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Given a mapping F from real Euclidean n-space into itself, we investigate the connection 
between various known classes of functions and the nonlinear complementarity problem: Find 
an x* such that Fx* >1 0 and x* 1> 0 are orthogonal. In particular, we study the extent to 
which the existence of a u/> 0 with F u i> 0 (feasible point) implies the existence of a solution 
to the nonlinear complementarity problem, and extend, to nonlinear mappings, known results 
in the linear complementarity problem on P-matrices, diagonally dominant matrices with non- 
negative diagonal elements, matrices with off-diagonal non-positive entries, and positive semi- 
definite matrices. 

1. Introduct ion 

Let R n denote Euclidean n-space, (., .) the usual inner product,  and 
R n the set of  x in R n with x >~ 0 in the componentwise ordering. Then 
given F • R n -> R n defined on R n, the nonlinear complementari ty prob- 
lem consists of  finding an x* ~> 0 such that 

Fx* >1 0,  (x*,Fx*) = 0 .  (1) 

This problem has received quite a lot of  attention in both the linear 
case, where F x = A x - z for some matrix A and vector z in R n, and in 
the nonlinear case [7,13,17]. In the nonlinear case, efforts to obtain 
existence results have mainly been based on growth conditions (coer- 
dvi ty  conditions) on F. In the linear case, existence results have also 
been obtained by restricting the type of matrices under consideration, 
and by assuming the existence of  a feasible point; that is, the existence 
of  a u/> 0 such that F u / >  0. 

* This research was supported in part by the National Science Foundation under Grants 
GJ-28528 and GJ-40903. 
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For example, in 1964 Cottle [2] proved that i f A  is positive semi- 
definite, and A u ~> z for some u ~> 0, then there is an x* ~> 0 which 
satisfies (1) with F x = A x - z. The purpose of  this paper is to investi- 
gate the extent  to which results like these are carried over to nonlinear 
mappings. 

In Section 2 we extend the result which guarantees a unique solution 
x* i> 0 to (1) i f F x  = A x - z and A is a P-matrix. Thisis done by taking 
the P-functions, as defined by Mord and Rheinboldt  [18], and proving 
that if F is a P-function on R n, then (1) has at most one solution in R n. 
An example shows that there may be no solutions. 

In Section 3 we obtain some nonlinear feasibility results. Theorems 
analogous to those proved by Cottle [2] and Chandrasekaran [1] in 
the linear case are obtained by considering the monotone  [ 15 ] and off- 
diagonally antitone [19] functions. These mappings are nonlinear ver- 
sions of  positive semidefinite matrices and matrices with non-positive 
off-diagonal entries, respectively. We also prove that i fA is a diagonally 
dominant matrix with nonnegative diagonal entries, then A is a row 
adequate matrix, and thus a feasibility result for these matrices follows 
from a theorem of Eaves [7]. We then use the nonlinear version of  
diagonal dominance due to Mord [ 14] to extend this result. 

One last point: We do not make any comments  on the relationship 
between the various classes of  functions; the interested reader should 
consult [ 18 ]. 

2. Uniqueness 

Many researchers have contributed to one of  the nicest theorems on 
the linear complementari ty problem; for example, Cottle and Dantzig 
[4], and Ingleton [11]. Eaves [7, page 626] has a complete list of  
references. 

Theorem 2.1. T h e  n b y  n real  m a t r i x  A has p o s i t i v e  p r i n c i p a l  m i n o r s  i f  

a n d  o n l y  i f  f o r  each z in R n t h e r e  is a u n i q u e  x* ~ 0 w i t h  A x >>- z a n d  

( x * , A  x* - z )  = O. 

Previous to this result, Fiedler and Ptfik [9] had formally called all 
matrices with positive principal minors P-matrices and showed, among 
other things, that A is a P-matrix if and only if for each x 4= 0 there is 
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an index i for which x i Y  i > O, where y = A x. On the other hand, Mor6 
and Rheinboldt [18], motivated by other problems, studied certain 
nonlinear mappings which were closely related to the P-matrices. 

Definition 2.2. The mapping F : R n ~ R n is a P-function on the set D if  
for each x 4= y in D there is an index k --- k ( x , y )  such that 

( X k - - Y k )  [ f k ( x )  - - f k ( Y ) ]  > O . 

Here x k and f k ( x )  are the k th components of  x and F x ,  respectively. 

The following result is an immediate consequence of the above 
definition. 

Theorem 2.3. L e t  F • R n ~ R n be a P- funct ion on R n Then there is at +. 

m o s t  one x* in R n wh ich  satisfies (1). 

Proof. If x* and y* in R n satisfy (1), then 

(x; - y ; )  [f/(x*) - f / ( y * ) l  = - y ; f i ( x * )  - x T f i ( y * )  < 0 

for each i, and since F is a P-function, y* = x* as desired. 

Mor6 and Rheinboldt [18, Theorem 5.2] proved that if F :  R n ~  R n 
is (FrOchet) differentiable in R n and F ' ( x )  is a P-matrix for each x in 
R n, then F is a P-function on R n. Therefore, if F ' ( x )  is a P-matrix for 
each x in R+ n, then there is at most one x* in R n which satisfies (1). This 
observation applies, in particular, to the result of  Cottle [3]. 

Although the uniqueness part of  Theorem 2.1 extends to the non- 
linear P-functions, this is not the case for the existence part. 

Example 2.4. Define F : R 2 ~ R 2 by f l ( x )  = g90Cl) + X 2 and f2(x) = x2, 
where ~ : R 1 ~ R 1 is any strictly increasing function with ~(t) 4= 0 for 
each t. This mapping is a P-function, but if x* in R 2 satisfies (1), then + 

x~ = 0 and thus x*l~o(X*a)= 0, which implies that x~ = 0. However, 
Y(0) R 2. 

Efforts to extend the existence part of  Theorem 2.1 have usually 
been based on conditions involving the growth of  F (coercivity con- 
ditions). For example, in [ 17 ] it is shown that if either F is a convex P- 
function on R~_ or if there is a c > 0 such that 
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max { ( x  i - Y i )  [fi(x) - f i ( Y ) ] )  ~> c IIx-Yll 2 
l<~i<~n 

for all x and y in R n, then there is precisely one x* in R n which satis- 
fies (1). The p roo f  of  these results is based on Theorem 2.5, and on the 
fact that  in either case there are constants a and /3 wi th  c~ > 0 such 
that  

max (x i f i (x ) / l lx[ l=}  >~ ~ Ilx[l= +/3 (2) 
l<~i<<.n 

for all x ~ 0 in R n, where Ilx[l= = max [xi[. 

Theorem 2.5. A s s u m e  F • R n -~ R n is c o n t i n u o u s  on R n. I f  t here  is a u 

in R n and  a c o n s t a n t  r > liull~ such  tha t  

max ( ( x  i - u i) fz.(x)} > 0 
l <~ i <~ n 

f o r  all x in R n w i t h  Ilxll= = r, then  (1) has a so lu t ion  x* >1 0 w i t h  

IJx*lloo ~< r. 

The proof,  as well as a discussion of  the relationship o f  Theorem 2.5 
to other  results in the l i terature can be found in [17, Section 2]. In 
that  paper, Theorem 2.5 was used to obtain existence results under  co- 
ercivity condit ions such as (2); in this paper it will be used to obtain 
existence results under  feasibility condit ions.  

3. Classes of  functions 

There are several results which guarantee the existence o f  a solut ion 
to the linear complementa r i ty  problem wi th  a feasibility assumption.  
Eaves [7] has unif ied some of  these results, and we now investigate the 
extent  to which his results carry over to nonl inear  mappings. 

Theorem 3.1. L e t  A be  an n by  n real ma t r i x  a n d  a s s u m e  tha t  there  

is a u >~ 0 such  tha t  A u >>- z. If, in addi t ion ,  A satisf ies the  f o l l o w i n g  

t w o  a s sump t ions ,  then  there  is an x *  >> 0 such  tha t  A x *  >~ z a n d  

(x* ,  A x *  - z )  = O. 

(a) F o r  each n o n - z e r o  x >~ 0 there  is an i n d e x  k such  tha t  xtc > 0 a n d  

(A x ) k  >~ O. 
(b) F o r  each non - ze ro  x >1 0 such  tha t  A x >> 0 and  ( x , A  x) = O, there  



J.J. Mord, Functions and feasibility conditions in complementarity problems 331 

are nonnegat ive  diagonal matrices D 1 and D 2 such that  D 2 x  -¢ 0 and 

(D1A +Aa'D2) x = 0. 

Al though  Theorem 3.1 has been ex tended  by Garcia [10],  we will 
no t  consider his result since even Theorem 3.1 cannot  be generalized to 
nonl inear  mappings in the sense tha t  the P-matrices clearly satisfy the 
hypotheses  o f  Theorem 3.1, but  the mapping F defined in Example  2.4 
is a P-function,  there is a u > 0 such that  F u > 0, but  (1) does not  have 
any solut ion x* > 0. 

However,  it is possible to extend parts o f  Theorem 3.1 to nonl inear  
mappings. For  example,  consider the m o n o t o n e  mappings [ 15 ] : A func- 
t ion F : R n-+ R n is m o n o t o n e  on D i f ( x - y , F x - F y )  > 0 for e a c h x  
and y in D. If  F is def ined by F x = A x - z for some matr ix  A and z in 
R n, then F is m o n o t o n e  on R n if  and only i f A  is positive semidefinite,  
and if  this is the case, then  A satisfies the assumptions of  Theorem 3.1 
when D 1 and D 2 are the n by n ident i ty  matrices. Therefore,  the follow- 
ing result extends  Theorem 3.1 in the case that  A is positive semi- 
definite.  

Theorem 3.2. L e t  F : R n ~ R n be a con t inuous  m o n o t o n e  mapp ing  on 

R n. I f  there is a u > 0 wi th  F u  > O, then (1) has a solut ion x * >  0. 

Proof. Since F is mono tone ,  

( x -  u , F  x )  >>- (x - u , F  u) = ( x , F  u) - ( u , F  u) , 

and since F u >  0, it is clear that  there is an r >  [lul]o~ such tha t  
( x , F u ) >  ( u , F u )  for all x > 0 wi th  IIx]l~ =r .  Theorem 2.5 now gives 
the result. 

It  is no t  k n o w n  whe ther  this result holds if  we only  assume that  
F u > 0. However,  if F is strictly m o n o t o n e  on R n (if  x ~ y are in R n, 
then (x - y ,  F x - F y )  > 0), then  a result o f  Karamardian [ 12, Theorem 
3] implies tha t  for any u in R+ n there i s a v > u  such t h a t F v > F u .  
Thus, i f  F is strictly m o n o t o n e  on R n, Theorem 3.2 holds i f  we only  
assume that  F u > 0, and since now F is a P-function,  (1) has precisely 
one solut ion x* > 0. 

To generalize Theorem 3.1 in another  direction,  consider a mapping 
F : R n -+ R n such that  for each x v~ y in R n and any index k wi th  
Ixk - -Ykl  = [Ix --yl[~ it follows that  
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(x~-Yk) [¢k(x)-Yk(Y)]/> o. (3) 

These mappings come up naturally in the work of  Mor6 [ 14] on non- 
linear generalizations of  matrix diagonal dominance; in the linear case, 
it is easy to prove that they coincide with the diagonally dominant 
matrices with nonnegative diagonal elements. In fact, if for some matrix 
A we have 

aii >1 ~ laijl for i = 1, ..., n ,  
j4:i 

then for any x ¢ 0 and index k with IXk[ = Ilxll=, 

n 

x x ~ ak]x] >~ akxlXx 12 -- ~ (lak]ltx/I [xxl) 
]=1 ]4=k 

(akk -- ~ lak]l) Ilxll 2 9 0 .  
]4=k 

Conversely, let x / = - s g n a k ]  for ] 4 : k  and x x= 1. Then x 4 : 0  and 
IXkl = Ilxll~. Hence 

x k ~ akfx j = a k k -  ~ [ak][~ 0 
]¢k jck 

as desired. 
However, it is not yet clear that the diagonally dominant matrices 

with nonnegative diagonal entries satisfy the hypotheses of  Theorem 
3.1. To do this, we will prove that any such matrix is row adequate in 
the following sense: A real n by n matrix A is row adequate if 

(a) A is a P0-matrix (for each x 4 :0  in R n there is an index k with 
x x 4:0 and xkY k >1 O, where y = A x), 

(b) If a principal submatrix B of  A is singular, then the rows of  A 
corresponding to those of  B are dependent.  

That any diagonally dominant matrix with nonnegative diagonal 
entries is a P0-matrix is clear f rom (3), while (b) is proved below. We 
can now invoke a result of  Eaves [7, Theorem 9.22] which implies that 
any row adequate matrix satisfies the hypotheses of  Theorem 3.1. 

We now prove that the diagonally dominant matrices satisfy (b). 

Lemma 3.3. I f  the n by n matrix A is diagonally dominant, and some 
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principal submatrix  B o f  A is singular, then the rows o f  A correspond- 
ing to those o f  B are linearly dependent.  

Proof. By permuting the rows and columns of  A we can assume that B 
is the principal submatrix of order m < n in the upper left-hand corner 
of A. Since B is singular, 

m 

ff.~ ai/x/. = 0 ,  1 <<. i <<. m ,  (4) 
]=1 

for some x :~ 0 in R m . Without loss of  generality assume that 

Ixi[ = m a x  {Ix]l: l <~ j < m } - c ~  

for 1 ~< i~< r, where r < m. We now show that ai/, = 0 for 1 <~ i~< r and 
j > r. To see this, note that (4) implies that 

m m 

laii[ Ixil < ~ lai/.I Ixjl < ~ ~ laql , 
/'=1 /'=1 
j ~ i  jvai 

and s i n c e l x i l = ~ > 0 f o r l ~ < i ~ < r ,  

(5) 

m 

laii[ ~ ~ lai]l. 
/'=1 
/'~si 

This implies that ai/ ,=0 for ] > m  and l~<i~<r.  But if ai/,4=0 for 
r < / ~< m, then the second inequality in (5) would be strict, and hence 
the above inequality would also be strict. This contradicts the diagonal 
dominance o fA.  

Thus, it follows that ai/, = 0 for 1 ~< i ~< r a n d / >  r, and that the prin- 
cipal submatrix of  order r in the upper left-hand corner of  A is singular. 
This implies that the first r rows of  A are dependent and thus concludes 
the proof. 

We have now proved that the diagonally dominant  matrices with 
nonnegative diagonal elements form a subclass of those matrices de- 
fined by Theorem 3.1. Therefore, the following result is an extension 
to nonlinear functions of  part (b) of  Theorem 3.1. 

Theorem 3.4. Assume  that F • R n ~ R n is a cont inuous func t ion  on R n 
such that for  each x 4= y in R n and any index k with Ixlc -Ylcl = IIx - y l l =  
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it fo l lows  that  (3) holds. I f  F u > 0 for  some u >>- O, then (1) has a 
solut ion x* > O. 

Proof.  Assume at first tha t  F u  > 0. Now choose r >  21lull~ and take 
any x > 0 wi th  Ilxll~ = r. Then  x 4= u and Ix k - uk[ = IIx - ul[= implies 
tha t  x k > u k. Thus,  

max  {(x i - u i) f / (x)}  > (x k - u k) fk(X) 
l<~i<~n 

>. (x k - u~) f~(u) > O, 

and the exis tence o f  x* follows f rom T h e o r e m  2.5. Now assume tha t  

F u > 0 and consider  the mapping G def ined  by  gi(x) = f/(X) + ~ for  any  
> 0. Since G u > 0, there  is an x*(/3) > 0 wi th  [[x*(~)l[~ ~< r for  which  

G[x*(/3)] > 0 and (x*(~3), G[x*( /3) ] )=  0 .  (6) 

But since IIx*(t3)lt~ ~< r, there  is a sequence (t3k}, converging to zero such 
that  (x*(/3k)} converges to some x * >  0. It fol lows f rom ( 6 ) t h a t  x* 
solves ( 1 ). 

We have not  been  able to generalize T h e o r e m  3.1 any fur ther .  We 
now go outs ide  these matr ices  and generalize a result  o f  Chandrasekaran  
[ 1 1 : I f  the real n by  n matr ix  A has non-posi t ive off-diagonal  elements,  
and if  for  some z in R n there  is a u > 0 wi th  A u > z, then  there  is an 

x * > 0  wi th  A x * > z  and ( x * , A x * - z ) = O .  To state and prove the 
cor responding  result,  we consider  nonl inear  mappings which  are off- 
diagonally an t i tone  in the sense o f  [19] ;  for  ou r  purposes ,  a func t ion  
F : R n -+ R n is off-diagonally ant i tone  on D if for  each u > v in D it 

follows f rom u~ = v~ that  f k (u )  <~ fk(v) .  

T h e o r e m  3.5. L e t  F : R n -+ R n be a cont inuous,  off-diagonally an t i tone  

func t ion  on R n. I f  there is a u > 0 with F u > O, then there is an 

O<<.x* <~u which satisfies (1). Moreover, i f  FO<~ O, then F x *  = 0 .  

Proof .  We cons t ruc t  a sequence (x  k} such that  F x k >  O, where  
0 <<. X k+l <<. X k and 

Xf +1 fi(Xkl . . . .  , X f _ l , x f + l , X f + l  , ...,Xkn) = 0 (7) 

for  i = 1 . . . . .  n, and k = 0, 1 . . . . .  To  do this, we only  need to show tha t  
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if x k >~ 0 and F x k >1 O, then there is an x k+~ >1 0 which satisfies the 
properties above. For any index i, set x/k+l = 0 if 

fi(x1 k, ...,Xf_l, 0, Xf+l, ...,Xn k) ) 0 ; 

otherwise, since f i ( x  k) >1 O, there is an x~ +1 • [0,x/k ] which satisfies 
(7). In either case, 

flOCk1 , . . . , X f _ l , X f + l , X f + l  , . . . ,Xkn)>/ O .  (8) 

Thus, 0 ~< x k+l < x k, and since F is off-diagonally antitone, F x k+l >10. 

Now that the sequence is constructed, note that since 0 < x k+l <<. x k, 

the iterates {x k} converge to some x* t> 0, and by (8) we have that 
F x *  >~ O, while (7) shows that x* satisfies (1). Finally, if F 0 < 0 but 
fi(x*) > 0 for some i, then (1) implies that x~ = 0, and therefore the 
off-diagonal antitonicity of  F implies that 

o < < f i(0)  < o ,  

which is a contradiction. 

Theorem 3.5 was proved independently by A. Tamir in his Ph .D.  
thesis [20]. In his proof, Tamir generalizes the method of Chandrase- 
karan [1] to nonlinear mappings and actually shows that under the 
conditions of  Theorem 3.5 there is a minimal solution x* to (1) in the 
sense that x* <~ y* for any other solution y* of  (1). 

The sequence defined in the proof of  Theorem 3.5 is a modification 
of the nonlinear Jacobi iteration used to solve certain nonlinear equa- 
tion as in [16] and [19]; we could also have used an iterative scheme 
similar to the nonlinear (under-relaxed) Gauss-Seidel  iteration, where 
(7) would have been replaced by 

' "" '"~i-1 ' ° i  '~ ' i+l '  ""'  

and xf  +1 = ( 1 - c o )  x ~ + c o s f ,  with 0<co~<  1, but this would have 
lengthened the proof. However, iterative methods, and in particular 
successive over-relaxation, have long been used to solve linear comple- 
mentari ty problems. Cryer [5] has a brief historical survey and some 
results (see also [61). 

Another  point of  interest is that we were not able to prove Theorem 
3.5 by means of  Theorem 2.4. On the other hand, a constructive proof  
of Theorem 3.2 does not seem to be available unless, for example, F is 
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a gradient mapping. If this is the case and F x = Vg(x), then the itera- 
tion 

x k+] = Ix k _ tkVg(xk)]+ 

where [y]+ is obtained by replacing the negative coordinates of  y by 
zero, and t k is chosen to minimize g([x  k -  tkvg(xk)]+)  for t~> 0, is 
such that every limit point x* of  (x  k} (which must necessarily lie in 
R~_) will satisfy (1). See [14] for details. To show that there is at least 
one limit point, note that since F is monotone,  g is convex on R n and 
thus 

g(x ) - g(u) >> (v  g (u ) , x  - u) 

for x / > 0 .  Hence, if F u = V g ( u ) > 0 ,  it follows that g(x)-++oo as 
lixll--' +oo and x >/ 0. Since g(x k+l) <~ g(xk),  this guarantees the exist- 
ence of  at least one limit point. Also note that if F is strictly monotone,  
then the whole sequence converges to the unique solution x* >~ 0 of  (1). 

Similarly, with additional conditions on F, we can show that the 
iteration defined by (7) can be used to give a constructive p roof  of  
Theorem 3.4. 

Theorem 3.6. Le t  F • R n -~ R n be continuous on R n, and assume that 
for  each x 4= y in R n, 

IXk--Ykl = lax-yl l= implies (Xk - -Yk )  [ fk(x)  - - fk (Y)]  > 0 .  (9) 

I f  F u >~ 0 for  some u >>- O, then for  any x ° >1 0 a sequence (x  k) is well- 
def ined by (7). Moreover, (x  k} converges to the unique x* >>, 0 which 
satisfies ( 1 ). 

Proof. Clearly, (9) implies that F is a P-function on R n and hence, 
(1) has at most one solution x* ~> 0. To prove the convergence of{xk}, 
we first show that {x k} is given by x k+l = H x k for some mapping 
H R n ~ R n w i t h l l H x - H y l i o o  < l l x - y l [ ~  for a n y x C y i n R  n .For  
flais, let 

~ ( t )  = ~.(xl  . . . . .  x i -1 ,  t, xi+l ,  ..., X n ) ,  

and note that (9) implies that ~ is a strictly increasing function on R+ 1. 
In addition, if r = u i + Iix - u[L=, then (9) implies that ~(r) ~> ft.(u) ~> 0. 
Thus, if ~ ( 0 ) <  0, choose hi(x)@ (O,r) such that ~(hi(x))  = 0 ;  other- 
wise, s e t  hi(x ) = 0. In either case, it is clear that (7) is given by x k+] = 
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H x  ~. To show that I I H x - H y [ I =  < I Ix -y l l~  for x 4: y ,  note that the 
construction of  H shows that 

[hi(x ) - h i ( Y ) ]  [ ~(hi (x) )  - all(hi(Y))] <~ 0 

for each index i. Thus (9) implies that I h i ( x ) - h i ( Y ) l  < IIx-Yll~ and 
therefore, I t H x - H y l I ~  < I Ix -y l l~ .  

To conclude the proof, we only need to show that {x k} has a con- 
vergent subsequence, for then, a theorem of  Edelstein [8] shows that 
{x k) converges to a point which necessarily satisfies (1). Now,  for any 
x ~> 0 we have 0 ~< hi(x) <~ u i + I[x - -  ull~, since hi(x) @ [0, r]. Thus 

- Ilull~ ~< h i ( x )  - u i <~ [Ix - ult~ 

for each i, and consequently, either IIHx - ult~ <~ IIx - ull~, or [IH x-u l l~  
~< II u It~. This shows that (x ~ } is bounded for any x ° in R n and therefore 
concludes the proof. 

Condition (9) is too restrictive; in the linear case it is equivalent to 
assuming that the matrix is strictly diagonally dominant with positive 
diagonal entries. However, it is possible, using the techniques of  [16] ,  
to e x t e n d  Theorem 3.6 so as to cover the irreducibly diagonally 
dominant matrices with positive diagonal entries. 
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