General discussions of the use of dual problems in discrete optimiza- 
tion are given in [7] and [11]. Specific applications include the traveling salesman 
problem [15], the general resource-constrained network scheduling problem [6] 
and the general integer programming problem [8]. The work of Held and Karp was 
initiative in this area. Our approach for obtaining lower bounds could also be used 
for the expanded scheduling problem treated by Gelders and Kleindorfer  [10]. One 
purpose of this paper is to demonstrate the value of this dual approach for other 
combinatorial problems, particularly for the resource-constrained network 
scheduling problem. 

Shwimer [23] and Rinnooy Kan et al. [21] have given algorithms for a more 
general problem in which an importance weight wj is associated with each job and 
we are required to minimize the weighted sum of the tardiness over all jobs. The 
algorithm given here is applicable to this problem with minor changes. These 
changes will be noted at the appropriate places in the paper. 

Section 2 gives results from [5] for ordering jobs and discusses their use in this 
paper. In Section 3 the Lagrangian and dual problems are derived and algorithms 
for their solution presented. Section 4 gives the branch and bound algorithm. 
Section 5 contains a discussion of our computational experience. 

2. Reduction and sequencing 

Common sense would lead us to certain suppositions about the order of jobs in an 
optimal solution. For example, we would expect  a job with a very small due date 
to precede one with a very large due date. In [5] Emmons pursues this type of 
reasoning formally and extensively to develop conditions under which one job 
precedes another in some optimal solution. Let  pj and dj denote the given process 
time and due date of job j, and let T = E;'-j p~. Let/3j denote a set of jobs which are 
required to precede job j, a; the corresponding set {i: j E/3i} of jobs which are 
required to follow job ] and a~ the complement  of o~j with respect  to {1 . . . . .  n }. 
These sets are initially empty and are augmented by successive application of 
Theorem 2.1. 

Theorem 2.1. Job j precedes job k in some optimal solution if any of  the conditions 
(2.1)-(2.3) are satisfied. 

Pj <~Pk and dj <~max(pk + ~. pi, dk). (2.1) 
i ~ k  

Pj > Pk, dj ~< dk, dk + Pk ~ ~ p.  (2.2) 

& >- ~, p,. (2.3) 
iE~) 

This theorem contains the results of Emmons with some minor extensions. 
Theorem 2.1 is also valid for  the weighted tardiness problem if we simply append 
the condition wj t> wk to (2.1) and (2.2). The theorem would then give the results 
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developed in [21]. The theorem can be proven by assuming the existence of an 
optimal solution in which job k precedes job j and showing that if (2.1), (2.2) or 
(2.3) are satisfied the order of j and k may be reversed without increasing 
tardiness. See reference [5] or [21] for details. 

By reversing the roles of j and k in Theorem 2.1 we may give a second test for k 
to precede j in an optimal solution. In general three possibilities can occur. 
Precisely one of the two tests can be satisfied, both can be satisfied (the order of j 
and k is irrelevant), or neither can be satisfied. It is the last possibility which 
prevents us f rom using Theorem 2.1 to give a polynomially bounded algorithm for 
the minimum tardiness problem. 

Theorem 2.1 is used here in two ways. First, following essentially the procedure 
suggested by Emmons,  we try to reduce the size of the problem by finding a job 
which precedes or succeeds all other jobs in an optimal schedule. Such a job may 
be placed first or last and removed from the problem. When no further progress 
can be made with this reduction algorithm we use the following sequencing 
algorithm to create a partial ordering of the jobs. Hencefor th  we assume n and T 
have been modified to reflect any problem reduction which has taken place. 

Sequencing algorithm 

Step 1. Initialize /3i = ~, i = 1 . . . . .  n and J = {1 . . . . .  n }. 
Step 2. Select j to be the index in J with minimum value of Z ~ i  pl. If there are 

ties, select the minimum index. Set J = J - {j}. (Here and elsewhere in the paper 
for general sets A and B we let A - B denote the set {i E A: i ~  B}.) 

Step 3. For each k ¢  j for which k~/3j  and j ff~/3k, test the conditions of 
Theorem 2.1 for j to proceed k. If they are satisfied then set/3~ =/3~ U {j} U/3j for 
i C {k} U ak. If j has been placed in any/3k during this execution of step 3, repeat  
the step. Otherwise, go to step 4. 

Step 4. If J ¢  ~, go to step 2. Otherwise go to step 5. 
Step 5. If no elements have been added to any set/3~, i = 1 . . . .  , n since the last 

initialization of J, stop. Otherwise, reinitialize J = {1 . . . . .  n} and go to step 2. 

The selection rule in step 2 is intended to enhance the effectiveness of Theorem 
2.1 by increasing the likelihood that/3k will be large in (2.1) and ~} small in (2.2) 
and (2.3). 

The reduction and sequencing procedures will be illustrated with the example 
cited in Section 1. This example is described by the third line from the bottom of 
Table 3 in Section 5. The process times for the example are given by 

( 3 , 4 , 5 , 4 , 3 , 4 , 6 ,  1,3,5,  1,3, 1, 1, 1 , 2 , 2 , 3 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 ,  

5 , 5 , 5 , 5 , 6 , 6 , 6 , 7 , 7 , 7 , 7 , 7 , 8 , 8 , 8 , 8 , 8 , 9 , 9 , 9 , 9 ,  10, 10, 10) 

and the due dates by 

(67, 67, 69, 72, 73, 74, 74, 76, 78, 78, 80, 81, 99, 103,108, 84, 107, 

105,86,98,103,106, 107,109, 112, 115,101,106, 107,108,80,84, 115, 

83, 92, 97,103, 114, 76, 96, 100, 105, 114, 83, 93,104, 105, 66, 76, 87). 
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When the reduction algorithm is applied to this problem the first 12 jobs are placed 
at the beginning of the solution in the order they appear above and the last job is 
placed at the end. L e t / ~  C_/3~ denote the set of immediate predecessors of job i. 
These are jobs j E/3~ such that there exists no l E/31 with j E/3~ also. Further c~ 
will denote the immediate successors of i and is given by & = {j: i @/~s}. The sets 
/~ obtained by the sequencing algorithm for the 37 remaining job s (reindexed from 
1 to 37 in the order they appear above) are represented by the directed graph in 
Fig. 1. In this graph vertices correspond to jobs, job numbers are shown inside 
each vertex,  and an edge exists from i to j if and only if i E/~.  For  the moment,  
ignore any distinction between solid and dashed edges. To make sense such a 
graph must be acyclic. This property is guaranteed by the way in which the sets/3~ 
are updated in step 3 of the sequencing algorithm. 

3. Derivation and solution of the dual problem 

The precedence sets/31 and ai imply constraints which may be added to the one 
machine scheduling problem without loss of optimality. These constraints will 
make the problem more suitable for  our purposes. Let  x, denote the start time of 
job i and x = (x, . . . . .  x,). A lower bound on x~ is given by 

ai = Z PJ. 
i E 13i 

It is easy to show that in an optimal solution jobs are processed consecutively 
with no intervening idle time. This means that the last job is completed at time T 

i I / / 

Fig. 1. Precedence graph for the example. 



234 M.L. Fisher /A dual algorithm for the one-machine scheduling problem 

and an upper bound on xg is given by 

b i = T - p ~ - ~  pj. 
j ~cq 

In terms of x, the sets c~i imply constraints of the form xi ~> x~ + p~ for ] ~ &. If 
all sets cTi satisfy I&l ~< 1 then a very efficient algorithm can be given for optimizing 
over the set of x which satisfy these constraints. To obtain sets with this property 
we simply delete a sufficient number of elements from each &. Let A,  C_ &, 

i =  1 . . . . .  n denote sets obtained by such a deletion so that IAi[ ~< 1. Let B, = 
{j: i ~ Aj} denote the corresponding predecessor sets. For example, if the dashed 
edges in Fig. 1 are deleted, then the successor sets defined by the remaining graph 
have the required property. Of course there are many sets of edges which could be 
deleted to obtain the required property. In our computational work edges were 
removed by a rule which preserved longest paths in the network. 

Let 

X = { x :  a~ <~ x~ <~ b~, xj >~ xi + p~ 

for ] ~ A~, x~ integer, i = 1 . . . . .  n }. 

While X expresses some of the feasibility requirements of the problem, in general 
an x ~ X will not be feasible. To obtain the additional constraints required for 
feasibility we define for x E X  and integer t E[1 ,  T] the set S ' ( x ) =  
{i: t - pl ~< x~ ~< t - 1} of jobs in process during the interval It - 1, t] and let g , ( x )  = 

IS, (x)l, the number of jobs in process during this interval. The fact that jobs are 
processed continuously in an optimal schedule means that we can require 
gt (x) = 1 for a feasible schedule and the problem of minimizing tardiness may be 
expressed as 

n 

min ~ max (xi + pl - d,, 0) (3.1a) 
x ~ X  i=1 

g , ( x )  = 1, t = 1 . . . . .  T. (3.1b) 

Introducing dual variables u = (u l  . . . . .  u r )  associated with (3.1b) we define the 
Lagrangian function 

T 

L (x, u) = 2 max (xl + pi - d~, 0) + ~ u,gt ( x )  

xl +Pi / 

i~1 t =x i+ l  

and the Lagrangian problem 

w ( u )  = min L ( x ,  u )  u,. 
x E X  t ~ l  

It is well known that w (u) lower bounds the optimal value of (3.1) for any u, a fact  
which is easily shown by letting x * E X denote an optimal solution for (3.1) and 
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observing that 

T 

w ( u ) < ~ ( x * + p , - d , , O ) + ~  u , ( g , ( x * ) - l ) = ~ ( x * + p ~ - d , , O ) .  
i ~ l  t ~ l  i = l  

The best lower bound is given by those u which solve the dual problem 

max w(u) .  
u 

Note that if we regard u, as a price charged for using the machine during the 
interval [t - 1, t] then the objective function of the Lagrangian problem has a very 
natural interpretation. The term for each job is simply a direct cost (the tardiness 
of the job) plus a charge u~ for machine usage for each period t during which the 
job is in process. 

Lawler [18] has shown that a transportation problem may be used to obtain 
bounds for the one-machine scheduling problem. Reference [18] describes an 
allowable class of objective function coefficients for the transportation problem 
which give valid bounds. It may be shown that the optimal value of the dual 
problem given here dominates the transportation problem bound for any coeffi- 
cients in the allowable class. In particular it dominates the Gelders-Kleindorfer  
[10] bound obtained from a specific set of coefficients. 

We will first specify an algorithm for solving the Lagrangian problem 
minxE×L(x, u) with u fixed. Then we will discuss solution of the dual problem 
maxu w(u) .  The amount  of computation required by the Lagrangian algorithm is 
proportional to nT. This algorithm and the other results of this section remain 
valid if max (x, + p, - d,  0) is replaced by any function of x~. The algorithm is also 
applicable to the Lagrangian problem derived in [6] for the general resource- 
constrained network scheduling problem. We have found that the algorithm given 
here is much more efficient than the one first given in [6] for  the Lagrangian 
problem and significantly reduced solution times have been obtained for the 
problems solved in [6] by using this algorithm. These results are reported in 
reference [7]. 

Let  /~i denote the set of all predecessors of i, let/3~ = {i} t2/~, and let 
xl +Pi 

L~ (x,, u) - max (x~ + pl - d~, 0) + ~ u,. 
t--xi+l 

Note that 

-2 L(x ,  u) - L~(x~, u). 
i = l  

The algorithm for the Lagrangian problem recursively computes a quantity ci (t) 
for all i and t = 1 . . . . .  T. This quantity will turn out to give the optimal value of a 
partial Lagrangian problem containing all jobs ] with j E/~i and with the 
additional restriction that these jobs be completed by time t. The recursion for 
c~(t) is based on the following facts. If xi < t -p~ in an optimal solution to the 
partial Lagrangian problem then ci(t) = c i ( t - 1 ) .  Otherwise x, = t - p ~  in an 
optimal solution and c~(t) is equal to L i ( t - p ~ ,  u) plus the objective function 
contribution from jobs in/~.  By defini t ion/~ is equal to (_J k~Bi/~k- In Lemma 3.1 
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be low we show tha t  the sets /~k, k ~ B~ are  pa i rwise  dis joint  in wh ich  case  the  
cont r ibu t ion  f r o m  jobs  in/3~ is just  2 k ~ ,  c k ( t - p , ) .  T h e  p r o o f  of  L e m m a  3.1 is 
p rec i se ly  whe re  we  requi re  IA, I ~< 1. 

L e m m a  3.1. I f  j ~ B, and  i ~ Bj, then 13, fq Bi = f). 

Proof .  S u p p o s e  k ~ /~ j  N /~ ,  ] ~ / ~  and i~ /3 i .  Then  as a c o n s e q u e n c e  of the 
definit ion o f /~ j  and/3~ there  exis ts  jl . . . . .  1"~ and il . . . . .  iq such tha t  jl = il = k, 
]p = j ,  iq = i ,  and 

Jl ~ Bj2 . . . . .  jp-1 ~ Bjp, 

il E Bi . . . . . .  iq-1 @ Bi~. 

L e t  F be  the larges t  va lue  fo r  which  ]~ = i~, l = 1 . . . . .  F and note  that  1 ~< f <~ 
rain (p, q).  I f  1 = min  (p, q)  then  ei ther  j E/3~ (1 = p )  or  i ~ /3 j  (1 = q)  which  
con t rad ic t s  our  hypothes i s .  I f  f < rain (p, q) ,  then  [A~I >/2 which  con t rad ic t s  
IA~ [ ~< 1 for  all i. H e n c e  /~j n /3 ,  = ~). 

We  will a s s u m e  tha t  jobs  are indexed  so tha t  B~ C {1 . . . . .  i - 1}. I t  is e a sy  to 
show tha t  such  an indexing exis ts  g iven  the f ac t  tha t  the g raph  defined by  the sets 
B~ is acycl ic .  

Algor i thm for  minxExL(x ,  u)  

Step 1. Init ial ize i = 0. 
Step 2. Set  i = i + l ,  

min c~(t - 1), L~(t - p~, u)  + k~", ck(t - p~) 

ci( t)  = t = ai +pi  . . . . .  bl +p~, 

[ c~(b~+p~) t = b ~ + p ~ + l  . . . . .  T, 
and 

= ~ 0 if c , ( t )  = c~(t - 1) or t = 0, 
3/i(t) 

L 1 o therwise .  

(3.2) 

Step 3. I f  i = n go to 4. O the rwise  go to 2. 
Step 4. W e  now have  cn(T)  = minx~x L(x ,  u). T o  obta in  a solut ion x* for  which  

L(x* ,  u) = c , ( T )  we first set  x* = t * - p n  whe re  t* is the larges t  va lue  fo r  which  
vn(t*) = 1. T h e n  fo r  i = n -  1, n - 2  . . . . .  1 set  

x * = m a x  t - p ~ ,  

s.t. t ~ x * ,  j E A n ,  

v , ( t )  = 1. 
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Each of these problems is feasible because  y~(a~ +p~) = 1 for all i and hence 
t = a~ + p~ is a feasible solution. 

The procedure  for computing c~(t)  is essentially a dynamic programming 
scheme in which states correspond to the pair i, t for  i = 1 . . . . .  n and t = 
0 . . . . .  T. A notable difference with usual D P  recursions is that the optimal return 
at a state i, t is computed  f rom the returns for  several  other states. This variation 
on dynamic programming has been termed nonserial  dynamic programming.  See 
[20, pp. 189-206] for  a general discussion. 

The operat ions of the algorithm consist  entirely of addition, subtraction, and 
comparison.  We will show that  the computat ional  requirements  of the algorithm 
are proport ional  to n T  or n 2/~ where p = T i n  is the average job processing time. 
Clearly steps 1, 3 and 4 require at most  n T  time. The major  parts of step 2 require 
the computat ion of Et~=t_.,+~ u~ for  the evaluation of L~ (t - p~, u) and the computa-  

~ai+P. tion of Ek~B, ck( t  -- pi).  Once . . . .  '+, u, is calculated then subsequent  sums may  be 
obtained recursively with a single addition and subtraction by  

U. = U~ + lit -- Ut-m 
~-=t-pi+l .c=t-pi 

so that this part  of step 2 requires computat ion proport ional  to nT.  Since ]A~ I ~< 1 
for  all i, XT_~ IB, I = EZ11A, I <~ n and computat ion of Xk~B, ck ( t  -- p , )  requires n T  

time. 
The following two lemmas and theorem give a proof  of optimality for  the 

algorithm. This proof  is not a prerequisite for the remainder  of the paper.  In 
L e m m a  3.2 we prove  that  c~(t)  is the optimal value of the partial Lagrangian 
problem described earlier. 

Lemma 3.2. F o r  f i xed  u de f ine  the  f a m i l y  o f  p r o g r a m s  

(3.3i, t a) v~(t) = min ~ Ls(xj ,  u ) ,  

(3.3i, t b) s.t. x~ +p~ <~ t, 

(3.3i, t c) . xi 1> x~ + p~, 

(3.3i, t d) aj ~< xj ~< bj, 

(3.3i, t e) xj integer, 

IEBj,] j~l~, 

f o r  t = O  . . . . .  T a n d  i = l  . . . . .  n w h e r e  by  c o n v e n t i o n  v~ ( t )=o~  i f  (3.3i, t) is 
in feas ib le .  Then  c i ( t )  = v , ( t ) ,  t = 0 . . . . .  T, i = 1 . . . . .  n. 

Proof. Note  that  for  t < a i + p ~  (3.3i, t b) and (3.3i, t d) for  j = i  imply that 
(3.3i, t) is infeasible and vi( t )  = + ~  = c , ( t ) .  For  t /> a, +p~ (3.3i, t) is feasible and 
vi( t ) > - ~ .  

We will establish the l emma for t>~a~ + p~ by induction. For  any i we consider 
two cases,  a~ +p~ ~< t <~ bi +pi,  and bi +p~ < t ~< T and show that if cj(~-) = vj(,r) 
for ~- = 0 . . . . .  t - 1 and ] = 1 . . . . .  n, then c~(t)  = v~(t). 

First consider a, + p~ ~< t ~< b~ + p. Le t  2j, ] E/3~ denote an optimal solution to 
(3.3i, t). Then v i ( t )  = Ej~a, Lj(J~j, u). 
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By definition /3, = ( ~ B , / ~ )  U{i}. By L e m m a  3.1 the sets /3~ for  k ~B~ are 
pairwise disjoint  so 

E L~(X, ,u)=L,(£,u)+ ~ E L~(X~,u). 
J ~ i  k~Bi J~Bk 

First  suppose  £ = t - p ~ .  Then  for  any k ~ B ~ ,  ~ + p ~ t - p ~  so ~, ] ~ / 3 ~  is 
feasible in (3.3k, t -  p~). Thus  by the induct ion hypothes i s  

ck(t--p,)<~ ~ Lj(~i,u). 

If 

c~(t -p~)< ~ g~(x~, u) 

for  some k ~ B~, then there  is an ~i, J ~/3~ for  which  

L,(~j, u ) <  ~ L,($j, u). 

But  then Y~, j ~/3~ ~/3~, ~, j ~ / ~  is feasible in (3.3i, t)  and 

Lj($j, u) + ~'~ Lj(~i, u) < ~ Lj($j, u) 

which contradic ts  the opt imal i ty  of :~-. H e n c e  

c~(t -pi)  = ~ Lj(xj, u) 
i ~ k  

for  all k E B~ and 

v i ( t ) =  ~ L i ( ~ j , u ) = L ( t - p ~ , u ) +  ~ ck(t-p~). 

Since any solut ion feasible in (3.3i, t - 1) is also feasible in (3.3i, t) we must  have  
v,(t) <~ v~(t-  1). Then  since v i ( t -  1)=  c i ( t -  l) by  the induct ion hypothes is  and 
c~ (t)  = min (c~ (t - 1), Li (t - p~, u ) + Ek ~B, c~ (t - pk), the desired resul t  v~ ( t)  = ci ( t)  
fol lows when  £ = t -p~. 

If £ < t - p~ then  Yj, j E/3,  is feasible and hence  optimal  in (3.3i, t - 1). Thus  
v i ( t ) =  v , ( t -  1)=  c , ( t -  1). Since u~(t) is the optimal  value of (3.3i, t)  it must  
sat isfy vi(t)<~ L~(t -p , ,  u)+ Ek~B, ck(t --pk) and G(t)= c~(t - 1)=  v,(t). 

Finally,  for  b, + p~ < t ~< T, const ra int  (3.3i, t b) is superf luous with (3.3i, t d) 
for  j = i so (3.3i, t)  and (3.3i, bi +p~) are identical  programs.  H e n c e  v i ( t ) =  
v,(b, +p,) = c~(b, +p,)= G(t). 

The  fol lowing lemma relates x*  to the funct ions  ci(t). We then presen t  a 
t heo rem which establishes the opt imali ty  of x*  for  the problem minx Ex L (x, u).  

L e m m a  3.3. For i = 1 . . . . .  n 

c,(x,*+p~)= Y~ L~(x?, u). 
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Proof. The proof  will use induction on [/3~[. First consider i such that [/3~[ = 1. In 
this case B~ = 0. The form of step 4 of the algorithm implies y, (x* + p,) = 1 which, 
by step 2 and B, = 0 implies c~(x* +p~) = L~(x*, u). 

N o w  we suppose for some k >1 1 that the l emma is true for  all i with [/3~[ ~< k and 
show that it is true for  any i for which [/~i[ = k + 1. The form of step 4 implies 
y~ (x * + p,) = 1 which then implies by step 2 that c, (x* + p,) = 
L, (x *, u) + Ej~B, cj (x*). Again by step 4 and the fact  that i ~ A~ for  ] E B~ we have 
ci(x*) = c j ( x * -  1) . . . . .  cj(x* +pj). Then the l emma follows f rom the induc- 
tion hypothesis .  

Theorem 3.4. L ( x * ,  u) = minx~xL(x ,  u). 

Proof. Le t  K = {k: Ak = 0}. By the form of step 4 and fact  that Ak = 0 we have for 
k E K, ck(T) = ck(T -- 1) . . . . .  ck(x* + Pk). Then by L e m m a  3.3, ck(T) = E,~ak 
L,(x*, u). By L e m m a  3.2 x*, i E/3k is optimal in (3.3k, T). 

Clearly I,.Jk~K/3k ={1 . . . . .  n} and by L e m m a  3.1 the sets /~k for  k E K are 
pairwise disjoint. These facts  imply that  the set X is the Cartesian product  of the 
IKI  sets of x,, i E Bk which satisfy the constraints of (3.3k, T), k E K. Since the 
object ive is separable in xi and x*,  i ~/~k is optimal in (3.3k, T), an optimal 
solution to minx~xL(x, u) is given by  the x*, i E Bk for k E K. 

Now consider the dual problem maxu w(u) .  For  this problem we will use a 
subgradient method described in [15] and further  refined in [16]. Le t  u ° be any 
initial value for  u, for  example  u 0= 0. The method generates a sequence {u k} by 
the rule 

(Z*- -W(Uk) ) (g (xk ) - - e )  k = 0 , 1  . . . .  
u k+l = u k + x ~  i l g ( x  ~ )  _ el l= , 

where z * is the value of a known feasible solution to (3.1), hk is a scalar satisfying 
0 < h k  ~<2, X k is the optimal solution to m i n x ~ x L ( x , u  k) obtained with the 
Lagrangian algorithm previously given, [111 denotes the Euclidean norm and e is a 
T componen t  vector  of ones. We initialize z* using the feasible solution 
determined with a sequencing heuristic given in Section 4. We also obtain a 
feasible solution at each iteration by sequencing jobs in order of increasing x~. 
The target  z* is updated whenever  the object ive value of this solution is less than 
Z*. 

For  the problems solved here u ° = 0 and )to = 2 were  used. The sequence hk was 
generated as follows. For  k >/1, hk = hk-1 was used, unless w(u)  had failed to 
increase for 5 consecut ive iterations, that is unless w ( u J ) < - w ( u  k-5) j =  
k - 5 . . . . .  k - 1. Then we set hk = lhk-1. 

Unless we discover  an x k with g(x  k) = e, or u such that w(u)  = z *, there is no 
means of knowing if the subgradient method has found an optimal solution to the 
dual. This is not a practical problem in our work  however .  We simply per form a 
fixed number  of iterations and then use the current  value of w(u)  as our lower 
bound. Details on the number  of iterations used are given in Section 4. 

We conclude this section with three observat ions.  The first concerns  a 
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structural property of the dual problem which has been important computation- 
ally. It is easy to see that E,C1 gt(x)  = T for all x ~ X, a fact which can be used to 
show by direct algebraic manipulation that L ( x , u + h e ) - E r - l ( U t + h ) =  

L ( x ,  u ) -  E[_1 u~ and hence w(u  + h e ) =  w(u) .  This means that a normalization 
constraint may be imposed on u in solving the dual. Such a normalization is 
inherent in the subgradient method since values of u determined by the method 
satisfy 

t=, ,=1 [ I -~x-k3~[  z ,=1 (g '(xk)  - 1) = ,=, u ,. 

k+, o = 0 the Reasoning inductively we have 2 T - 1 U t  = Er-1 u,. Since we have taken u o 
normalization used here is E,=~ u, = 0. 

The constraint u >~ 0 is another valid normalization, one which is natural since 
E,C, g, (x) = T implies that it is valid to replace the equality constraints (3. lb) by 
inequalities. This constraint was used in our early computational work until we 
discovered that the current dual requires significantly fewer iterations to obtain 
the same lower bound. 

This fact is not surprising. Convergence results given in [16] for the subgradient 
method are based on the fact if hk is sufficiently small then u T M  will be closer to 
the optimal set than u k, where the distance from a point u k to a closed set U is 
min,~ts [lu - u k I[- It may be shown that unless u = 0 is optimal in the dual, the initial 
value u °=  0 is strictly closer to the set of optimal solutions satisfying ~ r =  1 U t = 0 

than to those satisfying u 1> 0. Let  a be any optimal solution satisfying ti i> 0 and 
E ~ let K = (  ~=~ ~O/T. Then a = a - K e  is another optimal solution satisfying 

ET=I t~ = 0. Further 

T 

- o l r  = E - r ( )  
t--1 

T T 

= ~  (a~)~- 2 K E  a~ + T K  2 
t - - i  t--1 

= I la  - 0 1 1 2 -  T K  2 

and unless a = 0, K > 0. This fact suggests that if a choice exists, equality 
constraints are preferable to inequality constraints for the application of dual 
methods to combinatorial problems. 

Our second observation concerns the computation required by the Lagrangian 
algorithm. We have shown that this computation is proportional to n 2/~, where/~ is 
the average job processing time. If /~ is large, the Lagrangian problem may be 
difficult to solve even if n is small. This difficulty can be avoided by simply 
ignoring the constraint gt(x)  = 1 for some periods of the problem. If large process 
times are a problem we suggest replacing the dual problem by 

max w(u ) ,  
s.t. u ~> 0, 

u, = 0, t/k not integer 

where k is zn integer greater than 1. The time periods ignored are those for which 



M.L. Fisher [ A dual algorithm for the one-machine scheduling problem 241 

u, is required to be zero. While addition of the constraints u, = 0 for t / k  not 
integer may reduce the max imum value of w (u), it also simplifies solution of the 
Lagrangian problem. We can modify  step 2 of the algorithm for the Lagrangian 
problem by setting c~ (t) = c~ (t - 1) for all t such that (t - p~)/k is not integer. This 
is because  u, ~, = 0 and 

Ur ~ U .  - -  Ut pi -~" llt = Z U .  "}- Ut ~ l~.. 
r = t - p i + l  ~=t pi r = t - p i  z = t - p i  

Hence  
t r l  

c i ( t - 1 ) < ~ m a x ( t - d , - 1 , O ) +  ~,  u~ 
~ - t  pi 

~ < m a x ( t - d i ,  O)+ 2 m. 
"r-=t--pi+l 

Under  this modification the computat ion for the Lagrangian algorithm is propor-  
tional to n2p/k.  

Some minor modifications to the algorithm for  the dual are necessi tated by the 
additional constraints.  Obviously the formula  for  updating u, is applied only if t / k  
is integer. If  the updated u, would be negative, the value 0 is used instead. 

Finally, we would like to note some similarities be tween the recursion for 
computing ci(t) and a standard dynamic programming recursion for the knapsack  
problem given on page 217 of [9]. If  the size of the knapsack  is equal to the 
paramete r  T used here and we regard jobs as variables in the knapsack  problem 
then both recursions evaluate a function which gives the optimal value of a family 
of knapsack  problems for  knapsack  sizes between 0 and T and for  n different 
subsets of the variables (jobs). This function is given as the minimum of two terms 
formed f rom the optimal values of other knapsack  problems and a direct cost. In 
each case the number  of steps required to solve the problem is proport ional  to the 
product  of the number  of variables (jobs) and the size of the knapsack.  

The two problems are not however  identical. Both the differences and 
similarities may be highlighted by examinat ion of the Lagrangian problem when 
the successor  sets A~ have a special form. Suppose for k < n that B, = Ak = ~ and 
B~ = {i - 1}, i = 2 . . . . .  k. Then jobs 1 . . . . .  k correspond to a separate  component  
of the precedence  graph and the Lagrangian optimization may  be per formed 
independently for  them. If  we let yl = xl, y~ = x~-x~ 1-pi-~,  i = 2 . . . . .  k, y = 
(yl . . . . .  yk), b = T - Z~=l p,, and 

) f (y )  = ~ Li Ys + pj, u 
i=1  ]=1  

then the Lagrangian problem for  jobs 1 . . . . .  k is the following knapsack  problem 
with nonlinear objective,  

min f (y), 
k 

y~ ~< b, 
i=1  

y, >~ 0 and integer. 
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We note that the recursion given in [9] is not applicable to this problem because of 
the nonlinear objective. 

It  is interesting to note the appearance  of an embedded knapsack  problem in the 
analysis of other combinatorial  problems.  Gilmore and Gomory  [12] use the 
standard knapsack problem in their algorithm for the cutting back stock problem 
and Fisher and Shapiro [8] have used the group knapsack problem devised by 
Gomory  to form a dual problem for the general integer programming problem. 
These analyses share some interesting strategic similarities. For  example,  in each 
case difficulties can arise if the knapsack problem is too large. For the general IP 
problem, the size of the knapsack is the absolute value of the LP basis 
determinant  and can be large if the constraint  coefficients are large. Gorry,  
Shapiro, and Wolsey [13] have suggested a method for dealing with this difficulty 
that depends on relaxing inequality constraints by dividing the coefficients and 
right-hand sides by a constant  greater than one and rounding in the appropriate  
direction. Here  the size of the knapsack equals the sum of the job process times 
and can be disproport ionately large if the process times are given as large 
numbers.  In this case we suggested specifying a suitable integer k and ignoring all 
time periods which are not devisable by k. It  can be shown that this is essentially 
the same as dividing all process  times by k and rounding down, in which case this 
scheme is surprisingly close to that of Gorry,  Shapiro, and Wolsey. 

4. Branch and bound algorithm 

In the branching scheme we use each node corresponds to a specific sequence for 
some subset  of the n jobs which are required to be per formed last. Specifically, let 
K ={k,  . . . . .  k,} denote an ordered set of 1 distinct integers selected f rom 
{1 . . . . .  n} to satisfy the proper ty  Akl = 0 and Ak~ C_ {kl . . . . .  kj_l} for i = 2 . . . . .  I. 
Le t  

XK = {x E X: xk, = T - pk,, xk2 = T - pk, - Pk . . . . . .  xk, = T - 2 PlJ, 
i - !  

and xj <<- xk, - pj, j ff: K }. 

Nodes will correspond to sets K and at node K we require x E XK. 
The fundamental  step of the algorithm selects a node K and at tempts  to either 

find an optimal solution over  the set XK or show that XK may be ignored in the 
search for an optimal solution. I f  this can be done we say the node K is fa thomed.  
If  we fail in the a t tempt  to fa thom a node then we branch,  that is form new nodes 
f rom node K by partitioning the set XK into subsets.  The new nodes are of the 
form {K, i} for  all i with Ai C_ K but i ~  K. 

There are three devices for fa thoming nodes. First, for  any u a lower bound on 
the optimal value of (3.1) with x E XK is given by wK(u)  = minx~xk L ( x ,  u)  - ET=I ut. 
This p roNom may be solved by the Lagrangian algorithm in Section 3. Le t  z* 
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denote the object ive value of a known feasible solution for (3.1). If  for  some u, 
wK(u) >t z*, then xK cannot  contain a solution better  than the known one and the 
node K is fa thomed by bound. (Actually, since dl and pl are integers the object ive 
value of any solution must  be integer and if wK(u) is fractional,  the next  largest 
integer is a valid lower bound. To allow for computat ional  error in the calculation of 
wK (u) the computer  code uses the largest integer not greater  than wK ( u ) +  0.9 in 
place of wK(u).) 

Let  xK(u) denote the solution to minx~×~ L(u ,  x)  obtained by the Lagrangian 
algorithm. Note  that xK(u) is feasible in (3.l) if and only if g, (xK(u))= 1 for  
t = 1 . . . . .  T. If  this occurs then xi~(u) is optimal in (3.1) under the restriction 
x E X~ and node K is also fa thomed.  

A third device for  fa thoming nodes is based on the principle of optimality of 
dynamic programming.  For  a node K = {il . . . . .  i~} let I I ( K )  = 
E~=l max (0, T k 1 -Ei=~ p~j-di~) denote the object ive value for the jobs of K 
per formed last in the sequence iz . . . . .  i,. Suppose that two nodes of the branch 
and bound tree correspond to sets K,  and K2 which contain the same jobs and that 
H(K2) >1 H(K1). Then no solution in X m can have a lower object ive value than an 
optimal solution in XK1 and the node K2 may  be ignored. In this case we will say 
node K2 is dominated by node K1. This is exactly the reasoning used by  the 
dynamic programming algorithms in [14] and [24] for the one-machine scheduling 
problem. The use of this result  here amounts  to a synthesis of dynamic 
programming and branch and bound. See [19] for  a general discussion of this idea. 

It  is possible that reapplication of Theorem 2.1 could be fruitful at a particular 
node. This is because the requirement  x E XK imposes new conditions which may 
cause the test  of the theorem to hold. This possibility is not included in the current  
version of the algorithm. 

Earlier in our work  we used a branching scheme in which nodes corresponded 
to sequences of jobs to be per formed first. While the current  scheme is on average 
dramatical ly bet ter  than the earlier one, there have been a few problems where it 
required more than twice as much solution time. Both schemes would undoubt-  
edly be dominated by a mixed strategy in which nodes correspond to partial 
sequences at both ends of the schedule. When branching the decision of whether  
to fix a job at the start  or end of the current  unscheduled set could be based on the 
increase in the lower bound for  each case in the same way that a branch variable is 
selected in integer programming algorithms. 

A feasible solution with which to initialize z* was obtained by the following 
procedure.  Le t  S = {k~ . . . . .  k~} denote a sequence for  a set of jobs which have 
been scheduled to be per formed first and let U ={1 . . . . .  n } - S  denote the 
unscheduled set. Begin with S = 0 and augment  S according to the following rule. 
Le t  U '  ={ i  E U: B~ C S}, t =Ei~sp~ and t '  =Ei~t~,p~. For  each i E U '  we 
compute  a "probabi l i ty"  PT, that job i will be tardy if not scheduled next. Set 

1, d~ ~< p~ + t, 

t ' +  t -d~  
PT~=  , t +pi <d~ < t  + t ' .  

t '  - p ~  

O, t + t ' < d ~ .  
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Let r ~ U' be any job with maximum value of PT,/p~ and set S = { k l  . . . . .  g, i '}.  

This procedure is an adaptation of Caroll's heuristic sequencing rule for general 
job shops [3]. Once a feasible schedule has been obtained in this way adjacent 
pairwise interchanges are attempted until no improvement can be made. This 
determines an initial value for z*. We also update z* whenever an improved 
feasible solution is discovered in the course of solving a Lagrangian problem in 
the branch and bound algorithm. 

The flow chart in Fig. 2 gives a detailed statement of the branch and bound 
algorithm. The parameters I1, I2, 13, shown are input quantities which specify the 
maximum number of iterations of the subgradient method to be performed at 
various points in the algorithm. The four major steps of the algorithm are 
numbered 1-4. Other steps are concerned with minor bookkeeping activities. 
Steps 1 and 2 attempt to fathom a selected node K by dominance and by bound. If 
node K is not fathomed then we go to step 3 and create new nodes.  When a node 
{K, i} is created it is tagged with an initial lower bound value ZK,*. If possible the 
next node to be fathomed is selected from those newly created and optimization 

!~0~_KI,~K = K,T 
I = 13 

[ ' 0 -- -- 
L= ¢ .... 0,1=Ii ~ 2 1 

| Search nodes previously created | 
~ for a node which dominates K ] 

K undominated 

K dominated 

2. Bound Step. 
Apply dual algorithm to max w k (u). Update 

z* whenever an improved primal solution is 
discovered. 
Stop when one of the following occurs. 

(i) Wk(U) ~ z* 

(2) wk(u) < z* and gt(xk(u))=l,t=l,...,T 

(3) Wk(U) < z* and 1 Iterations of the 

dual_algorithm have been performed. 
Let u and ~ denote the value of 
u and k when we stop. 

3. Branch Step 

Let S = (i:i ~ K, B i C K}. For each i 6 S compute 

zK, i = WK~ i (~) and store the node (K, i) and ZK, i if 

ZK, i < z*. There are two possibilities: 

(i) ZK, i ~ z e for all i £ S. 

(2) ZK, i < z* for at least one i ~ S. 

In this case let i ~ S be such that ZK, ~ - minigs zK'i 

[ I NO z K ~ z*? ( 

7 YES 
STOP 

(2) 

4. Global Search 

Search unfathomed nodes which have 
not been branched from to find a 
node K with least value z K 

Fig. 2. Flowchart of the branch and bound algorithm. 
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of the new dual is continued with the step size )tk at its current  value. Otherwise a 
next node is selected by a global search in step 4. We terminate when this search 
fails to produce an unfa thomed node. 

To illustrate this algorithm we give in Fig. 3 the complete  enumerat ion tree for 
the 50-job example  given in Sections 1 and 2. The number  inside of a node 
indicates the order in which that node was selected for a t tempted fathoming. The 
number  beside a branch indicates the job sequenced next  along that branch. 
Numbers  beside a node give the lower bound obtained when the node is created. 
If no value is given, the lower bound is the same as at the predecessor  node. When 
two numbers  such as 1462/1464 are given, the upper  number  is the lower bound 
obtained when the node was created while the lower number  is an improved lower 
bound obtained by optimizing the dual problem when the node was selected for  
a t tempted  fathoming.  A number  in a square beneath a node like [] indicates that 

37 ~ q 5  1461 
,46o =-4~ - / -i; ~ 

34 ,464 [ ]  ("% 

% 

1463 [ ]  F 28 
I - ~  1463Q 1~26 

,464 6)8 
) 
17 % 

1464 

Fig. 3. Enumeration tree for the example. 
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the node is dominated by node 4. The enumerat ion begins with a feasible solution 
with object ive value 1464. This solution was found in the initial optimization of 
the dual at node l and was in this case optimal. 

5. Computational experience 

The algorithm has been applied to a sample of 75 randomly generated test 
problems.  Process  times for these problems were obtained f rom a uniform 
distribution on the integers be tween 1 and 10. Once process  times for a problem 
had been obtained T = £~-, pl was computed  and due dates were selected f rom a 
distribution which depends on T and two parameters  R and r called due date 
range and tardiness factor.  The distribution is uniform over  the integers be tween 
T(1 - r - R / 2 )  and T(1 - r + R / 2 ) ,  where R T  is the range of the distribution and 
T(1 - r )  is the mean. In a certain average sense r is the fract ion of jobs which are 
late in an optimal solution. More precisely if all process times are equal and all due 
dates are equal to the distribution mean of T(1 - r )  then r is the fract ion of jobs 
which are late in an optimal solution. A number  of authors ([1], [21], [24]) have 
noted that the values of r and R have a strong effect on problem difficulty and that 
problems obtained f rom distributions with r between 0.6 and 0.8 and with R = 0.2 
are the most  difficult. 

The 75 problems considered here were divided equally over  three sizes, n = 20, 
30, and 50. Each set of 25 problems of a particular size was distributed over  four  
pairs of values for r and R. There were 10 problems with r = 0.5 and R = 1.0, and 
5 problems each for  the pairs r = 0.8, R = 0.4, r = 0.8, R = 0.2, and r = 0.65, 
R = 0.2. Thus the sample included a number  of very large and difficult problems.  
Data  for all problems is available f rom the author on request.  

Extensive information for each problem solved is given in Tables 1, 2 and 3. 
Columns (1) and (2) in each table give the value of r and R. Column (3) gives the 
number  of jobs remaining in the problem after  the reduction described in Section 
2 was applied, Column (4) gives the optimal object ive function value for the 
original unreduced problem. Columns (5)-(9) all deal with the reduced problem 
and report  various object ive function values. Column (5) gives the value of the 
feasible solution obtained by the heuristic sequencing rule described in Section 4. 
As discussed in Section 3, each time we solve a Lagrangian problem we obtain a 
feasible solution by sequencing jobs in order of their xl values. Column (6) gives 
the value of the best  improved feasible solution (if any) discovered by  this means 
during the optimization of the dual problem at the first node of the branch and 
bound tree. Obtaining this solution requires a comparat ive ly  small amount  of 
computat ion.  Column (7) gives the optimal value for the reduced problem. 
Column (8) gives the lower bound obtained at the first node of the tree with the 
initial application of the dual algorithm. Finally, Column (9) gives the lower bound 
for u = 0, the value with which we begin solution of the dual. Column (10) gives 
the number  of nodes in the enumerat ion tree at which fathoming was at tempted.  
Column (11) gives the cumulat ive number  of iterations of the dual algorithm which 
were executed in all fathoming at tempts.  This is the number  of times a Lagrangian 
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Table 1 

Results for the 20 job problems 

247 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) ( l l )  (12) 
Optimal Optimal 

Reduced value Initial value 
problem complete feasible reduced 360-67 

~- R size problem z* value problem w(u*) w(O) Nodes Iter. Seconds 

0.5 1.0 14 76 85 77 76 74 9 5 73 4.98 
0.5 1.0 3 109 27 27 27 10 1 9 0.55 
0.5 1.0 0 263 0.28 
0.5 1.0 0 66 0.28 
0.5 1.0 0 16 0.28 
0.5 1.0 15 205 136 135 134 128 37 18 146 10.19 
0.5 1.0 7 36 27 25 25 25 0 1 20 1.42 
0.5 1.0 13 41 40 40 40 21 1 7 0.76 
0.5 1.0 9 174 93 93 92 54 7 78 2.8t 
0.5 1.0 0 32 0.28 
0.8 0.4 0 491 0.28 
0.8 0.4 15 395 143 141 141 141 78 1 38 3.06 
0.8 0.4 0 630 0.28 
0.8 0.4 5 566 19 18 18 18 II  1 26 0.88 
0.8 0.4 4 533 17 17 17 10 1 12 0.61 
0.8 0.2 15 390 141 136 135 135 60 4 62 4.62 
0.8 0.2 0 655 0.73 
0.8 0.2 13 419 113 96 96 96 38 1 32 2.72 
0.8 0.2 20 574 615 574 574 574 468 1 43 5.11 

0.8 0.2 12 593 128 122 121 121 55 8 88 4.92 
0.65 0.2 13 356 89 88 85 82 0 9 110 7.17 
0.65 0.2 15 412 252 252 252 131 1 36 2.94 
0.65 0.2 15 318 141 131 131 131 0 1 39 4.72 
0.65 0.2 15 359 172 169 168 168 42 2 52 5.61 
0.65 0.2 13 271 108 99 97 0 4 57 5.00 

Average solution time: 2.82 seconds.  

problem was  solved.  Most  of  the computat ion time is spent solving these 
problems.  Column (12) gives the total solution time for each problem. 

To simplify the computer  programming arcs of  the precedence  networks  were  
removed  until IAi] ~< 1 and ]Bi I ~< 1 for all i was  satisfied. Values  of  the parameters 
11, 12 and 13 specified in Sect ion 4 were  given by 13 = 5 , /2  = 30, and 11 = 50 if the 
reduced problem contained no more than 25 jobs,  L = 100 otherwise.  Select ion of 
these values was  somewhat  arbitrary. The way  in which starting solutions are 
obtained for the dual problem at various points in the branch and bound procedure 
led us to bel ieve that the values should satisfy L > 12 > 13. The specific selection 
was  based largely on observat ions  made while debugging the computer  program. 
It is quite possible that further study of the select ion of these values would 
improve algorithm performance.  We bel ieve that w(u*) is quite c lose  to the 
optimal value of  the dual, although in some cases ,  particularly when  11 = 50, we  
k n o w  that additional iterations of  the subgradient method would produce an 
improved bound. 

To obtain additional information about how closely  w (u*) approached the dual 
optimal value we  used the B O X S T E P  Method of  Hogan,  Marsten and Blanken- 
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Table 2 

Results for the 30-job problems 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
Optimal Optimal 

Reduced value Initial value 
problem complete feasible reduced 360-67 

r R size problem z* value problem w(u*) w(O) Nodes Iter. Seconds 

0.5 1.0 21 160 110 110 110 56 1 19 2.44 
0.5 1.0 0 22 0.96 
0.5 1.0 25 269 252 251 248 162 37 294 22.29 
0.5 1.0 0 61 0.96 
0.5 1.0 0 45 0.96 
0.5 1.0 11 223 143 143 143 120 1 8 1.46 
0.5 1.0 20 127 49 49 48 14 2 53 5.44 
0.5 1.0 23 172 136 136 136 70 1 32 3.69 
0.5 1.0 0 176 0.96 
0.5 1.0 15 202 77 77 77 15 1 22 2.51 
0.8 0.4 17 917 104 103 103 102 30 3 60 5.73 
0.8 0.4 19 709 95 94 92 30 13 109 9.28 
0.8 0.4 18 1074 191 182 180 179 88 6 74 7.35 
0.8 0.4 7 1102 32 32 32 20 1 2 1.29 
0.8 0.4 14 853 85 85 83 38 10 89 5.22 
0.8 0.2 19 1031 321 315 315 315 179 3 56 6.37 
0.8 0.2 21 1169 430 423 423 423 265 1 39 6.52 
0.8 0.2 19 859 275 246 246 246 178 1 40 4.25 
0.8 0.2 25 879 690 651 649 645 494 20 177 19.06 
0.8 0.2 13 712 19 19 18 0 8 82 3.62 
0.65 0.2 2l 612 640 613 612 609 439 17 148 14.75 
0.65 0.2 24 615 440 428 428 428 242 7 75 11.91 
0.65 0.2 22 964 611 610 608 313 20 21l 30.86 
0.65 0.2 28 511 535 515 511 511 257 8 135 25.29 
0.65 0.2 22 662 272 253 252 246 51 42 432 58.75 

Average solution time: 10.08 seconds.  

ship [17] to obtain the precise optimal value of the dual for the problem reported in 
line 9 of Table 1. Since we know the optimal value of the problem is integer, lower 
bounds may be rounded up to the next largest integer and this is done in the values 
reported in column (18). The fractional value of w(u*) for this problem was 
91.198. In our most successful experiment with BOXSTEP we first ran the 
subgradient method for 300 iterations to obtain a value of 91.968. Then BOXSTEP 
was applied and discovered an optimal solution to the dual with an objective value 
of 92.000. It is noteworthy that obtaining the precise optimal value of the dual 
using BOXSTEP required over 2 minutes on a 360-67. 

A number of patterns exist in the computational results. The difference between 
the optimal value and w(u*) is consistently small. The largest gap of 274-263 
occurred for the fifth 50-job problem. The bound w(u*) was actually equal to the 
optimal value for 31 of the 63 problems which were not completely solved by 
reduction. The difference between the first feasible solution obtained and the 
optimal value is also consistently small. The largest gap was 2590-2575 for the 20th 
50-job problem. This difference was essentially independent of problem size and 
difficulty. The first solution was optimal in all but 23 cases. Since the first feasible 
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Table 3 

Results for the 50-job problems 

249 

(l/ (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
Optimal Optimal 

Reduced value Initial value 
problem complete feasible reduced 360-67 

~- R size problem z* value problem w(u*) w(O) Nodes Iter. Seconds 

0.5 1.0 30 218 213 213 213 124 1 34 7.76 
0.5 1.0 28 624 430 428 428 428 380 I 57 8.22 
0.5 1:0 41 220 176 176 174 55 14 190 39.49 
0.5 1.0 0 30 3.39 
0.5 1.0 48 279 281 274 263 135 126 771 139.51 
0.5 1.0 5 56 13 13 13 0 1 4 3.66 
0.5 1.0 10 77 58 47 47 47 0 1 26 2.89 
0.5 1.0 27 808 312 306 303 192 40 349 35.75 
0.5 1.0 27 368 280 279 278 169 6 125 18.94 
0.5 1.0 3 53 6 6 6 1 1 6 3.60 
0.8 0.4 21 2690 158 157 157 155 125 4 66 5.56 
0.8 0.4 9 3618 68 68 68 36 1 32 3.92 
0.8 0.4 25 2195 122 113 113 112 11 3 67 10.05 
0.8 0.4 40 3251 1743 1736 1729 1404 89 838 166.84 
0.8 0.4 25 2342 177 164 164 164 60 1 42 8.89 
0.8 0.2 33 3175 987 937 937 935 392 50 439 75.26 
0.8 0.2 43 1620 1583 1569 1568 1564 821 28 269 84.16 
0.8 0.2 40 2793 1567 1467 1465 1463 965 48 532 108.44 
0.8 0.2 47 2673 2770 2673 2673 2670 2153 46 410 93.18 
0.8 0.2 45 3023 2618 2590 2575 2570 2066 81 642 123.50 
0.65 0.2 46 1733 1447 1404 1399 1390 515 91 955 401.62 
0.65 0.2 37 1773 1176 1142 1142 1142 489 1 61 27.26 
0.65 0.2 37 1540 1540 1464 1464 1459 668 30 360 101.16 
0.65 0.2 29 1434 887 867 866 863 514 29 343 56.55 
0.65 0.2 32 2222 945 885 885 884 431 19 233 57.63 

Average solution time: 63.49 seconds.  

solution is obtained relatively quickly the algorithm could be used quite practi- 
cally to obtain approximately optimal solutions even for very large problems. The 
sharp lower bound w (u *) would be useful in providing an indication of the quality 
of the approximate solution obtained. The value of the first feasible solution can 
be compared with z*, the value of the initial solution obtained by a heuristic. 
While this heuristic often produced good solutions, its performance was adversely 
affected by problem size and difficulty. This point should be noted in the empirical 
study of heuristics as they are often tested on small problems. 

The enumeration trees obtained were generally small. With only one exception 
they contained less than 100 nodes. This is apparently a consequence of the sharp 
lower bounds and good feasible solutions. 

Although the relation of problem difficulty to the parameters ~ and R agree with 
the observations of Srinivasan [24], Baker and Martin [1], and Rinnooy Kan et al. 
[21], the disparity between "easy" and "hard" problems is less for our algorithm 
than for theirs. 

A comparison of our results with that of others is difficult because other 
researchers have worked with small problems. Baker and Martin [1] tested 
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various algorithms on problems with n between 8 and 15. Average solution times 
for Srinivasan's algorithm, the best of those tested, appeared to double when n 
increased by 2. Approximately 1 second on a 360-65 was required to solve an 
average 15-job problem. If this experience were extrapolated, it would imply 
average solution times of 5.6 seconds, 179.2 seconds, and just over two days 
respectively for problems with 20, 30, and 50 jobs. The collection of values for r 
and R in the Baker-Martin sample of test problems is comparable in difficulty to 
the one used here, although the average process times were larger than in ours. 
This may have increased solution times for Srinivasan's algorithm, although his 
algorithm does not have the direct dependence on average process time of ours. 

The algorithm of Rinnooy Kan et al. [21] is also applicable to this problem and 
has performed quite well on a group of 10-, 15-, and 20-job weighted tardiness 
problems. This algorithm was recently applied to the 75 test problems used here. 
Generally solution times were about equal to ours for the 20-job problems but 
larger for the 30- and 50-job problems. In particular, one 30-job and several 50-job 
problems were not solved in 5 minutes of computing [22]. The longer solution 
times for the larger problems seems to be a consequence of somewhat weaker 
bounds. The comparison is partially obscured because the algorithm is program- 
med in A L G O L  and was run on a Control Data Cyber 73-38. 
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