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A z e r o - o n e  matr ix  is called perfect if the polytope of  the associated set packing problem 
has integral vertices only. By this definition, all totally unimodular  z e r o - o n e  matrices are per- 
fect. In this paper we give a characterization of perfect z e r o - o n e  matrices in terms of forbidden 
submatrices. Perfect zero one matrices are closely related to perfect graptis and const i tute  a 
generalization of  balanced matrices as introduced by C. Berge. Fur thermore,  the results ob- 
tained here bear on an unsolved problem in graph theory,  the strong perfect graph conjecture, 
also due to C. Berge. 

1. Introduction 

In this paper we consider the polytope defined by the constraints of 
the following set packing problem: 

max c x, 

(P) subject to A x ~< g, 

x / = 0 o r l  for a l l j ~ N = ( 1 , . . . , n } ,  

where A is a m × n matrix of  zeros and ones, 7T = (1 .. . .  , 1 ) is the vec- 
tor having all m components equal to one, and c is an arbitrary vector of 
reals. This problem has recently obtained much attention, see e.g. [ 1, 2, 
6, 15, 17]. By (LP) we denote the linear programming problem obtained 
from (P) by dropping the integrality reguirement on x. 

Whereas in an earlier paper [15] we have been concerned with the 
identification o f  face ts  of the convex hull of solutions to (P), we address 
ourselves here to the question under what conditions on the constraint 
matrix A the re laxed linear programming problem (LP), 
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max (c x: A x ~< g, x > 0}, yields an optimal integral solution vector ir- 
respective of  the linear from c x that is maximized. This is obviously the 
case if the matrix A involved in problem (P) is totally unimodular [10]. 
This property remains true if the matrix A in the definition of  (P), while 
not  totally unimodular, is balanced [5]. Generally, the matrix A en- 
countered in (P) is neither totally unimodular nor balanced. Neverthe- 
less, for certain matrices A, the property that all basic feasible solutions 
to (LP) are integral remains true (see Section 3 for relevant examples). 
Using some results from graph theory we give a complete characteriza- 
tion of  such matrices A in terms of forbidden submatrices. To this end 
we summarize in Section 2 some relevant theorems and concepts from 
the literature and introduce the notion of  a critically imperfect ("fast- 
perfekt") graph. In Section 3 we derive the stated characterization, see 
Theorem 3.16. 

2. Perfect and P-critical graphs 

Let G denote a finite undirected graph without loops and multiple 
edges. By G we denote the compliment of  G. Following the notation of  
C. Berge [3] we denote by a(G) the maximum cardinality of  a stable 
(independent) node set in G, by O(G) the minimal number of  cliques 
which cover G, by 3'(G) the chromatic number of  G, and by co(G) the 
maximum cardinality of  a clique in G. (A clique in G is a maximal com- 
plete subgraph of  G.) A graph G is called y-perfect if 3,(G') = co(G') for 
every induced subgraph G' of  G; a graph G is called a-perfect if a(G')  
= O(G') for every induced subgraph G' of  G. A graph G is perfect if it is 
both a-perfect and "y-perfect. 

In a recent paper [ 13], Lovfisz has shown that a graph G is a-perfect 
if and only if G is-),-perfect. This result, usually referred to as the Perfect 
Graph Theorem, implies that it is sufficient to define perfection of a 
graph solely in terms of  a-perfection (or alternatively, in terms of  y-per- 
fection). With this in mind, the Perfect Graph Theorem can then be re- 
stated as follows: A graph G is perfect if and only if the complement  G 
is perfect. 

C. Berge has formulated the following conjecture in connection with 
this concept which characterizes perfect graphs in terms of  forbidden 
subgraphs: 
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Strong Perfect Graph Conjecture [3, 4]. A graph G is perfect if and 
only if G does not  contain any odd cycle C2k+l without chords nor its 
complement C2k+1 (where k ~> 2). 

A weaker form of  the conjecture has recently been proven by Lovdsz 
[ 14 ] and we shall make use of  his characterization of  perfect graphs. 

Theorem 2.1 [14]. A graph is perfect if and only if w(G') co(G') >~ I G'I 
for every induced subgraph G' o f  G. (IG'I is the cardinality o f  the node 
set o f  G'.) 

A further result that is strongly related to our problem is due to 
Chv~tal [6] and Fulkerson [7, 8]: Let A be the incidence matrix of all 
cliques of G (rows of A) versus the nodes of  G. Suppose that G has n 
nodes and define the polytope P as follows: 

P = { x ~  Rn:Ax<<.7, x>~O}. 

Theorem 2.2 ([ 16, Theorem 1 ]). Given any graph G, the following two 
conditions are equivalent: 

(i) Every vertex o f  P is integral, 
(ii) G is perfect. 

A graph G is called critically imperfect (or shortly, p-critical) if G is 
imperfect and every proper induced subgraph of G is perfect. A graph 
with these properties has been considered by Lovasz [ 14], see also [ 16]. 

Denote by IGI the number  of nodes of G and suppose that IG[ = n. 
By G i we denote the induced subgraph obtained from G by deleting the 
i t h  node and all edges incident to it, i = 1, ..., n. P-critical graphs have the 
following known properties: 
(P1) Every p-critical graph is connected and has at least five nodes. In 

fact, the "smallest" p-critical graph (smallest in terms of  number 
of nodes and edges) is Cs, i.e. the cycle of  length five having no 
chords. 

(P2) A graph G is imperfect if and only if G contains an induced sub- 
graph which is p-critical. 

(P3) A graph G is p-critical if and only if its complement G is p-critical. 
This follows immediately from the Perfect Graph Theorem. 

(P4) Let G be p-critical and IG[ = n. Then ~(G) = c~(Gi) f o r / =  1, ..., n 
and ~(G) c~(G) = n - 1. Indeed, since co(H) = c~(H) is true for all 
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(P5) 

(P6) 

(P7) 

graphs H, we have by Theorem 2.1 o f  Lov~sz [14], tha t  n - 1 <~ 
a(Gi) a(Gi) ~ a(G) a(G) < n for all i = 1, ..., n. But  c~ - 1 ~< oe(Gi) 
<~ a = a(G) for i = 1, ..., n. Consequent ly ,  (P4) is true. 
I f  G is p-critical, then 2 ~< a (G) ~< [½ ( n -  1 ) ] and 2 ~< ~ (G) ~<i[½ (n ~- 1 )]. 
This is immedia te  f rom (P1) and (P4). 
Let  G be p-critical, e = c~(G) and ~ = ~(G). Then every node  of  G 
is contained in at least one clique of  m a x i m u m  size, and O(G) = a + l .  
Indeed,  since G i is perfect,  we have by the def ini t ion of  perfect ion 
and the Perfect Graph Theorem that  O(Gi) = a. Fur thermore ,  tGil 
= n -  1 for i = 1, ..., n. Hence for each i ~ ( 1, ..., n}, G i can be parti- 
t ioned into a max imum cliques of  G, each of  which covers ~ = a(G)  
nodes. Consequent ly ,  O(G) = a + 1. 
Let G be p-critical and C any clique in G with  tCt ~< ~ = ~(G). De- 
note  by G \ C the induced subgraph obtained f rom G by deleting 
all nodes in C. Then there exists an independent  node set F in G ', C 
satisfying IFI = ~ = ~(G). Suppose not,  then ~(G \ C) ~< a -  1. Since 
G \ C is perfect ,  we have O(G\ C) <~ o~-1, which implies O(G) ~ ee, a 
contradic t ion to (P6). 

Due to proper ty  (P2) o f  perfect  graphs we can now reformulate  
C. Berge's Strong Perfect  Graph Conjecture  as follows (see also Sachs 
[16]):  Agraph  G is p-critical if  and only if  it is an odd cycle C2k+i with- 
out  chords or its complement  C2k+l,  where k > 2. 

3. Perfect  z e r o - o n e  matrices 

Le tA  be any m ×  n matr ix  o f  zeros and ones, and define the poly topes  
P and P1 as follows: 

P = ( x c  Rn: A x <  ~, xj>> O,j = 1, . . . ,n} ,  
(3.1) 

PI = c o n v ( x  < P: ~. = 0 or 1, j = 1, . . . ,n} ,  

where 7 T = (1 . . . . .  1 ) has m components ,  all equal to one. The matr ix  A 
is called perfect  i f P  = PI, i.e., if the po ly tope  P defined in (3.1) has only  
integral vertices. Denote  by G the ( intersection) graph associated wi th  
the matr ix  A, i.e., the nodes of  G correspond to the columns of  A and 
two nodes of  G are linked by an edge if  the associated columns a i and 
# o f  A have at least one +1 entry  in common.  Consequent ly ,  G is a fi- 
nite undirected graph wi thou t  loops and mult iple  edges. Let  C denote  
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the node set of  any clique in G. Then by [ 15, Theorem 2.4], the inequal- 
ity 

n x/ {10 if/EC'if/~C 2 a/c ~< 1, a c = (3.2) 
/=1 

yields a facet of Pz, i.e., a face of  dimension n - 1  ofP z. Clearly, every 
facet of  the polytope P1 is essential in defining PI. Hence it is a neces- 
sary condition for A to be perfect that A contain the incidence (row-) 
vectors of all cliques of the associated graph G. Furthermore,  i fA  is per- 
fect, then every row of A that is not the incidence (row-) vector of a 
clique in G is dominated (in the usual vector sense) by some other row 
of A. Consequently, such a row is non-essential in defining the polytope 
Pz and can be deleted from A. In order to characterize perfect matrices 
we can thus restrict ourselves to considering only clique-matrices, i.e., 
matrices A which are such that every row vector of A is the incidence 
vector of a clique of the associated graph G and vice versa. 

Let A be any clique-matrix of size m X n. By Theorem 2.2 we have that 
A is perfect if and only if the associated graph G is perfect. Consequent- 
ly, by (P2), A is imperfect if and only if G contains an induced subgraph 
which is p-critical. Since induced subgraphs of G having k nodes corre- 
spond uniquely to rn X k submatrices of  A (and vice versa) we can make, 
without loss of generality, the temporary assumption that G itself is a 
p-critical graph. Let G denote the complement of  G, and denote  by B 
the clique-matrix of G. Similarly to (3.1), define the polytopes Q and 
Qt respectively as follows: 

Q={x~Rn:  Bx<~,x />~O, j  = 1 ..... n}, 
(3.3) 

QI = conv {x e Q" x/= 0 or 1, j = 1, ..., n}, 

where Or = (1, ..., 1) has all components equal to one and is dimensioned 
compatibly with B. The vertices of  QI correspond to complete sub- 
graphs of G and vice versa. Furthermore,  every maximal independent  
node set in G defines a clique of G (and vice versa). Consequently, there 
exists an (incomplete) "dual i ty" relation between the vertices of PI and 
the facets of  Q (and hence, between the vertices of QI and the facets of  
P), see e.g. [11]. Using the terminology of Fulkerson [71 we show that 
Q (P, respectively) is the anti-blocker of P! (of QI, respectively), see 
Remark 3.4. 

Let ]' ~ { 1, ..., n} and let G/ denote the induced subgraph obtained 
from G by deleting the node j and all edges incident to it. Denote by Pf 
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the polytope defined with respect to the clique-matrix of  @. Then we 

have that 

Pj = P c~ {x ~ Rn: xj = 0}. (3.4) 

To prove (3.4), we remark that by assumption, A contains all cliques of  
G. Consequently; since every clique of  G not  containing node j is a clique 
in @ and every clique in @ either is a clique in G (if node j is not con- 
tained in it) or becomes a clique in G after adjoining n o d e j  to it, rela- 
tion (3.4) is true. Similarly, we define n polytopes Q/with respect to 
Gj for j = 1, ..., n. 

Remark 3.1. If  G is p-critical, then Pj(Q/, respectively) has integral 
vertices only for every j ~ ( 1, ..., n). 

Remark 3.2. If  G is p-critical, then P(Q, respectively) has at least one 
fractional vertex. 

Remark 3.3. If  G is p-critical, then every fractional vertex ~ o f P  (Q, 
respectively) satisfies 0 < 2 / <  1 for all j ~ { 1, ..., n}. 

Proof. Suppose that there exists ~, a fractional vertex of  P having 2j 
= 0. Then 2 E Pj and 2 is a vertex of  Pj. By Remark 3.1, this is impos- 
sible. Suppose that there exists 2, a fractional vertex of  P, having 2/= 1. 
Define x by  ~k = xk for all k v~ j and 2 k = 0 for k =] .  From the fact 
that A is a z e r o - o n e  matrix and ~ = (1, ..., 1), it follows readily t h a t 2  
is a vertex of  P and since 2/ = 0, 2 must be a fractional vertex of  P/. 
Again by Remark 3.1, this is impossible. 

Remark 3.4. If  G is p-critical, then P (Q, respectively) is the antiblocker 
of Q1 (P:, respectively). 

Proof. Every vertex .g of  P either is an independent node set in G (if 
is integral) or it satisfies 0 < ~ < e, where e T = (1, ..., 1) has n compo- 

nents equal to + 1. If 2 is integral, then ~ defines a maximal independent  
node set in G (or not, in which case it is contained in one or several 
maximal independent  node sets). I fN furnishes a maximal independent  
node set in G, this node set constitutes a clique of  G and hence the con- 
straint ~Tx ~< 1 yields a facet for Q:. (If  N is not  maximal, then 
~T x ~< 1 yields a support  of  QI which is non-essential in defining Q:). If 

is a fractional vertex of  P, then 0 < ~ < e. This implies that the matrix 
A is of  size m×n with m>~n, and that A is of  full rank. 
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Fur the rmore ,  A 2 ~< ~" implies tha t  £T x ~< 1 is a suppor t  for  QI which 
is satisfied by  n l inearly i ndependen t  vertices o f  Qz. (Take a n X n subma- 
tr ix o f  A tha t  defines 2.)  Hence  every ver tex  o f  P tha t  e i ther  furnishes a 

maximal  i nde penden t  node  set in G or tha t  is f rac t ional  furnishes a facet  
o f  Q~. On the  o the r  hand,  let ~r T x ~< rr 0 be any non-trivial facet  o f  QI, 
i.e., 7r T x ~< % is such that  7r 0 > 0. Then  rr T x = ~r o contains  n l inearly 

i ndependen t  vertices of  Q1 and 7r T x ~< 7r o for  all x • QI" Consequen t ly ,  

(1/Tro) rr is a ver tex  o f  P. 

I_emma 3.5. Let  G be p-critical and ~ = ~(G). Then ]~7=1 xf <~ ~ is a 
facet  o f  QI, i.e., x = ( 1 / ~ ) e  is a (fractional) vertex o f  P. 

Proof .  Deno te  by  e / t h e  row vec tor  with n - 1 c o m p o n e n t s  equal  to  +1  
and having a zero in t h e j  th c o m p o n e n t .  Then  we have that  maXxe e e.i x 
= maXx~p, eJx  = a f o r j  = 1, ..., n. 

Define ~ / t o  be the halfspace given by  

tI] = {x • R n: e j x ~< a} f o r j  = 1 . . . . .  n. 

Consequen t ly ,  P c_ Hj for  j = 1, ..., n or equivalent ly ,  P c_ H = fl]= 1 Hj. 
By def in i t ion  o f  e J, j = 1, ..., 11, H is a poin ted  polyhedra l  convex  cone 
with its apex a t x  = (a/(n - 1 ) )  e. By p r o p e r t y  (P4) o f  p-cri t ical  graphs we 
have tha t  A 2-~< (4 a / ( n -  1 ))'b" = 7.  Consequen t ly ,  since H is po in ted ,  x~ = 
( a / ( n - 1 ) )  e = (1/4)  e is a vertex o f  P satisfying 0 < 2~ < e. By Remark  
3.4 we have that  27= 1 x] < 4 is a facet  o f  QI. 

Remark  3.6. I f  G is p-crit ical ,  we have by  p r o p e r t y  (P3) tha t  ~ = (1/a)  e 
is a ( f ract ional)  ver tex o f  Q and by  Remark  3.4 that  ~7=1 xj <<. ~ provides 

a facet  for/)I"  

Remark  3.7. Since ~ = ( I / m ) e  is a ver tex  o f  P, we can r eo rde r  the rows 

o f  the mat r ix  A as follows: 

where the row sums o f  A1 all equal  4 and the row sums o f - 4 2  are all 
(s t r ic t ly)  less than  4. F u r t h e r m o r e ,  AI is o f  size r~ × n wi th  m ~> r~ ~> n, 
and Z 1 contains  an (at least one)  nonsingular  submat r ix  o f  size n × n. By 
Remark  3.6 we have a similar par t i t ioning o f  B in to  E 1 and if2,  where 
B1 has ~z rows, ~ / >  n, having row sums equal  to  a ,  and ff l  contains  a 
n × n nonsingular  submatr ix .  
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Remark  3.8. In graphical no ta t ion ,  Remark  3.7 implies tha t  every p- 
critical graph G contains  at least I GI m a x i m u m  cliques o f  the  cardinal i ty  

= a(G) .  This has been  observed earlier by  H. Sachs and can be found ,  
t hough  w i thou t  p roof ,  in [16] .  

Remark  3.9. The  po in t  ~ = (~/(n - 1))e  uniquely  maximizes  the l inear 
f rom e T x = E~= 1 x~ over  the convex  po lyhedra l  cone H def ined  in the 

p r o o f  o f  Le mm a  3.5. Since P c H and ~ ~ P, ~ uniquely  maximizes  the 
(same) linear fo rm e T x = I;i= 1 xj over  P. Consequen t ly ,  there  exists an 

opt imal  basis A ,  (in the  l inear p rogramming  sense) associated wi th  R o f  
the fol lowing form:  

2 

where  A 1 is a nonsingular  submatr ix  o f  A 1 (as def ined  in Remark  3.7) 
satisfying A 1 R = e and e T A-11>~ O. The  la t ter  inequal i ty  fol lows f rom 
the fact that  X~ uniquely  maximizes  e T x over  P. 

Proof .  The  convex po lyhedra l  cone  H is given by  the sys tem of  in- 
equalit ies e / x  <<. o~ f o r /  = 1, ..., n. Call F the mat r ix  made  up o f  the  n 
vectors  eL Then  F -1 exists and F -1 (c~ e) = (oL/(n- 1 )) e = R. F u r t h e r m o r e ,  
e T F - 1  = ( 1 / ( n - 1 ) )  e T > 0. Consequen t ly ,  ~ uniquely  maximizes  the li- 
near  form e T x over  H. The  rest o f  Remark  3.9. t hen  follows by  a simple 
con t rad ic t ion .  

To state  the nex t  l emma we recall tha t  a n × n mat r ix  R o f  zeros and 
ones is called a permuta t ion  matr ix  if  R contains  exac t ly  one  +1 en t ry  
in every  row and column.  

L e mm a  3.10. L e t  A be the m X n cl ique-matrix o f  a p-critical graph G 

and let B be the m X n cl ique-matrix o f  G. Then A and B, respectively, 

contain n X n submatrices A 1 and B 1 satisfying the matr ix  equat ion 

T = E _  R~ (3.5) A 1 B 1 

where E is the n × n matr ix  consisting entirely o f  ones and R is a n X n per- 

muta t ion  matrix. 

Proof .  F r o m  Remark  3.7 we have that  A has rh >~ n rows having row 
sums equal to  ~, i.e., the  p o l y t o p e  Q has Fn integer  vert ices sat isfying 

n 

x t <~ ~ (3.6)  
j=l 
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with equal i ty .  The  vector  ~ = (E/n)  e satisfies B ~ <~ (e~ c~/n) e < e and 
~" > 0. Consequen t ly ,  ~" ¢ int Q. Fu r the rm o re ,  ~" satisfies (3.6) wi th  
equal i ty .  We show nex t  tha t  ~" ¢ QI, i.e., more  precisely,  tha t  

~'T = 3'TA1 ' (3.7) 

wi th  ")'i ~> 0 for  i = 1 n and Z n = , "-', j=1% 1, where  A 1 is the nonsingular  
submat r ix  o f  A def ined in Remark  3.9. Since by  def ini t ion,  ~ T  
= (~/n)  e T, we have f rom the nonsingular i ty  of  A 1 and f rom Remark  
3.9 that  ( ~ / n )  e T Al l  = 3 ,w ~> 0. F u r t h e r m o r e ,  

~ e  T a e T (  a ) 3`T e = n  A l l  e =--n ~ e = 1. 

Consequen t ly ,  (3.7) is true.  Now let B I be any n X n nonsingular  subma-  
trix o f  the submat r ix  91 def ined in Remark  3.7. Then  we obta in  f rom 

(3.7) tha t  

3`T A1 B1T =~'T BT =~_ e T BT = ' l - - l e T "  
El 17 

Since b o t h  A t and B 1 are nonsingular ,  it fol lows that  D = A 1 B T is non-  
singular. F u r t h e r m o r e ,  since the co lumns  o f  B T are (a subset of)  vertices 

of  P1 (satisfying e T x ~< ~ with equal i ty) ,  we have tha t  A 1 BI T ~< E, i.e., 
tha t  D consists o f  zeros and ones only.  Suppose  now that  D contains  a 
row o f  +1 entries. Then  there  exists a row o f  A, say a T, such tha t  d 
a T B~: = e T . Since B 1 e = ~ e, it fol lows that  a T = (1/0~) e T . Since by  pro- 

pe r ty  (P5) a ~> 2, this cont rad ic t s  the  integral i ty  o f  a T . Consequen t ly ,  
D cannot  conta in  a row of  +1 entries. Hence  we have tha t  

3"T D = t l - ]  eT ' (3.8) 
t7 

with  ")'i ~> 0 for  i = 1, n and 2; n = • .., j=l 3'i 1, and hence  that  3`T D e = n - 1 .  
Consequen t ly ,  3`i > 0 implies tha t  the row sum of  row i o f  D equals n -  1, 

n since £i=1 7i 1. Suppose  now that  3'1 ~< .-- ~< ")'k, with k < n satisfies 
3'1 > 0 and 3'k+1 = "- = 3"n = 0. Since D is nonsingular  we can rearrange 
the rows and columns  o f  D such that  D has the fo rm 

D D 2 ) 

D = D3 D4 
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with  

(i1 D 1 = • , D 2 = , 

where  D 1 is o f  size k × k and has zeros  on ly  in the  main  diagonal ,  D 2 is 
o f  size k × ( n - k )  and consists  en t i re ly  o f  ones. I f  k < /7 ,  obv ious ly  (3.8)  

canno t  have a so lu t ion  sat isfying 3'i /> 0 and Zn=l 3'i -- 1. On the  o the r  
hand,  E~= 1 ~'i = 1 implies  k ~> 1. Consequen t ly ,  k = n and D has the gen- 
eral f o r m  E - R ,  where  E is the  n × n m a t r i x  consis t ing en t i re ly  o f  ones  
and R is a n × n p e r m u t a t i o n  mat r ix .  

F u r t h e r m o r e ,  we n o t e  tha t  f r o m  (3.8)  it fo l lows tha t  

,.~T n--1 e T D_ 1 1 e r 
n /7 

(3.9)  

T h e o r e m  3.11. L e t  A be the m × n cl ique-matrix o f  a p-critical graph 

G. Then A contains a n× n nonsi/Tgular submatr ix  A 1 whose  co lumn and 
row sums are all equal to ~ = a(G).  Furthermore,  the row sums o f  the 

rows o f  A that  are no t  conta ined  in A 1 are all strictly less than ~. 

Proof .  Le t  A 1 be the  n X n s u b m a t r i x  o f  A def ined  in L e m m a  3.10. 

Then  A 1 e = ~ e. F u r t h e r m o r e ,  f r o m  (3.9) we have tha t  7 T = ( 1 / n ) e T ;  
f rom (3.7) and the  def in i t ion  o f  2 it fo l lows tha t  e T A 1 = ff e T. Conse-  

quen t ly ,  A conta ins  a n Xn nons ingular  s u b m a t r i x  A 1 whose  co lumn  

and row sums are all equal  to  4. To  c o m p l e t e  the  p r o o f  o f  T h e o r e m  3.1 1 

we n o t e  tha t  the  re la t ion  A 1 B T = E - R  o f  L e m m a  3.10 impl ies  tha t  

= a E A l l  ~ - B~ R T (3 .10)  

Suppose  n o w  tha t  the  ma t r ix  A 2 def ined  in R e m a r k  3.9 conta ins  a 
row a T sat isfying a T e = 4. Then  we have tha t  a T All  = e T - a T B T R T. 
Since 0 ~ < e  T - a  T B  T R  T ~<e T, it fo l lows tha t  0 ~< a TA~ 1 ~<e T . D e n o t -  

i n g b y P *  the p o l y t o p e  ob t a ined  f r o m  P b y  d ropp ing  f r o m  the cons t ra in t  
set A x ~< U the cons t ra in t  a T x ~< 1, we conc lude  tha t  

m a x  a T x = m a x  a T x = 1. 
x ~ P *  x E P  
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Consequen t ly ,  we have that  P*  = P, i.e., a T x ~ 1 cannot  be a facet  o f  P 

and hence,  in part icular ,  it canno t  be a facet  o f  P I. By assumpt ion  how- 
ever, all rows o f  A define facets o f P  z. Hence  A 2 cannot  conta in  such a 
row a T . Consequen t ly ,  the row sums o f  the rows o f  A that  are no t  con- 

tained in A 1 are all s t r ict ly less than ~. 

Remark  3.12. An immedia te  consequence  o f  Remark  3.4 and Th eo rem  
3.1 1 is tha t  the ver tex  x = (1/~)  e o f  P is non-degenerate and that  P has 
exactly  n (l inearly i ndependen t )  vertices x i satisfying E n /:1 x / ~  a with 
equal i ty ,  i = 1, ..., n. Fu r the rmore ,  every ver tex  x i is connec t ed  to  ~ by  
an edge o f  P, i.e., x i and ~ are ad/acent vertices on P for  i = 1, ..., n..An 

analogous s t a t emen t  holds for  the p o l y t o p e  Q. 

Remark  3.13. In graphical no ta t ion ,  T h e o r e m  3.1 1 implies tha t  every 
p-critical graph G has exactly  IGI m a x i m u m  cliques o f  the cardinal i ty  

= a ( G)  and I GI maximal  i ndependen t  node  sets o f  the cardinal i ty  
= ~ ( G ) .  

T h e o r e m  3.11 suggests the fol lowing defini t ion.  

Def ini t ion 3.14. Le t  A be a z e r o - o n e  mat r ix  o f  size m X n, m/> n,,. A 
is said to have proper ty  rr¢, n i f  the fol lowing condi t ions  are met :  

(i) A contains  a n X n  nonsingular submat r ix  A 1 whose row and 
co lumn sums are all equal  to  ~. 

(ii) If  a T is a row of  A with row sum equal to  ~ and a T is no t  con- 

tained in the submat r ix  A 1 def ined under  (i), then  there  exists a row b T 
o f A  1 such that  a = b (equal i ty  is mean t  to hold componen twise ) .  

(iii) All o the r  rows o f  A have row sums str ict ly less than p. 

Remark  3.15. Le t  A be a m × n matr ix  o f  zeros and ones and G its as- 
sociated in tersec t ion  graph. A is a cl ique-matr ix,  i.e., A conta ins  as row 
vectors  the incidence  vectors  o f  all cliques in G if and only  if  A does no t  
conta in  any m X k submat r ix  A'  having the p r o p e r t y  rr~,k with/3 = k -  1 
and p ~> 2. 

P roo f  (outl ine) .  The  necessi ty o f  the condi t ion  is obvious. To  prove 
suff ic iency,  let C be the node  set of  a clique in G such that  the associated 
incidence v e c t o r a  T withay = 1 i f / E  C, ay = 0 otherwise,  is not  conta ined  
in A. Define 

P' = P n  {x ~ Rn: x/ = 0 for  a l l / ~  N \ C } ,  

P ) . = P ' n ( x E R  n : x / = 0 }  for  a l l j c  C. 
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By assumption, max{e r x: x ~ P', x / =  0 or 1, j = 1, ..., n} = 1, and further- 
more, P' has at least one fractional vertex. We now distinguish two cases: 

(i) P]. has integral vertices only for all j ~ C, 
(ii) there exists a j  ~ C such that P} has a fractional vertex. 

In case (i) we can show by an argument completely analogous to the one 
used in the proof  of  Lemma 3.5, that A contains a m X k  submatrix A' 
having property 7r~, k with/3 = k - l , / 3 / >  2 and k = ICI. In case (ii) we can 
restrict attention to any P]. having a fractional vertex for j ~ C. Abusing 
slightly the notation we redefine C to be C\{/},  redefine the polytopes  
P', P~ with respect to the new set C and find again the two cases men- 
tioned above. (Note that the new set C defines a complete subgraph in 
G, which is no longer a clique in G. This, however, does not affect the 
argument.) Clearly, case (ii) can happen only finitely many times, and 
finally we obtain a set C having at least three elements and which is such 
that case (i) prevails. This completes the outline of  the proof  of  Remark 
3.15. 

We note for completeness that Remark 3.15 is equivalent to a theo- 
rem due to Gilmore [3, Ch. 17, Th~or6me 2]. The following theorem 
states a necessary and sufficient condition for an arbitrary z e r o - o n e  ma- 
trix to be perfect. 

Theorem 3.16. Le t  A be any z e r o - o n e  matr ix  o f  size m × n. The fol-  
lowing two  condi t ions  are equivalent: 

(i) A is perfect.  
(ii) For  /3 >~ 2 and 3 <<. k <~ n, A does not  contain any m × k  subma-  

trix A '  having the proper ty  ~r¢, k. 

Proof. Suppose that A is perfect and that (ii) is violated. Then there 
exists a m × k submatrix A' of  A having property 7r~.k for some /3 ~> 2 
and k ~> 3. Suppose the columns of  A have been ordered such that A' 
coincides with the k first columns. Then 2, defined by ~! = (1//3) for 
j = 1, ..., k, 2j = 0 for j = k + 1, ..., n, is a f ract ional  vertex of  the poly- 
tope P defined in (3.1). Hence by definition, A cannot be perfect. On 
the other hand, suppose that A is such that (ii) holds. Then A must be 
perfect. For if not, then by Remark 3.15 and Theorem 2.2 the intersec- 
tion graph G associated with A must be imperfect. By (P2), G contains 
an induced subgraph G' that is p-critical. Again by Remark 3.15, the 
clique-matrix of  G' is a m × k submatrix A' of  A, where k = I G'I. Let 
A" denote the m'× k submatrix of  A' whose rows correspond to the cli- 
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ques of  G'. By Theorem 3.11,A" has the property rr~,x with/3 = ~(C') ~ 2. 
Since the m m '  truncated rows of  A not contained in A" are dominated 
by some row in A", the m × k submatrix A' of  A must also have property 
7r~,tc with/3 = ~(G'). Thus (ii) cannot be satisfied by  A. 

Remark 3.17. Let A be any m × n matrix of zeros and ones contain- 
ing a m X k  submatrix A' having property 7r~, k with/3/> [~-(k-1)]+l .  Let 
N' be the index set of  the columns of  A'. Then obviously, 2 i~N '  xj <~ 1 
is a valid inequality for problem (P), and the nodes of  the associated 
graph G that are contained in N' form a complete subgraph (possibly a 
clique) in G. Consequently,  in view of Remark 3.15, condition (ii) of  
Theorem 3.16 can be written equivalently as folows: 

(ii') A is a cl ique-matrix and A does no t  contain any m × k sub-matr ix  
having proper ty  7r~,~ f o r  5 <~ k <<, n and 2 ~</3 ~< [~ (k -1 ) ] .  

Corollary 3.18. Le t  A be a z e r o - o n e  matr ix  o f  size m × n. A is critic- 
ally imperfect ,  i.e., A is the cl ique-matrix o f  a p-critical graph G, i f  and 
only  i f  the fo l lowing  two condi t ions  are met:  

(i)A has the proper ty  7r¢, k f o r  some  (3 satisfying 2 ~< /3 ~< [½(n- l ) ]  
and k = n. 

(ii) A does no t  contain any m× k submatr ix  having proper ty  7r~,x fo r  
/3 >~ 2 and 3 <~ k <~ n - 1 .  

Remark 3.19. The Strong Perfect Graph Conjecture [3, 4], if true, 
now is reduced to proving that the only z e r o - o n e  matrix A of  size m × n 
satisfying the conditions (i) and (ii) of  Corollary 3.18 and 2 <~ /3 
< [~ ( n - l ) ]  is the circulant of  odd size having exactly two positive en- 
tries in every row and column, i.e., A is the clique-matrix of  an odd cycle 
without chords. A characterization of critically imperfect matrices in 
graphical terms appears advantageous if one wants to check the perfec- 
tion of  a z e r o - o n e  matrix. For, similarly to the criterion for the total 
unimodularity of  a matrix A, a direct check of  the perfection of  a zero 
one matrix via the necessary and sufficient criterion of  Theorem 3.16 is 
- computationally - an impossible task, whereas graphical criteria - at 
least in the context of  total unimodularity - are relatively easily verified 
or known to be satisfied by the physical conditions of  a problem under 
consideration. 

Remark 3.20. By the definition of  perfect z e r o - o n e  matrices we have 
that every totally unimodular z e r o - o n e  matrix is perfect. In a 1,ecent 
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paper, Berge [5] has extended the notion of  totally unimodular z e r o -  
one matrices by means of  the theory of  balanced hypergraphs [3]. A 
zero one matrix A is called balanced if it is the incidence matrix of  a 
balanced hypergraph. In order to show that every balanced z e r o - o n e  
matrix is perfect we use [5, Theorem 6], which states the following ne- 
cessary and sufficient condition for a z e r o - o n e  matrix to be balanced: 
A m × n z e r o - o n e  matrix A is balanced if and only if for every z e r o - o n e  
vector w ~ R m and for every z e r o - o n e  vector b ~ R n the linear pro- 
gramming problem 

/ 
j=l  

provides an integral solution. Consequently,  if A is balanced, then the 
linear program 

(LP b) min{~yj:yA>~ b,y>~O} 
]=1 

provides an integral solution for every z e r o - o n e  vector b ~ R n. Conse- 
quently, by [ 12, Theorem 5 ], the linear programs 

(D b) max(~bixi'Ax<~'~',x>~O } 
Li=I 

provide integral solutions for all vectors b with integral components,  
i.e., A is perfect. Consequently,  every balanced matrix is perfect. To 
prove that the reverse statement does not hold we use a criterion due to 
Hoffman and Oppenheim [ 12] : A is balanced if and only if A does not 
contain any submatrix of  odd size having row and column sums equal to 
two. Consequently,  Example 3.22 is an instance of  a perfect z e r o - o n e  
matrix that is not balanced. In general, we have the statements: Every 
totally unimodular z e r o - o n e  matrix is balanced; every balanced z e r o -  
one matrix is perfect; but  none of  the two preceding statements holds 
in the reverse direction. 

Example 3.21. Since a z e r o - o n e  matrix A is perfect if it is the clique- 
matrix of  a perfect graph (and vice versa), the clique-matrices of  perfect 
graphs furnish examples of  zero one matrices satisfying the condition 
(ii) of  Theorem 3.11. Among the graphs known to be perfect are the ri- 
gid circuit graphs [ 7 ] (or "triangulated" graphs [ 2]), the comparability 
graphs, and the "/-triangulated" graphs, see e.g. [2]. The example of  ri- 
gid circuit graphs provide examples of  z e r o - o n e  matrices which are per- 
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fect, but  no t  totally unimodular. (I am indebted to D.R. Fulkerson for 
this example). 

Example 3.22. Consider the graph G in Fig. 1 and its associated cli- 
que-matrix A in Fig. 2. The submatrix A' made up of  the columns 1, 2, 
3 and 4 and the rows 1, 6, 11 and 16 has a determinant of  3. Conse- 
quently,  A is not totally unimodular. Furthermore,  the submatrix A" 
made up of  the columns 1, 2 and 4 and the rows 1, 6 and 11 has row 
and column sums equal to two. Consequently,  A is not balanced. Due 
to the simple structure of  A we find by inspection that A is perfect. 
(Checking condition (ii) of  Theorem 3.11 amounts to proving that G 
does not contain an odd cycle without  chords.) Furthermore,  the matrix 
A provides us with an example where A T , the transpose of  a perfect ma- 
trix, is no t  perfect. This is interesting since it is different from a pro- 
perty that both  totally unimodular and balanced matrices have. The 
above example can be generalized to prove that given any natural num- 
ber k, there exists a per fec t  matrix A having a minor whose determinant 
in absolute value equals k. (Replace K 4 by Kk+ 1 and the G i ,  i = 1, .... 4, 
by k + 1 copies of  G 1 , say, each of  which is connected to Kk+ 1 in a si- 
milar fashion as done above.) This indicates why a characterization of  
perfect matrices in terms of  f o rb idden  matrices is appropriate rather 
than a characterization in terms of  forbidden subdeterminants (which is 
not possible here, but  possible for totally unimodular matrices). 

G: 

lq ~Lo 
5 / 

N 

1 

Fig. 1. 
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A = 

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0  
1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0  
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1  
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Fig. 2. 
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