
Mathematical Programming I1 (1976) 229-251.
North-Holland Publishing Company

A DUAL ALGORITHM FOR THE ONE-MACHINE
SCHEDULING PROBLEM*

Marshall L. FISHER
University of Pennsylvania, Philadelphia, Pa., U.S.A.

Received 20 January 1974
Revised manuscript received 18 March 1976

A branch and bound algorithm is presented for the problem of scheduling n jobs on a single
machine to minimize tardiness. The algorithm uses a dual problem to obtain a good feasible
solution and an extremely sharp lower bound on the optimal objective value. To derive the dual
problem we regard the single machine as imposing a constraint for each time period. A dual
variable is associated with each of these constraints and used to form a Lagrangian problem in
which the dualized constraints appear in the objective function. A lower bound is obtained by
solving the Lagrangian problem with fixed multiplier values. The major theoretical result of the
paper is an algorithm which solves the Lagrangian problem in a number of steps proportional to
the product of n 2 and the average job processing time. The search for multiplier values which
maximize the lower bound leads to the formulation and optimization of the dual problem. The
bounds obtained are so sharp that very little enumeration or computer time is required to solve
even large problems. Computational experience with 20-, 30-, and 50-job problems is presented.

1. Introduction

The o n e - m a c h i n e schedu l ing p r o b l e m requ i r e s a spec i f i ca t ion of the o r d e r in
w h i c h n j o b s are to be p r o c e s s e d on a single mach ine . The p r o c e s s i n g t ime and
due da te of e ach j o b are k n o w n in tegers , and a j o b ' s t a rd ines s is the a m o u n t by
w h i c h its c o m p l e t i o n t ime e x c e e d s its due date . A n op t ima l so lu t ion is a s e q u e n c e
fo r p e r f o r m i n g the j obs in wh ich the sum of the t a rd ines s ove r all j obs is
min imum. This difficult c o m b i n a t o r i a l p r o b l e m has a long h i s to ry . A l g o r i t h m s
have b e e n p r o p o s e d b y E l m a g h r a b y [4], E m m o n s [5], He ld and K a r p [14], L a w l e r
[19], and S r in iva san [24]. B a k e r and Mar t in [1] r e p o r t c o m p u t a t i o n a l e x p e r i e n c e
us ing s o m e of t he se a lgo r i thms on p r o b l e m s of up to 15 jobs .

W e will d e s c r i b e an a lgo r i thm for the o n e - m a c h i n e schedu l ing p r o b l e m which
has p e r f o r m e d r e m a r k a b l y wel l on a s a m p l e of large and difficult p r o b l e m s . The
h e a r t of the a lgo r i thm is a m e t h o d for ob ta in ing an e x t r e m e l y sharp lower b o u n d
on the op t ima l o b j e c t i v e va lue . This l o w e r b o u n d is u sed fo r f a t h o m i n g in a b r a n c h
and b o u n d p r o c e d u r e . The b o u n d is o b t a i n e d us ing a dua l p r o b l e m of the t y p e
d e s c r i b e d in F i s h e r [6] fo r the m o r e gene ra l r e s o u r c e - c o n s t r a i n e d n e t w o r k
schedu l ing p r o b l e m . In this dua l p r o b l e m we r ega rd the mach ine on wh ich j obs are
to be p r o c e s s e d as i m p o s i n g a c o n s t r a i n t fo r e ach t ime in t e rva l [t, t + 1] fo r

* This work was supported in part by National Science Foundation Grant SOC-7402516.

229

230 M.L. Fisher/A dual algorithm for the one-machine scheduling problem

t = 0, 1, 2 A dual variable is associated with each of these constraints and
used to form a Lagrangian problem in which the dualized constraints appear in the
objective function. In reference [5] Emmons has given results for determining a
partial ordering of the jobs which is satisfied by at least one optimal solution. The
feasible region of the Lagrangian problem is the set of non-negative integer
starting times for the n jobs which satisfy the Emmons partial ordering. Solution
of the Lagrangian problem with any fixed values for the dual variables produces a
lower bound on the optimal objective value. The dual problem is to find values for
the dual variables for which the lower bound is maximum. Our objective in this
derivation is to obtain a Lagrangian problem which contains much of the
information in the constraints of the original problem and yet is easy to solve. The
major theoretical result of this paper is an algorithm which solves the Lagrangian
problem in a number of steps proportional to the product of n 2 and the average
job processing time. As a practical matter, the magnitude of the average
processing time can always be controlled if one is willing to accept a sufficiently
coarse unit of measure for process times. Good or optimal solutions to the dual
problem are obtained using a subgradient method of Held, Wolfe and Crowder
[16]. This method uses the Lagrangian algorithm as a subroutine.

Because of the underlying nonconvexity of the one-machine scheduling prob-
lem, the optimal value of the dual problem may not equal the optimal value of the
one-machine problem and we must resort to branch and bound to obtain the
optimal solution. However, the dual bounds are sufficiently sharp that the optimal
solution is usually obtained with little, if any, branching. We will use a particular
50 job problem as an illustrative example throughout the paper. (This problem is
described in the third line from the bottom of Table 3 in Section 5.) Our
computational experience with this problem is typical. The optimal value is 1464
and the lower bound obtained from the dual problem is 1459. Even though this is
one of the more difficult of the problems we solved (only 5 of 75 problems had
longer solution times), the enumeration tree contains only 30 nodes and is given in
Section 4 in its entirety.

Generally, we have focused on large problems in our computational work. A
recent text on sequencing theory ([2], p. 65] suggests that the solution of problems
with more than 20 jobs might be prohibitively expensive with existing algorithms.
The algorithm given here has been applied to a sample of 75 problems equally
distributed over 3 problem sizes, n = 20, 30, and 50. Optimal solutions were
obtained for all problems on a 360-67 in average times of 2.82, 10.08, and 63.49
seconds respectively for the three problem sizes. The lower bound obtained from
the dual problem was on average equal to 99.6% of the optimal value. Addition-
ally, a feasible solution is generated each time a Lagrangian problem is solved by
sequencing jobs in order of their starting times in the Lagrangian solution. The
value of the best feasible solution generated before any branching was on average
equal to 100.2% of the optimal value. Using the algorithm in this way to generate
feasible solutions would appear to allow the practical solution of very large
problems since a comparitively small amount of time is required to obtain these
solutions.

The general approach which we use is applicable to many combinatorial

M.L. Fisher/A dual algorithm for the one-machine scheduling problem 231

problems. General discussions of the use of dual problems in discrete optimiza-
tion are given in [7] and [11]. Specific applications include the traveling salesman
problem [15], the general resource-constrained network scheduling problem [6]
and the general integer programming problem [8]. The work of Held and Karp was
initiative in this area. Our approach for obtaining lower bounds could also be used
for the expanded scheduling problem treated by Gelders and Kleindorfer [10]. One
purpose of this paper is to demonstrate the value of this dual approach for other
combinatorial problems, particularly for the resource-constrained network
scheduling problem.

Shwimer [23] and Rinnooy Kan et al. [21] have given algorithms for a more
general problem in which an importance weight wj is associated with each job and
we are required to minimize the weighted sum of the tardiness over all jobs. The
algorithm given here is applicable to this problem with minor changes. These
changes will be noted at the appropriate places in the paper.

Section 2 gives results from [5] for ordering jobs and discusses their use in this
paper. In Section 3 the Lagrangian and dual problems are derived and algorithms
for their solution presented. Section 4 gives the branch and bound algorithm.
Section 5 contains a discussion of our computational experience.

2. Reduction and sequencing

Common sense would lead us to certain suppositions about the order of jobs in an
optimal solution. For example, we would expect a job with a very small due date
to precede one with a very large due date. In [5] Emmons pursues this type of
reasoning formally and extensively to develop conditions under which one job
precedes another in some optimal solution. Let pj and dj denote the given process
time and due date of job j, and let T = E;'-j p~. Let/3j denote a set of jobs which are
required to precede job j, a; the corresponding set {i: j E/3i} of jobs which are
required to follow job] and a~ the complement of o~j with respect to {1 n }.
These sets are initially empty and are augmented by successive application of
Theorem 2.1.

Theorem 2.1. Job j precedes job k in some optimal solution if any of the conditions
(2.1)-(2.3) are satisfied.

Pj <~Pk and dj <~max(pk + ~. pi, dk). (2.1)
i ~ k

Pj > Pk, dj ~< dk, dk + Pk ~ ~ p. (2.2)

& >- ~, p,. (2.3)
iE~)

This theorem contains the results of Emmons with some minor extensions.
Theorem 2.1 is also valid for the weighted tardiness problem if we simply append
the condition wj t> wk to (2.1) and (2.2). The theorem would then give the results

232 M.L. Fisher / A dual algorithm for the one-machine scheduling problem

developed in [21]. The theorem can be proven by assuming the existence of an
optimal solution in which job k precedes job j and showing that if (2.1), (2.2) or
(2.3) are satisfied the order of j and k may be reversed without increasing
tardiness. See reference [5] or [21] for details.

By reversing the roles of j and k in Theorem 2.1 we may give a second test for k
to precede j in an optimal solution. In general three possibilities can occur.
Precisely one of the two tests can be satisfied, both can be satisfied (the order of j
and k is irrelevant), or neither can be satisfied. It is the last possibility which
prevents us f rom using Theorem 2.1 to give a polynomially bounded algorithm for
the minimum tardiness problem.

Theorem 2.1 is used here in two ways. First, following essentially the procedure
suggested by Emmons, we try to reduce the size of the problem by finding a job
which precedes or succeeds all other jobs in an optimal schedule. Such a job may
be placed first or last and removed from the problem. When no further progress
can be made with this reduction algorithm we use the following sequencing
algorithm to create a partial ordering of the jobs. Hencefor th we assume n and T
have been modified to reflect any problem reduction which has taken place.

Sequencing algorithm

Step 1. Initialize /3i = ~, i = 1 n and J = {1 n }.
Step 2. Select j to be the index in J with minimum value of Z ~ i pl. If there are

ties, select the minimum index. Set J = J - {j}. (Here and elsewhere in the paper
for general sets A and B we let A - B denote the set {i E A: i ~ B}.)

Step 3. For each k ¢ j for which k~/3j and j ff~/3k, test the conditions of
Theorem 2.1 for j to proceed k. If they are satisfied then set/3~ =/3~ U {j} U/3j for
i C {k} U ak. If j has been placed in any/3k during this execution of step 3, repeat
the step. Otherwise, go to step 4.

Step 4. If J ¢ ~, go to step 2. Otherwise go to step 5.
Step 5. If no elements have been added to any set/3~, i = 1 , n since the last

initialization of J, stop. Otherwise, reinitialize J = {1 n} and go to step 2.

The selection rule in step 2 is intended to enhance the effectiveness of Theorem
2.1 by increasing the likelihood that/3k will be large in (2.1) and ~} small in (2.2)
and (2.3).

The reduction and sequencing procedures will be illustrated with the example
cited in Section 1. This example is described by the third line from the bottom of
Table 3 in Section 5. The process times for the example are given by

(3 , 4 , 5 , 4 , 3 , 4 , 6 , 1,3,5, 1,3, 1, 1, 1 , 2 , 2 , 3 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 ,

5 , 5 , 5 , 5 , 6 , 6 , 6 , 7 , 7 , 7 , 7 , 7 , 8 , 8 , 8 , 8 , 8 , 9 , 9 , 9 , 9 , 10, 10, 10)

and the due dates by

(67, 67, 69, 72, 73, 74, 74, 76, 78, 78, 80, 81, 99, 103,108, 84, 107,

105,86,98,103,106, 107,109, 112, 115,101,106, 107,108,80,84, 115,

83, 92, 97,103, 114, 76, 96, 100, 105, 114, 83, 93,104, 105, 66, 76, 87).

M.L. Fisher I A dual algorithm for the one-machine scheduling problem 233

When the reduction algorithm is applied to this problem the first 12 jobs are placed
at the beginning of the solution in the order they appear above and the last job is
placed at the end. L e t / ~ C_/3~ denote the set of immediate predecessors of job i.
These are jobs j E/3~ such that there exists no l E/31 with j E/3~ also. Further c~
will denote the immediate successors of i and is given by & = {j: i @/~s}. The sets
/~ obtained by the sequencing algorithm for the 37 remaining job s (reindexed from
1 to 37 in the order they appear above) are represented by the directed graph in
Fig. 1. In this graph vertices correspond to jobs, job numbers are shown inside
each vertex, and an edge exists from i to j if and only if i E/~. For the moment,
ignore any distinction between solid and dashed edges. To make sense such a
graph must be acyclic. This property is guaranteed by the way in which the sets/3~
are updated in step 3 of the sequencing algorithm.

3. Derivation and solution of the dual problem

The precedence sets/31 and ai imply constraints which may be added to the one
machine scheduling problem without loss of optimality. These constraints will
make the problem more suitable for our purposes. Let x, denote the start time of
job i and x = (x, x,). A lower bound on x~ is given by

ai = Z PJ.
i E 13i

It is easy to show that in an optimal solution jobs are processed consecutively
with no intervening idle time. This means that the last job is completed at time T

i I / /

Fig. 1. Precedence graph for the example.

234 M.L. Fisher /A dual algorithm for the one-machine scheduling problem

and an upper bound on xg is given by

b i = T - p ~ - ~ pj.
j ~cq

In terms of x, the sets c~i imply constraints of the form xi ~> x~ + p~ for] ~ &. If
all sets cTi satisfy I&l ~< 1 then a very efficient algorithm can be given for optimizing
over the set of x which satisfy these constraints. To obtain sets with this property
we simply delete a sufficient number of elements from each &. Let A, C_ &,

i = 1 n denote sets obtained by such a deletion so that IAi[~< 1. Let B, =
{j: i ~ Aj} denote the corresponding predecessor sets. For example, if the dashed
edges in Fig. 1 are deleted, then the successor sets defined by the remaining graph
have the required property. Of course there are many sets of edges which could be
deleted to obtain the required property. In our computational work edges were
removed by a rule which preserved longest paths in the network.

Let

X = { x : a~ <~ x~ <~ b~, xj >~ xi + p~

for] ~ A~, x~ integer, i = 1 n }.

While X expresses some of the feasibility requirements of the problem, in general
an x ~ X will not be feasible. To obtain the additional constraints required for
feasibility we define for x E X and integer t E[1 , T] the set S ' (x) =
{i: t - pl ~< x~ ~< t - 1} of jobs in process during the interval It - 1, t] and let g , (x) =

IS, (x)l, the number of jobs in process during this interval. The fact that jobs are
processed continuously in an optimal schedule means that we can require
gt (x) = 1 for a feasible schedule and the problem of minimizing tardiness may be
expressed as

n

min ~ max (xi + pl - d,, 0) (3.1a)
x ~ X i=1

g , (x) = 1, t = 1 T. (3.1b)

Introducing dual variables u = (u l u r) associated with (3.1b) we define the
Lagrangian function

T

L (x, u) = 2 max (xl + pi - d~, 0) + ~ u,gt (x)

xl +Pi /

i~1 t =x i+ l

and the Lagrangian problem

w (u) = min L (x , u) u,.
x E X t ~ l

It is well known that w (u) lower bounds the optimal value of (3.1) for any u, a fact
which is easily shown by letting x * E X denote an optimal solution for (3.1) and

M.L. Fisher [A dual algorithm for the one-machine scheduling problem 235

observing that

T

w (u) < ~ (x * + p , - d , , O) + ~ u , (g , (x *) - l) = ~ (x * + p ~ - d , , O) .
i ~ l t ~ l i = l

The best lower bound is given by those u which solve the dual problem

max w(u) .
u

Note that if we regard u, as a price charged for using the machine during the
interval [t - 1, t] then the objective function of the Lagrangian problem has a very
natural interpretation. The term for each job is simply a direct cost (the tardiness
of the job) plus a charge u~ for machine usage for each period t during which the
job is in process.

Lawler [18] has shown that a transportation problem may be used to obtain
bounds for the one-machine scheduling problem. Reference [18] describes an
allowable class of objective function coefficients for the transportation problem
which give valid bounds. It may be shown that the optimal value of the dual
problem given here dominates the transportation problem bound for any coeffi-
cients in the allowable class. In particular it dominates the Gelders-Kleindorfer
[10] bound obtained from a specific set of coefficients.

We will first specify an algorithm for solving the Lagrangian problem
minxE×L(x, u) with u fixed. Then we will discuss solution of the dual problem
maxu w(u) . The amount of computation required by the Lagrangian algorithm is
proportional to nT. This algorithm and the other results of this section remain
valid if max (x, + p, - d, 0) is replaced by any function of x~. The algorithm is also
applicable to the Lagrangian problem derived in [6] for the general resource-
constrained network scheduling problem. We have found that the algorithm given
here is much more efficient than the one first given in [6] for the Lagrangian
problem and significantly reduced solution times have been obtained for the
problems solved in [6] by using this algorithm. These results are reported in
reference [7].

Let /~i denote the set of all predecessors of i, let/3~ = {i} t2/~, and let
xl +Pi

L~ (x,, u) - max (x~ + pl - d~, 0) + ~ u,.
t--xi+l

Note that

-2 L(x , u) - L~(x~, u).
i = l

The algorithm for the Lagrangian problem recursively computes a quantity ci (t)
for all i and t = 1 T. This quantity will turn out to give the optimal value of a
partial Lagrangian problem containing all jobs] with j E/~i and with the
additional restriction that these jobs be completed by time t. The recursion for
c~(t) is based on the following facts. If xi < t -p~ in an optimal solution to the
partial Lagrangian problem then ci(t) = c i (t - 1) . Otherwise x, = t - p ~ in an
optimal solution and c~(t) is equal to L i (t - p ~ , u) plus the objective function
contribution from jobs in/~. By defini t ion/~ is equal to (_J k~Bi/~k- In Lemma 3.1

236 M.L. Fisher/A dual algorithm for the one-machine scheduling problem

be low we show tha t the sets /~k, k ~ B~ are pa i rwise dis joint in wh ich case the
cont r ibu t ion f r o m jobs in/3~ is just 2 k ~ , c k (t - p ,) . T h e p r o o f of L e m m a 3.1 is
p rec i se ly whe re we requi re IA, I ~< 1.

L e m m a 3.1. I f j ~ B, and i ~ Bj, then 13, fq Bi = f).

Proof . S u p p o s e k ~ /~ j N /~ ,] ~ / ~ and i~ /3 i . Then as a c o n s e q u e n c e of the
definit ion o f /~ j and/3~ there exis ts jl 1"~ and il iq such tha t jl = il = k,
]p = j , iq = i , and

Jl ~ Bj2 jp-1 ~ Bjp,

il E Bi iq-1 @ Bi~.

L e t F be the larges t va lue fo r which]~ = i~, l = 1 F and note that 1 ~< f <~
rain (p, q). I f 1 = min (p, q) then ei ther j E/3~ (1 = p) or i ~ /3 j (1 = q) which
con t rad ic t s our hypothes i s . I f f < rain (p, q) , then [A~I >/2 which con t rad ic t s
IA~ [~< 1 for all i. H e n c e /~j n /3 , = ~).

We will a s s u m e tha t jobs are indexed so tha t B~ C {1 i - 1}. I t is e a sy to
show tha t such an indexing exis ts g iven the f ac t tha t the g raph defined by the sets
B~ is acycl ic .

Algor i thm for minxExL(x , u)

Step 1. Init ial ize i = 0.
Step 2. Set i = i + l ,

min c~(t - 1), L~(t - p~, u) + k~", ck(t - p~)

ci(t) = t = ai +pi bl +p~,

[c~(b~+p~) t = b ~ + p ~ + l T,
and

= ~ 0 if c , (t) = c~(t - 1) or t = 0,
3/i(t)

L 1 o therwise .

(3.2)

Step 3. I f i = n go to 4. O the rwise go to 2.
Step 4. W e now have cn(T) = minx~x L(x , u). T o obta in a solut ion x* for which

L(x* , u) = c , (T) we first set x* = t * - p n whe re t* is the larges t va lue fo r which
vn(t*) = 1. T h e n fo r i = n - 1, n - 2 1 set

x * = m a x t - p ~ ,

s.t. t ~ x * , j E A n ,

v , (t) = 1.

M.L. F i sher /A dual algorithm for the one-machine scheduling problem 237

Each of these problems is feasible because y~(a~ +p~) = 1 for all i and hence
t = a~ + p~ is a feasible solution.

The procedure for computing c~(t) is essentially a dynamic programming
scheme in which states correspond to the pair i, t for i = 1 n and t =
0 T. A notable difference with usual D P recursions is that the optimal return
at a state i, t is computed f rom the returns for several other states. This variation
on dynamic programming has been termed nonserial dynamic programming. See
[20, pp. 189-206] for a general discussion.

The operat ions of the algorithm consist entirely of addition, subtraction, and
comparison. We will show that the computat ional requirements of the algorithm
are proport ional to n T or n 2/~ where p = T i n is the average job processing time.
Clearly steps 1, 3 and 4 require at most n T time. The major parts of step 2 require
the computat ion of Et~=t_.,+~ u~ for the evaluation of L~ (t - p~, u) and the computa-

~ai+P. tion of Ek~B, ck(t -- pi). Once '+, u, is calculated then subsequent sums may be
obtained recursively with a single addition and subtraction by

U. = U~ + lit -- Ut-m
~-=t-pi+l .c=t-pi

so that this part of step 2 requires computat ion proport ional to nT. Since]A~ I ~< 1
for all i, XT_~ IB, I = EZ11A, I <~ n and computat ion of Xk~B, ck (t -- p ,) requires n T

time.
The following two lemmas and theorem give a proof of optimality for the

algorithm. This proof is not a prerequisite for the remainder of the paper. In
L e m m a 3.2 we prove that c~(t) is the optimal value of the partial Lagrangian
problem described earlier.

Lemma 3.2. F o r f i xed u de f ine the f a m i l y o f p r o g r a m s

(3.3i, t a) v~(t) = min ~ Ls(xj , u) ,

(3.3i, t b) s.t. x~ +p~ <~ t,

(3.3i, t c) . xi 1> x~ + p~,

(3.3i, t d) aj ~< xj ~< bj,

(3.3i, t e) xj integer,

IEBj,] j~l~,

f o r t = O T a n d i = l n w h e r e by c o n v e n t i o n v~ (t)=o~ i f (3.3i, t) is
in feas ib le . Then c i (t) = v , (t) , t = 0 T, i = 1 n.

Proof. Note that for t < a i + p ~ (3.3i, t b) and (3.3i, t d) for j = i imply that
(3.3i, t) is infeasible and vi(t) = + ~ = c , (t) . For t /> a, +p~ (3.3i, t) is feasible and
vi(t) > - ~ .

We will establish the l emma for t>~a~ + p~ by induction. For any i we consider
two cases, a~ +p~ ~< t <~ bi +pi, and bi +p~ < t ~< T and show that if cj(~-) = vj(,r)
for ~- = 0 t - 1 and] = 1 n, then c~(t) = v~(t).

First consider a, + p~ ~< t ~< b~ + p. Le t 2j,] E/3~ denote an optimal solution to
(3.3i, t). Then v i (t) = Ej~a, Lj(J~j, u).

238 M.L. Fisher/A dual algorithm for the one-machine scheduling problem

By definition /3, = (~ B , / ~) U{i}. By L e m m a 3.1 the sets /3~ for k ~B~ are
pairwise disjoint so

E L~(X, ,u)=L,(£,u)+ ~ E L~(X~,u).
J ~ i k~Bi J~Bk

First suppose £ = t - p ~ . Then for any k ~ B ~ , ~ + p ~ t - p ~ so ~,] ~ / 3 ~ is
feasible in (3.3k, t - p~). Thus by the induct ion hypothes i s

ck(t--p,)<~ ~ Lj(~i,u).

If

c~(t -p~)< ~ g~(x~, u)

for some k ~ B~, then there is an ~i, J ~/3~ for which

L,(~j, u) < ~ L,($j, u).

But then Y~, j ~/3~ ~/3~, ~, j ~ / ~ is feasible in (3.3i, t) and

Lj($j, u) + ~'~ Lj(~i, u) < ~ Lj($j, u)

which contradic ts the opt imal i ty of :~-. H e n c e

c~(t -pi) = ~ Lj(xj, u)
i ~ k

for all k E B~ and

v i (t) = ~ L i (~ j , u) = L (t - p ~ , u) + ~ ck(t-p~).

Since any solut ion feasible in (3.3i, t - 1) is also feasible in (3.3i, t) we must have
v,(t) <~ v~(t- 1). Then since v i (t - 1)= c i (t - l) by the induct ion hypothes is and
c~ (t) = min (c~ (t - 1), Li (t - p~, u) + Ek ~B, c~ (t - pk), the desired resul t v~ (t) = ci (t)
fol lows when £ = t -p~.

If £ < t - p~ then Yj, j E/3, is feasible and hence optimal in (3.3i, t - 1). Thus
v i (t) = v , (t - 1)= c , (t - 1). Since u~(t) is the optimal value of (3.3i, t) it must
sat isfy vi(t)<~ L~(t -p , , u)+ Ek~B, ck(t --pk) and G(t)= c~(t - 1)= v,(t).

Finally, for b, + p~ < t ~< T, const ra int (3.3i, t b) is superf luous with (3.3i, t d)
for j = i so (3.3i, t) and (3.3i, bi +p~) are identical programs. H e n c e v i (t) =
v,(b, +p,) = c~(b, +p,)= G(t).

The fol lowing lemma relates x* to the funct ions ci(t). We then presen t a
t heo rem which establishes the opt imali ty of x* for the problem minx Ex L (x, u).

L e m m a 3.3. For i = 1 n

c,(x,*+p~)= Y~ L~(x?, u).

M.L. Fisher/A dual algorithm for the one-machine scheduling problem 239

Proof. The proof will use induction on [/3~[. First consider i such that [/3~[= 1. In
this case B~ = 0. The form of step 4 of the algorithm implies y, (x* + p,) = 1 which,
by step 2 and B, = 0 implies c~(x* +p~) = L~(x*, u).

N o w we suppose for some k >1 1 that the l emma is true for all i with [/3~[~< k and
show that it is true for any i for which [/~i[= k + 1. The form of step 4 implies
y~ (x * + p,) = 1 which then implies by step 2 that c, (x* + p,) =
L, (x *, u) + Ej~B, cj (x*). Again by step 4 and the fact that i ~ A~ for] E B~ we have
ci(x*) = c j (x * - 1) cj(x* +pj). Then the l emma follows f rom the induc-
tion hypothesis .

Theorem 3.4. L (x * , u) = minx~xL(x , u).

Proof. Le t K = {k: Ak = 0}. By the form of step 4 and fact that Ak = 0 we have for
k E K, ck(T) = ck(T -- 1) ck(x* + Pk). Then by L e m m a 3.3, ck(T) = E,~ak
L,(x*, u). By L e m m a 3.2 x*, i E/3k is optimal in (3.3k, T).

Clearly I,.Jk~K/3k ={1 n} and by L e m m a 3.1 the sets /~k for k E K are
pairwise disjoint. These facts imply that the set X is the Cartesian product of the
IKI sets of x,, i E Bk which satisfy the constraints of (3.3k, T), k E K. Since the
object ive is separable in xi and x*, i ~/~k is optimal in (3.3k, T), an optimal
solution to minx~xL(x, u) is given by the x*, i E Bk for k E K.

Now consider the dual problem maxu w(u) . For this problem we will use a
subgradient method described in [15] and further refined in [16]. Le t u ° be any
initial value for u, for example u 0= 0. The method generates a sequence {u k} by
the rule

(Z*- -W(Uk)) (g (xk) - - e) k = 0 , 1
u k+l = u k + x ~ i l g (x ~) _ el l= ,

where z * is the value of a known feasible solution to (3.1), hk is a scalar satisfying
0 < h k ~<2, X k is the optimal solution to m i n x ~ x L (x , u k) obtained with the
Lagrangian algorithm previously given, [111 denotes the Euclidean norm and e is a
T componen t vector of ones. We initialize z* using the feasible solution
determined with a sequencing heuristic given in Section 4. We also obtain a
feasible solution at each iteration by sequencing jobs in order of increasing x~.
The target z* is updated whenever the object ive value of this solution is less than
Z*.

For the problems solved here u ° = 0 and)to = 2 were used. The sequence hk was
generated as follows. For k >/1, hk = hk-1 was used, unless w(u) had failed to
increase for 5 consecut ive iterations, that is unless w (u J) < - w (u k-5) j =
k - 5 k - 1. Then we set hk = lhk-1.

Unless we discover an x k with g(x k) = e, or u such that w(u) = z *, there is no
means of knowing if the subgradient method has found an optimal solution to the
dual. This is not a practical problem in our work however . We simply per form a
fixed number of iterations and then use the current value of w(u) as our lower
bound. Details on the number of iterations used are given in Section 4.

We conclude this section with three observat ions. The first concerns a

240 M.L. Fisher/A dual algorithm for the one-machine scheduling problem

structural property of the dual problem which has been important computation-
ally. It is easy to see that E,C1 gt(x) = T for all x ~ X, a fact which can be used to
show by direct algebraic manipulation that L (x , u + h e) - E r - l (U t + h) =

L (x , u) - E[_1 u~ and hence w(u + h e) = w(u) . This means that a normalization
constraint may be imposed on u in solving the dual. Such a normalization is
inherent in the subgradient method since values of u determined by the method
satisfy

t=, ,=1 [I -~x-k3~[z ,=1 (g '(xk) - 1) = ,=, u ,.

k+, o = 0 the Reasoning inductively we have 2 T - 1 U t = Er-1 u,. Since we have taken u o
normalization used here is E,=~ u, = 0.

The constraint u >~ 0 is another valid normalization, one which is natural since
E,C, g, (x) = T implies that it is valid to replace the equality constraints (3. lb) by
inequalities. This constraint was used in our early computational work until we
discovered that the current dual requires significantly fewer iterations to obtain
the same lower bound.

This fact is not surprising. Convergence results given in [16] for the subgradient
method are based on the fact if hk is sufficiently small then u T M will be closer to
the optimal set than u k, where the distance from a point u k to a closed set U is
min,~ts [lu - u k I[- It may be shown that unless u = 0 is optimal in the dual, the initial
value u °= 0 is strictly closer to the set of optimal solutions satisfying ~ r = 1 U t = 0

than to those satisfying u 1> 0. Let a be any optimal solution satisfying ti i> 0 and
E ~ let K = (~=~ ~O/T. Then a = a - K e is another optimal solution satisfying

ET=I t~ = 0. Further

T

- o l r = E - r ()
t--1

T T

= ~ (a~)~- 2 K E a~ + T K 2
t - - i t--1

= I la - 0 1 1 2 - T K 2

and unless a = 0, K > 0. This fact suggests that if a choice exists, equality
constraints are preferable to inequality constraints for the application of dual
methods to combinatorial problems.

Our second observation concerns the computation required by the Lagrangian
algorithm. We have shown that this computation is proportional to n 2/~, where/~ is
the average job processing time. If /~ is large, the Lagrangian problem may be
difficult to solve even if n is small. This difficulty can be avoided by simply
ignoring the constraint gt(x) = 1 for some periods of the problem. If large process
times are a problem we suggest replacing the dual problem by

max w(u) ,
s.t. u ~> 0,

u, = 0, t/k not integer

where k is zn integer greater than 1. The time periods ignored are those for which

M.L. Fisher [A dual algorithm for the one-machine scheduling problem 241

u, is required to be zero. While addition of the constraints u, = 0 for t / k not
integer may reduce the max imum value of w (u), it also simplifies solution of the
Lagrangian problem. We can modify step 2 of the algorithm for the Lagrangian
problem by setting c~ (t) = c~ (t - 1) for all t such that (t - p~)/k is not integer. This
is because u, ~, = 0 and

Ur ~ U . - - Ut pi -~" llt = Z U . "}- Ut ~ l~..
r = t - p i + l ~=t pi r = t - p i z = t - p i

Hence
t r l

c i (t - 1) < ~ m a x (t - d , - 1 , O) + ~, u~
~ - t pi

~ < m a x (t - d i , O)+ 2 m.
"r-=t--pi+l

Under this modification the computat ion for the Lagrangian algorithm is propor-
tional to n2p/k.

Some minor modifications to the algorithm for the dual are necessi tated by the
additional constraints. Obviously the formula for updating u, is applied only if t / k
is integer. If the updated u, would be negative, the value 0 is used instead.

Finally, we would like to note some similarities be tween the recursion for
computing ci(t) and a standard dynamic programming recursion for the knapsack
problem given on page 217 of [9]. If the size of the knapsack is equal to the
paramete r T used here and we regard jobs as variables in the knapsack problem
then both recursions evaluate a function which gives the optimal value of a family
of knapsack problems for knapsack sizes between 0 and T and for n different
subsets of the variables (jobs). This function is given as the minimum of two terms
formed f rom the optimal values of other knapsack problems and a direct cost. In
each case the number of steps required to solve the problem is proport ional to the
product of the number of variables (jobs) and the size of the knapsack.

The two problems are not however identical. Both the differences and
similarities may be highlighted by examinat ion of the Lagrangian problem when
the successor sets A~ have a special form. Suppose for k < n that B, = Ak = ~ and
B~ = {i - 1}, i = 2 k. Then jobs 1 k correspond to a separate component
of the precedence graph and the Lagrangian optimization may be per formed
independently for them. If we let yl = xl, y~ = x~-x~ 1-pi-~, i = 2 k, y =
(yl yk), b = T - Z~=l p,, and

) f (y) = ~ Li Ys + pj, u
i=1]=1

then the Lagrangian problem for jobs 1 k is the following knapsack problem
with nonlinear objective,

min f (y),
k

y~ ~< b,
i=1

y, >~ 0 and integer.

242 M.L. Fisher/A dual algorithm for the one-machine scheduling problem

We note that the recursion given in [9] is not applicable to this problem because of
the nonlinear objective.

It is interesting to note the appearance of an embedded knapsack problem in the
analysis of other combinatorial problems. Gilmore and Gomory [12] use the
standard knapsack problem in their algorithm for the cutting back stock problem
and Fisher and Shapiro [8] have used the group knapsack problem devised by
Gomory to form a dual problem for the general integer programming problem.
These analyses share some interesting strategic similarities. For example, in each
case difficulties can arise if the knapsack problem is too large. For the general IP
problem, the size of the knapsack is the absolute value of the LP basis
determinant and can be large if the constraint coefficients are large. Gorry,
Shapiro, and Wolsey [13] have suggested a method for dealing with this difficulty
that depends on relaxing inequality constraints by dividing the coefficients and
right-hand sides by a constant greater than one and rounding in the appropriate
direction. Here the size of the knapsack equals the sum of the job process times
and can be disproport ionately large if the process times are given as large
numbers. In this case we suggested specifying a suitable integer k and ignoring all
time periods which are not devisable by k. It can be shown that this is essentially
the same as dividing all process times by k and rounding down, in which case this
scheme is surprisingly close to that of Gorry, Shapiro, and Wolsey.

4. Branch and bound algorithm

In the branching scheme we use each node corresponds to a specific sequence for
some subset of the n jobs which are required to be per formed last. Specifically, let
K ={k, k,} denote an ordered set of 1 distinct integers selected f rom
{1 n} to satisfy the proper ty Akl = 0 and Ak~ C_ {kl kj_l} for i = 2 I.
Le t

XK = {x E X: xk, = T - pk,, xk2 = T - pk, - Pk xk, = T - 2 PlJ,
i - !

and xj <<- xk, - pj, j ff: K }.

Nodes will correspond to sets K and at node K we require x E XK.
The fundamental step of the algorithm selects a node K and at tempts to either

find an optimal solution over the set XK or show that XK may be ignored in the
search for an optimal solution. I f this can be done we say the node K is fa thomed.
If we fail in the a t tempt to fa thom a node then we branch, that is form new nodes
f rom node K by partitioning the set XK into subsets. The new nodes are of the
form {K, i} for all i with Ai C_ K but i ~ K.

There are three devices for fa thoming nodes. First, for any u a lower bound on
the optimal value of (3.1) with x E XK is given by wK(u) = minx~xk L (x , u) - ET=I ut.
This p roNom may be solved by the Lagrangian algorithm in Section 3. Le t z*

M.L. Fisher/A dual algorithm for the one-machine scheduling problem 243

denote the object ive value of a known feasible solution for (3.1). If for some u,
wK(u) >t z*, then xK cannot contain a solution better than the known one and the
node K is fa thomed by bound. (Actually, since dl and pl are integers the object ive
value of any solution must be integer and if wK(u) is fractional, the next largest
integer is a valid lower bound. To allow for computat ional error in the calculation of
wK (u) the computer code uses the largest integer not greater than wK (u) + 0.9 in
place of wK(u).)

Let xK(u) denote the solution to minx~×~ L(u , x) obtained by the Lagrangian
algorithm. Note that xK(u) is feasible in (3.l) if and only if g, (xK(u))= 1 for
t = 1 T. If this occurs then xi~(u) is optimal in (3.1) under the restriction
x E X~ and node K is also fa thomed.

A third device for fa thoming nodes is based on the principle of optimality of
dynamic programming. For a node K = {il i~} let I I (K) =
E~=l max (0, T k 1 -Ei=~ p~j-di~) denote the object ive value for the jobs of K
per formed last in the sequence iz i,. Suppose that two nodes of the branch
and bound tree correspond to sets K, and K2 which contain the same jobs and that
H(K2) >1 H(K1). Then no solution in X m can have a lower object ive value than an
optimal solution in XK1 and the node K2 may be ignored. In this case we will say
node K2 is dominated by node K1. This is exactly the reasoning used by the
dynamic programming algorithms in [14] and [24] for the one-machine scheduling
problem. The use of this result here amounts to a synthesis of dynamic
programming and branch and bound. See [19] for a general discussion of this idea.

It is possible that reapplication of Theorem 2.1 could be fruitful at a particular
node. This is because the requirement x E XK imposes new conditions which may
cause the test of the theorem to hold. This possibility is not included in the current
version of the algorithm.

Earlier in our work we used a branching scheme in which nodes corresponded
to sequences of jobs to be per formed first. While the current scheme is on average
dramatical ly bet ter than the earlier one, there have been a few problems where it
required more than twice as much solution time. Both schemes would undoubt-
edly be dominated by a mixed strategy in which nodes correspond to partial
sequences at both ends of the schedule. When branching the decision of whether
to fix a job at the start or end of the current unscheduled set could be based on the
increase in the lower bound for each case in the same way that a branch variable is
selected in integer programming algorithms.

A feasible solution with which to initialize z* was obtained by the following
procedure. Le t S = {k~ k~} denote a sequence for a set of jobs which have
been scheduled to be per formed first and let U ={1 n } - S denote the
unscheduled set. Begin with S = 0 and augment S according to the following rule.
Le t U ' ={ i E U: B~ C S}, t =Ei~sp~ and t ' =Ei~t~,p~. For each i E U ' we
compute a "probabi l i ty" PT, that job i will be tardy if not scheduled next. Set

1, d~ ~< p~ + t,

t ' + t -d~
PT~= , t +pi <d~ < t + t ' .

t ' - p ~

O, t + t ' < d ~ .

244 M.L. Fisher/A dual algorithm for the one-machine scheduling problem

Let r ~ U' be any job with maximum value of PT,/p~ and set S = { k l g, i '}.

This procedure is an adaptation of Caroll's heuristic sequencing rule for general
job shops [3]. Once a feasible schedule has been obtained in this way adjacent
pairwise interchanges are attempted until no improvement can be made. This
determines an initial value for z*. We also update z* whenever an improved
feasible solution is discovered in the course of solving a Lagrangian problem in
the branch and bound algorithm.

The flow chart in Fig. 2 gives a detailed statement of the branch and bound
algorithm. The parameters I1, I2, 13, shown are input quantities which specify the
maximum number of iterations of the subgradient method to be performed at
various points in the algorithm. The four major steps of the algorithm are
numbered 1-4. Other steps are concerned with minor bookkeeping activities.
Steps 1 and 2 attempt to fathom a selected node K by dominance and by bound. If
node K is not fathomed then we go to step 3 and create new nodes. When a node
{K, i} is created it is tagged with an initial lower bound value ZK,*. If possible the
next node to be fathomed is selected from those newly created and optimization

!~0~_KI,~K = K,T
I = 13

[' 0 -- --
L= ¢ 0,1=Ii ~ 2 1

| Search nodes previously created |
~ for a node which dominates K]

K undominated

K dominated

2. Bound Step.
Apply dual algorithm to max w k (u). Update

z* whenever an improved primal solution is
discovered.
Stop when one of the following occurs.

(i) Wk(U) ~ z*

(2) wk(u) < z* and gt(xk(u))=l,t=l,...,T

(3) Wk(U) < z* and 1 Iterations of the

dual_algorithm have been performed.
Let u and ~ denote the value of
u and k when we stop.

3. Branch Step

Let S = (i:i ~ K, B i C K}. For each i 6 S compute

zK, i = WK~ i (~) and store the node (K, i) and ZK, i if

ZK, i < z*. There are two possibilities:

(i) ZK, i ~ z e for all i £ S.

(2) ZK, i < z* for at least one i ~ S.

In this case let i ~ S be such that ZK, ~ - minigs zK'i

[I NO z K ~ z*? (

7 YES
STOP

(2)

4. Global Search

Search unfathomed nodes which have
not been branched from to find a
node K with least value z K

Fig. 2. Flowchart of the branch and bound algorithm.

M.L. Fisher/A dual algorithm for the one-machine scheduling problem 245

of the new dual is continued with the step size)tk at its current value. Otherwise a
next node is selected by a global search in step 4. We terminate when this search
fails to produce an unfa thomed node.

To illustrate this algorithm we give in Fig. 3 the complete enumerat ion tree for
the 50-job example given in Sections 1 and 2. The number inside of a node
indicates the order in which that node was selected for a t tempted fathoming. The
number beside a branch indicates the job sequenced next along that branch.
Numbers beside a node give the lower bound obtained when the node is created.
If no value is given, the lower bound is the same as at the predecessor node. When
two numbers such as 1462/1464 are given, the upper number is the lower bound
obtained when the node was created while the lower number is an improved lower
bound obtained by optimizing the dual problem when the node was selected for
a t tempted fathoming. A number in a square beneath a node like [] indicates that

37 ~ q 5 1461
,46o =-4~ - / -i; ~

34 ,464 [] ("%

%

1463 [] F 28
I - ~ 1463Q 1~26

,464 6)8
)
17 %

1464

Fig. 3. Enumeration tree for the example.

246 M.L. F isher /A dual algorithm for the one-machine scheduling problem

the node is dominated by node 4. The enumerat ion begins with a feasible solution
with object ive value 1464. This solution was found in the initial optimization of
the dual at node l and was in this case optimal.

5. Computational experience

The algorithm has been applied to a sample of 75 randomly generated test
problems. Process times for these problems were obtained f rom a uniform
distribution on the integers be tween 1 and 10. Once process times for a problem
had been obtained T = £~-, pl was computed and due dates were selected f rom a
distribution which depends on T and two parameters R and r called due date
range and tardiness factor. The distribution is uniform over the integers be tween
T(1 - r - R / 2) and T(1 - r + R / 2) , where R T is the range of the distribution and
T(1 - r) is the mean. In a certain average sense r is the fract ion of jobs which are
late in an optimal solution. More precisely if all process times are equal and all due
dates are equal to the distribution mean of T(1 - r) then r is the fract ion of jobs
which are late in an optimal solution. A number of authors ([1], [21], [24]) have
noted that the values of r and R have a strong effect on problem difficulty and that
problems obtained f rom distributions with r between 0.6 and 0.8 and with R = 0.2
are the most difficult.

The 75 problems considered here were divided equally over three sizes, n = 20,
30, and 50. Each set of 25 problems of a particular size was distributed over four
pairs of values for r and R. There were 10 problems with r = 0.5 and R = 1.0, and
5 problems each for the pairs r = 0.8, R = 0.4, r = 0.8, R = 0.2, and r = 0.65,
R = 0.2. Thus the sample included a number of very large and difficult problems.
Data for all problems is available f rom the author on request.

Extensive information for each problem solved is given in Tables 1, 2 and 3.
Columns (1) and (2) in each table give the value of r and R. Column (3) gives the
number of jobs remaining in the problem after the reduction described in Section
2 was applied, Column (4) gives the optimal object ive function value for the
original unreduced problem. Columns (5)-(9) all deal with the reduced problem
and report various object ive function values. Column (5) gives the value of the
feasible solution obtained by the heuristic sequencing rule described in Section 4.
As discussed in Section 3, each time we solve a Lagrangian problem we obtain a
feasible solution by sequencing jobs in order of their xl values. Column (6) gives
the value of the best improved feasible solution (if any) discovered by this means
during the optimization of the dual problem at the first node of the branch and
bound tree. Obtaining this solution requires a comparat ive ly small amount of
computat ion. Column (7) gives the optimal value for the reduced problem.
Column (8) gives the lower bound obtained at the first node of the tree with the
initial application of the dual algorithm. Finally, Column (9) gives the lower bound
for u = 0, the value with which we begin solution of the dual. Column (10) gives
the number of nodes in the enumerat ion tree at which fathoming was at tempted.
Column (11) gives the cumulat ive number of iterations of the dual algorithm which
were executed in all fathoming at tempts. This is the number of times a Lagrangian

M.L. Fisher /A dual algorithm for the one-machine scheduling problem

Table 1

Results for the 20 job problems

247

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (l l) (12)
Optimal Optimal

Reduced value Initial value
problem complete feasible reduced 360-67

~- R size problem z* value problem w(u*) w(O) Nodes Iter. Seconds

0.5 1.0 14 76 85 77 76 74 9 5 73 4.98
0.5 1.0 3 109 27 27 27 10 1 9 0.55
0.5 1.0 0 263 0.28
0.5 1.0 0 66 0.28
0.5 1.0 0 16 0.28
0.5 1.0 15 205 136 135 134 128 37 18 146 10.19
0.5 1.0 7 36 27 25 25 25 0 1 20 1.42
0.5 1.0 13 41 40 40 40 21 1 7 0.76
0.5 1.0 9 174 93 93 92 54 7 78 2.8t
0.5 1.0 0 32 0.28
0.8 0.4 0 491 0.28
0.8 0.4 15 395 143 141 141 141 78 1 38 3.06
0.8 0.4 0 630 0.28
0.8 0.4 5 566 19 18 18 18 II 1 26 0.88
0.8 0.4 4 533 17 17 17 10 1 12 0.61
0.8 0.2 15 390 141 136 135 135 60 4 62 4.62
0.8 0.2 0 655 0.73
0.8 0.2 13 419 113 96 96 96 38 1 32 2.72
0.8 0.2 20 574 615 574 574 574 468 1 43 5.11

0.8 0.2 12 593 128 122 121 121 55 8 88 4.92
0.65 0.2 13 356 89 88 85 82 0 9 110 7.17
0.65 0.2 15 412 252 252 252 131 1 36 2.94
0.65 0.2 15 318 141 131 131 131 0 1 39 4.72
0.65 0.2 15 359 172 169 168 168 42 2 52 5.61
0.65 0.2 13 271 108 99 97 0 4 57 5.00

Average solution time: 2.82 seconds.

problem was solved. Most of the computat ion time is spent solving these
problems. Column (12) gives the total solution time for each problem.

To simplify the computer programming arcs of the precedence networks were
removed until IAi] ~< 1 and]Bi I ~< 1 for all i was satisfied. Values of the parameters
11, 12 and 13 specified in Sect ion 4 were given by 13 = 5 , /2 = 30, and 11 = 50 if the
reduced problem contained no more than 25 jobs, L = 100 otherwise. Select ion of
these values was somewhat arbitrary. The way in which starting solutions are
obtained for the dual problem at various points in the branch and bound procedure
led us to bel ieve that the values should satisfy L > 12 > 13. The specific selection
was based largely on observat ions made while debugging the computer program.
It is quite possible that further study of the select ion of these values would
improve algorithm performance. We bel ieve that w(u*) is quite c lose to the
optimal value of the dual, although in some cases , particularly when 11 = 50, we
k n o w that additional iterations of the subgradient method would produce an
improved bound.

To obtain additional information about how closely w (u*) approached the dual
optimal value we used the B O X S T E P Method of Hogan, Marsten and Blanken-

248 M.L. Fisher / A dual algorithm for the one-machine scheduling problem

Table 2

Results for the 30-job problems

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Optimal Optimal

Reduced value Initial value
problem complete feasible reduced 360-67

r R size problem z* value problem w(u*) w(O) Nodes Iter. Seconds

0.5 1.0 21 160 110 110 110 56 1 19 2.44
0.5 1.0 0 22 0.96
0.5 1.0 25 269 252 251 248 162 37 294 22.29
0.5 1.0 0 61 0.96
0.5 1.0 0 45 0.96
0.5 1.0 11 223 143 143 143 120 1 8 1.46
0.5 1.0 20 127 49 49 48 14 2 53 5.44
0.5 1.0 23 172 136 136 136 70 1 32 3.69
0.5 1.0 0 176 0.96
0.5 1.0 15 202 77 77 77 15 1 22 2.51
0.8 0.4 17 917 104 103 103 102 30 3 60 5.73
0.8 0.4 19 709 95 94 92 30 13 109 9.28
0.8 0.4 18 1074 191 182 180 179 88 6 74 7.35
0.8 0.4 7 1102 32 32 32 20 1 2 1.29
0.8 0.4 14 853 85 85 83 38 10 89 5.22
0.8 0.2 19 1031 321 315 315 315 179 3 56 6.37
0.8 0.2 21 1169 430 423 423 423 265 1 39 6.52
0.8 0.2 19 859 275 246 246 246 178 1 40 4.25
0.8 0.2 25 879 690 651 649 645 494 20 177 19.06
0.8 0.2 13 712 19 19 18 0 8 82 3.62
0.65 0.2 2l 612 640 613 612 609 439 17 148 14.75
0.65 0.2 24 615 440 428 428 428 242 7 75 11.91
0.65 0.2 22 964 611 610 608 313 20 21l 30.86
0.65 0.2 28 511 535 515 511 511 257 8 135 25.29
0.65 0.2 22 662 272 253 252 246 51 42 432 58.75

Average solution time: 10.08 seconds.

ship [17] to obtain the precise optimal value of the dual for the problem reported in
line 9 of Table 1. Since we know the optimal value of the problem is integer, lower
bounds may be rounded up to the next largest integer and this is done in the values
reported in column (18). The fractional value of w(u*) for this problem was
91.198. In our most successful experiment with BOXSTEP we first ran the
subgradient method for 300 iterations to obtain a value of 91.968. Then BOXSTEP
was applied and discovered an optimal solution to the dual with an objective value
of 92.000. It is noteworthy that obtaining the precise optimal value of the dual
using BOXSTEP required over 2 minutes on a 360-67.

A number of patterns exist in the computational results. The difference between
the optimal value and w(u*) is consistently small. The largest gap of 274-263
occurred for the fifth 50-job problem. The bound w(u*) was actually equal to the
optimal value for 31 of the 63 problems which were not completely solved by
reduction. The difference between the first feasible solution obtained and the
optimal value is also consistently small. The largest gap was 2590-2575 for the 20th
50-job problem. This difference was essentially independent of problem size and
difficulty. The first solution was optimal in all but 23 cases. Since the first feasible

M.L. Fisher/A dual algorithm for the one-machine scheduling problem

Table 3

Results for the 50-job problems

249

(l/ (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Optimal Optimal

Reduced value Initial value
problem complete feasible reduced 360-67

~- R size problem z* value problem w(u*) w(O) Nodes Iter. Seconds

0.5 1.0 30 218 213 213 213 124 1 34 7.76
0.5 1.0 28 624 430 428 428 428 380 I 57 8.22
0.5 1:0 41 220 176 176 174 55 14 190 39.49
0.5 1.0 0 30 3.39
0.5 1.0 48 279 281 274 263 135 126 771 139.51
0.5 1.0 5 56 13 13 13 0 1 4 3.66
0.5 1.0 10 77 58 47 47 47 0 1 26 2.89
0.5 1.0 27 808 312 306 303 192 40 349 35.75
0.5 1.0 27 368 280 279 278 169 6 125 18.94
0.5 1.0 3 53 6 6 6 1 1 6 3.60
0.8 0.4 21 2690 158 157 157 155 125 4 66 5.56
0.8 0.4 9 3618 68 68 68 36 1 32 3.92
0.8 0.4 25 2195 122 113 113 112 11 3 67 10.05
0.8 0.4 40 3251 1743 1736 1729 1404 89 838 166.84
0.8 0.4 25 2342 177 164 164 164 60 1 42 8.89
0.8 0.2 33 3175 987 937 937 935 392 50 439 75.26
0.8 0.2 43 1620 1583 1569 1568 1564 821 28 269 84.16
0.8 0.2 40 2793 1567 1467 1465 1463 965 48 532 108.44
0.8 0.2 47 2673 2770 2673 2673 2670 2153 46 410 93.18
0.8 0.2 45 3023 2618 2590 2575 2570 2066 81 642 123.50
0.65 0.2 46 1733 1447 1404 1399 1390 515 91 955 401.62
0.65 0.2 37 1773 1176 1142 1142 1142 489 1 61 27.26
0.65 0.2 37 1540 1540 1464 1464 1459 668 30 360 101.16
0.65 0.2 29 1434 887 867 866 863 514 29 343 56.55
0.65 0.2 32 2222 945 885 885 884 431 19 233 57.63

Average solution time: 63.49 seconds.

solution is obtained relatively quickly the algorithm could be used quite practi-
cally to obtain approximately optimal solutions even for very large problems. The
sharp lower bound w (u *) would be useful in providing an indication of the quality
of the approximate solution obtained. The value of the first feasible solution can
be compared with z*, the value of the initial solution obtained by a heuristic.
While this heuristic often produced good solutions, its performance was adversely
affected by problem size and difficulty. This point should be noted in the empirical
study of heuristics as they are often tested on small problems.

The enumeration trees obtained were generally small. With only one exception
they contained less than 100 nodes. This is apparently a consequence of the sharp
lower bounds and good feasible solutions.

Although the relation of problem difficulty to the parameters ~ and R agree with
the observations of Srinivasan [24], Baker and Martin [1], and Rinnooy Kan et al.
[21], the disparity between "easy" and "hard" problems is less for our algorithm
than for theirs.

A comparison of our results with that of others is difficult because other
researchers have worked with small problems. Baker and Martin [1] tested

250 M.L. Fisher/A dual algorithm for the one-machine scheduling problem

various algorithms on problems with n between 8 and 15. Average solution times
for Srinivasan's algorithm, the best of those tested, appeared to double when n
increased by 2. Approximately 1 second on a 360-65 was required to solve an
average 15-job problem. If this experience were extrapolated, it would imply
average solution times of 5.6 seconds, 179.2 seconds, and just over two days
respectively for problems with 20, 30, and 50 jobs. The collection of values for r
and R in the Baker-Martin sample of test problems is comparable in difficulty to
the one used here, although the average process times were larger than in ours.
This may have increased solution times for Srinivasan's algorithm, although his
algorithm does not have the direct dependence on average process time of ours.

The algorithm of Rinnooy Kan et al. [21] is also applicable to this problem and
has performed quite well on a group of 10-, 15-, and 20-job weighted tardiness
problems. This algorithm was recently applied to the 75 test problems used here.
Generally solution times were about equal to ours for the 20-job problems but
larger for the 30- and 50-job problems. In particular, one 30-job and several 50-job
problems were not solved in 5 minutes of computing [22]. The longer solution
times for the larger problems seems to be a consequence of somewhat weaker
bounds. The comparison is partially obscured because the algorithm is program-
med in A L G O L and was run on a Control Data Cyber 73-38.

Acknowledgment

I would like to express my appreciation to William Griffith and George Nemhauser
for a number of helpful comments. Roy Marsten generously made his SEXOP
subroutines available for one phase of the computational work.

References

[1] K.R. Baker and J.B. Martin, "An experimental comparison of solution algorithms for the
single-machine tardiness problem", Naval Research Logistics Quarterly 21 (1) (1974) 187-199.

[2] K.R. Baker, Introduction to sequencing and scheduling (Wiley, New York, 1974).
[3] D.C. Carroll, "Heuristic sequencing of single and multi-component orders", Ph.D. dissertation,

Massachusetts Institute of Technology (June 1965).
[4] S.E. Elmaghraby, "The one machine sequencing problem with delay costs", Journal of Industrial

Engineering 17 (2) (1968).
[5] H. Emmons, "One machine sequencing to minimize certain functions of job tardiness",

Operations Research 17 (4) (1969).
[6] M.L. Fisher, "Optimal solution of scheduling problems using Lagrange multipliers: Part I"

Operations Research 21 (5) (1973) 1114-1127.
[7] M.L. Fisher, W. Northup and J.F. Shapiro, "Constructive duality in discrete optimization",

Mathematical Programming, to appear.
[8] M.L. Fisher and J.F. Shapiro, "Constructive duality in integer programming", SIAM Journal on

Applied Mathematics 27 (1) (1974).
[9] R.S. Garfinkel and G.L. Nemhauser, Integer programming (Wiley, New York, 1972).

[10] L. Gelders and P.R. Kleindorfer, "Coordinating aggregate and detailed scheduling decisions in
the one-machine job shop: Part I, theory", Operations Research 22 (1974) 46-60.

M.L. Fisher / A dual algorithm for the one-machine scheduling problem 251

[11] A.M. Geoffrion, "Lagrangian relaxation for integer programming", Mathematical Programming
Study 2 (1974) 82-114.

[12] P.C. Gilmore and R.E. Gomory, "A linear programming approach to the cutting-stock problem",
Operations Research 19 (1961) 84%859.

[13] G.A. Gorry, J.F. Shapiro and L.A. Wolsey, "Relaxation methods for pure and mixed integer
programming problems", Management Science 18 (1972) 22%239.

[14] M. Held and R.M. Karp, "A dynamic programming approach to sequencing problems", SIAM
Journal 10 (2) (1962).

[15] M. Held and R.M. Karp, "The travelling-salesman problem and minimum spanning trees: Part
II", Mathematical Programming, 1 (1) (1971) 6-25.

[16] M. Held, P. Wolfe and H.P. Crowder, "Validation of subgradient optimization", Mathematical
Programming 6 (1) (1974) 62-88.

[17] W.W. Hogan, R.E. Marsten and J.W. Blankenship, "The BOXSTEP method for large scale
optimization", Operations Research 23 (3) (1975) 389-405.

[18] E.L. Lawler, "On scheduling problems with deferral costs", Management Science 9 (4) (1963).
[19] T.L. Morin and R.E. Marsten, "Branch and bound strategies for dynamic programming",

Operations Research 24 (4) (1976) 611-627.
[20] G.L. Nemhauser, Introduction to dynamic programming (Wiley, New York, 1966).
[21] A.H.G. Rinnooy Kan, B.J. Lageweg and J.K. Lenstra, "Minimizing total cost in one-machine

scheduling", Operations Research 23 (5) (1975) 908-927.
[22] A.H.G. Rinnooy Kan, B.J. Lageweg and J.K. Lenstra, private communication (September 1975).
[23] J. Shwimer, "On the n-job, one machine, sequence-independent scheduling problem with

tardiness penalties: a branch-bound solution", Management Science 18 (6) (1972) 301-313.
[24] V. Srinivasan, "A hybrid algorithm for the one machine sequencing problem to minimize total

tardiness", Naval Research Logistics Quarterly 18 (3) (1971) 317-327.

