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A zero—one matrix is called perfect if the polytope of the associated set packing problem
has integral vertices only. By this definition, all totally unimodular zero—one matrices are per-
fect. In this paper we give a characterization of perfect zero—one matrices in terms of forbidden
submatrices. Perfect zero—one matrices are closely related to perfect graplis and constitute a
generalization of balanced matrices as introduced by C. Berge. Furthermore, the results ob-
tained here bear on an unsolved problem in graph theory, the strong perfect graph conjecture,
also due to C. Berge.

1. Introduction

In this paper we consider the polytope defined by the constraints of
the following set packing problem:

max ¢ X,
P) subject to A x < €,
x; = Oorl foralljeN={1,.. n},

where A4 is a m Xn matrix of zeros and ones, ¢ L = (1, ..., 1) is the vec-
tor having all m components equal to one, and ¢ is an arbitrary vector of
reals. This problem has recently obtained much attention, see e.g. [1, 2,
6, 15,17]. By (LP) we denote the linear programming problem obtained
from (P) by dropping the integrality reguirement on x.

Whereas in an earlier paper [15] we have been concerned with the
identification of facers of the convex hull of solutions to (P), we address
ourselves here to the question under what conditions on the constraint
matrix A the relaxed linear programming problem (LP),
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max {cx: A x < €, x > 0}, yields an optimal integral solution vector ir-
respective of the linear from ¢ x that is maximized. This is obviously the
case if the matrix 4 involved in problem (P) is totally unimodular [10].
This property remains true if the matrix A in the definition of (P), while
not totally unimodular, is balanced [5]. Generally, the matrix 4 en-
countered in (P) is neither totally unimodular nor balanced. Neverthe-
less, for certain matrices A, the property that all basic feasible solutions
to (LP) are integral remains true (see Section 3 for relevant examples).
Using some results from graph theory we give a complete characteriza-
tion of such matrices A in terms of forbidden submatrices. To this end
we summarize in Section 2 some relevant theorems and concepts from
the literature and introduce the notion of a critically imperfect (*“fast-
perfekt’) graph. In Section 3 we derive the stated characterization, see
Theorem 3.16.

2. Perfect and P-critical graphs

Let G denote a finite undirected graph without loops and multiple
edges. By G we denote the compliment of G. Following the notation of
C. Berge [3] we denote by a(G) the maximum cardinality of a stable
(independent) node set in G, by 8(G) the minimal number of cliques
which cover G, by y(G) the chromatic number of G, and by «w(G) the
maximum cardinality of a clique in G. (A clique in G is a maximal com-
plete subgraph of G.) A graph G is called y-perfect if y(G")y = w(G") for
every induced subgraph G' of G; a graph G is called a-perfect if a(G")
= 0(G") for every induced subgraph G' of G. A graph G is perfect if it is
both a-perfect and y-perfect.

In a recent paper [13], Lovasz has shown that a graph G is a-perfect
if and only if G is y-perfect. This result, usually referred to as the Perfect
Graph Theorem, implies that it is sufficient to define perfection of a
graph solely in terms of a-perfection (or alternatively, in terms of vy-per-
fection). With this in mind, the Perfect Graph Theorem can then be re-
stated as follows: A graph G is perfect if and only if the complement &
is perfect.

C. Berge has formulated the following conjecture in connection with
this concept which characterizes perfect graphs in terms of forbidden
subgraphs:
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Strong Perfect Graph Conjecture [3, 4]. A graph G is perfect if and
only if G does not contain any odd cycle Cyy without chords nor its
complement C,; ., (where k > 2).

A weaker form of the conjecture has recently been proven by Lovdsz
[14] and we shall make use of his characterization of perfect graphs.

Theorem 2.1 [14]. A graph is perfect if and only if w(G') w(G')> 1G'l
for every induced subgraph G' of G. (|G’ is the cardinality of the node
set of G'.)

A further result that is strongly related to our problem is due to
Chvatal [6] and Fulkerson [7, 8]: Let A be the incidence matrix of all
cliques of G (rows of A4) versus the nodes of G. Suppose that G has n
nodes and define the polytope P as follows:

P={xe R Ax<e x>0}

Theorem 2.2 ([16, Theorem 1]). Given any graph G, the following two
conditions are equivalent:

(i) Every vertex of P is integral,

(ii) G is perfect.

A graph G is called critically imperfect (or shortly, p-critical) if G is
imperfect and every proper induced subgraph of G is perfect. A graph
with these properties has been considered by Lovasz [14], see also [16].

Denote by |G| the number of nodes of G and suppose that |G| = n.
By G, we denote the induced subgraph obtained from G by deleting the
ithnode and all edges incident to it, i = 1, ..., n. P-critical graphs have the
following known properties:

(P1) Every p-critical graph is connected and has at least five nodes. In
fact, the “‘smallest” p-critical graph (smallest in terms of number
of nodes and edges) is Cs, i.e. the cycle of length five having no
chords.

(P2) A graph G is imperfect if and only if G contains an induced sub-
graph which is p-critical.

(P3) A graph G is p-critical if and only if its complement G is p-critical.
This follows immediately from the Perfect Graph Theorem.

(P4) Let G be p-critical and |G| = n. Then a(G) = a(G,) fori=1, .., n
and a(G) a(G)=n — 1. Indeed, since w(H) = a(H) is true for all
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graphs H, we have by Theorem 2.1 of Lovdsz [14], that n — 1 <
a(G)) a(G) < a(G)a(G)<nforalli=1,..,n Butae - 1<a(G))
< a=a(G) fori=1, ..., n. Consequently, (P4) is true.

(P5) If G is p-critical, then 2< a(G) < [ (n—1)]and 2 < «(G)<[3(n—1)].
This is immediate from (P1) and (P4).

(P6) Let G be p-critical, @ = a(G) and @ = «(G). Then every node of G
is contained in at least one clique of maximum size, and 8(G) = at+1.
Indeed, since G; is perfect, we have by the definition of perfection
and the Perfect Graph Theorem that 6(G;) = «. Furthermore, |Gl
=n—1fori=1,..,n Hence foreachi€ {1, ..., n}, G; can be parti-
tioned into @ maximum cliques of G, each of which covers @ = a(G)
nodes. Consequently, 8(G) =a + 1.

(P7) Let G be p-critical and C any clique in G with |C] < & = a(G). De-
note by G\ C the induced subgraph obtained from G by deleting
all nodesin C. Then there exists an independent node set Fin G\ C
satisfying |F| = @ = a{G). Suppose not, then a(G\C) < a—1. Since
G\ Cis perfect, we have 8(G\ () < a—1, which implies 6(G)< a, a
contradiction to (P6). )

Due to property (P2) of perfect graphs we can now reformulate
C. Berge’s Strong Perfect Graph Conjecture as follows (see also Sachs
[161): A graph G is p-critical if and only if it is an odd cycle Cy;,; with-
out chords or its complement C,; ,;, where k > 2.

3. Perfect zero—one matrices

Let 4 be any m X n matrix of zeros and ones, and define the polytopes
P and P; as follows:

P={xe R":Ax<e, x].> 0,j=1,.., n},
(3.1)
P, =convixerl: x].=00r 1,7=1,..,n},
where € T=(1,..., 1) has m components, all equal to one. The matrix 4

is called perfect if P = P;, i.e., if the polytope P defined in (3.1) has only
integral vertices. Denote by G the (intersection) graph associated with
the matrix A, i.e., the nodes of G correspond to the columns of 4 and
two nodes of G are linked by an edge if the associated columns 4/ and
a’ of 4 have at least one +1 entry in common. Consequently, G is a fi-
nite undirected graph without loops and multiple edges. Let C denote
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the node set of any clique in G. Then by [15, Theorem 2.4], the inequal-
ity

1 op .

D N Litjec, (3.2)

j=1 0 lf] € C
yields a facet of Py, i.e., a face of dimension n—1 of P;. Clearly, every
facet of the polytope P; is essential in defining P;. Hence it is a neces-
sary condition for 4 to be perfect that A contain the incidence (row-)
vectors of all cliques of the associated graph G. Furthermore, if 4 is per-
fect, then every row of A that is not the incidence (row-) vector of a
clique in G is dominated (in the usual vector sense) by some other row
of A. Consequently, such a row is non-essential in defining the polytope
P; and can be deleted from A4. In order to characterize perfect matrices
we can thus restrict ourselves to considering only clique-matrices, i.e.,
matrices A which are such that every row vector of 4 is the incidence
vector of a clique of the associated graph G and vice versa.

Let 4 be any clique-matrix of size m X n. By Theorem 2.2 we have that

A is perfect if and only if the associated graph G is perfect. Consequent-
ly,by (P2), A is imperfect if and only if G contains an induced subgraph
which is p-critical. Since induced subgraphs of G having k nodes corre-
spond uniquely to m X k submatrices of A (and vice versa) we can make,
without loss of generality, the temporary assumption that G itself is a
p-critical graph. Let G denote the complement of G, and denote by B
the clique-matrix of G. Similarly to (3.1), define the polytopes Q and
O, respectively as follows:

Q={xeR"% Bx<e¢, x].>0,]'= 1, ..., n},
(3.3)
Q1=cor1v{xe Q:x].=00r l1,7=1,..,n},

where é7 = (1,...,1) has all components equal to one and is dimensioned
compatibly with B. The vertices of (; correspond to complete sub-
graphs of G and vice versa. Furthermore, every maximal independent
node set in G defines a clique of G (and vice versa). Consequently, there
exists an (incomplete) “duality” relation between the vertices of P; and
the facets of Q (and hence, between the vertices of Q; and the facets of
P), see e.g. [11]. Using the terminology of Fulkerson {7] we show that
Q (P, respectively) is the anti-blocker of P; (of Oy, respectively), see
Remark 3.4.

Letj e {1, .., n} and let G]- denote the induced subgraph obtained
from G by deleting the nodej and all edges incident to it. Denote by P]-
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the polytope defined with respect to the clique-matrix of G;. Then we
have that

P].=Pm{x€R”:x].=0}. (3.4)

To prove (3.4), we remark that by assumption, 4 contains all cliques of
G.Consequently; since every clique of G not containing node J is a clique
in G; and every clique in G; either ic a clique in G (if node j:is not con-
tained in it) or becomes a clique in G after adjoining nodej to it, rela-
tion (3.4) is true. Similarly, we define n polytopes Q; with respect to
G]. forj=1, .., n

Remark 3.1. If G is p-critical, then P]»(Q-, respectively) has integral
vertices only for everyj e {1, ..., n}.

Remark 3.2. If G is p-critical, then P(Q, respectively) has at least one
fractional vertex.

Remark 3.3. If G is p-critical, then every fractional vertex x of P (Q,
respectively) satisfies 0 < x; <1 for allje {1, ..., nt.

Proof. Suppose that there exists X, a fractional vertex of P having X;
= 0. Then X € P; and x is a vertex of P;. By Remark 3.1, this is impos-
sible. Sgppose that there exists x, a fractional vertex of P, having X = 1.
Define x by x;, = x; for all kK # j and X, = 0 for k =j. From the fact
that 4 is a zero—one matrix and € = (1, ..., 1), it follows readily that ¥
is a vertex of P and since ):c]- = 0, x must be a fractional vertex of P]-.
Again by Remark 3.1, this is impossible.

Remark 3.4. If G is p-critical, then P (Q, respectively) is the antiblocker
of Oy (P, respectively).

Proof. Every vertex X of P either is an independent node set in G (if
X is integral) or it satisfies 0 < X < e, where eT =(1, ..., 1) has n compo-
nents equal to +1. If X is integral, then X defines a maximal independent
node set in G (or not, in which case it is contained in one or several
maximal independent node sets). If X furnishes a maximal independent
node set in G, this node set constitutes a clique of G and hence the con-
straint ¥Tx < 1 yields a facet for Q. (If X is not maximal, then
XTx < 1 yields a support of Q; which is non-essential in defining Qp). If
X is a fractional vertex of P, then 0 <X < e. This implies that the matrix
A is of size mXn with m=>n, and that A is of full rank.
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Furthermore, 4 x < ¢ implies that XT x < 1 is a support for Q; which
is satisfied by # linearly independent vertices of Q;. (Take a nXn subma-
trix of A that defines ¥.) Hence every vertex of P that either furnishes a
maximal independent node set in G or that is fractional furnishes a facet
of Q;. On the other hand, let 7T x < m, be any non-trivial facet of @y,
ie, 1T x < 7y is such that 7y > 0. Then 7l x = 7y contains n linearly
independent vertices of Q; and 7T x < 7, for all x € ;. Consequently,
(1/my) m is a vertex of P.

Lemma 3.5. Let G be p-critical and @ = a(G). Then E}Ll ;< a isa
facet of Qp,ie., X = (1/a)e is a (fractional) vertex of P.

Proof. Denote by e/ the row vector with n — 1 components equal to +1
and having a zero in the jth component. Then we have that max, .p e/ x
=max,cp.e/x=aforj=1,..n.

Define f‘[]- to be the halfspace given by

H]:{xeRne]xga} fOI‘].'_‘l,..,,n-

Consequently, P C Hj forj =1, ..., n or equivalently, PC H =ﬂ;7=1 H;.
By definition of e/, j = 1, ..., n, H is a pointed polyhedral convex cone
with its apex atx = (a/(n — 1)) e. By property (P4) of p-critical graphs we
have that A X< (@ a/(n—1))¢ =¢. Consequently, since H is pointed, x =
(a/(n—1)) e = (1/a) e is a vertex of P satisfying 0 < X < e. By Remark
3.4 we have that 27, x; < & is a facet of Q.

Remark 3.6. If G is p-critical, we have by property (P3) that x = (1/05) e
is a (fractional) vertex of Q and by Remark 3.4 that Z]’-Ll X<« provides
a facet for P;.

Remark 3.7. Since X = (1/@) e is a vertex of P, we can reorder the rows
of the matrix 4 as follows:

.

A=<41>,
A2

where the row sums of ZI all equal @ and the row sums of Z2 are all
(strictly) less than a. Furthermore, Zl is of size mXn withm = m > n,
and Zl contains an (at least one) nonsingular submatrix of size nXn. By
Remark 3.6 we have a similar partitioning of B into Fl and §2, where
B, has m rows, i1 > n, having row sums equal to «, and B, contains a
nX n nonsingular submatrix.
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Remark 3.8. In graphical notation, Remark 3.7 implies that every p-
critical graph G contains at least |G} maximum cliques of the cardinality
@ = a(G). This has been observed earlier by H. Sachs and can be found,
though without proof, in [16].

Remark 3.9. The point X = (a/(n — 1)) ¢ uniquely maximizes the linear
from el x = 21’7:1 x; over the convex polyhedral cone A defined in the
proof of Lemma 3.5. Since PC H and X¥ € P, X uniquely maximizes the
(same) linear form eT x = E]’LI X; over P. Consequently, there exists an
optimal basis A, (in the linear programming sense) associated with X of
the following form:

4,0
A*_[A 1}’
2

where A4, is a nonsingular submatrix of Zl (as defined in Remark 3.7)
satisfying A, X = e and el A11> 0. The latter inequality follows from
the fact that x uniquely maximizes eT x over P.

Proof. The convex polyhedral cone H is given by the system of in-
equalities e/ x < « forj =1, ..., n. Call F' the matrix made up of the n
vectorse/. Then F~1 exists and F~1(« e) = (a/(n—1)) e = x. Furthermore,
el F~1 =(1/(n—1))eT > 0. Consequently, X uniquely maximizes the li-
near form eT x over H. The rest of Remark 3.9. then follows by a simple
contradiction.

To state the next lemma we recall that a #X#» matrix R of zeros and
ones is called a permutation matrix if R contains exactly one +1 entry
in every row and column.

Lemma 3.10. Let A be the m X n clique-matrix of a p-critical graph G
and let B be the m Xn cligue-matrix of G. Then A and B, respectively,
contain n X n submatrices A, and B satisfying the matrix equation

A Bl =E—-R, (3.5)
where E is the nX n matrix consisting entirely of ones and R is a nXn per-

muration matrix.

Proof. From Remark 3.7 we have that A has m > n rows having row
sums equal to &, i.e., the polytope Q has r1 integer vertices satisfying

x, < @ (3.6)
=1 7
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with equality. The vector X = (a/n) e satisfies BX < (a a/n)e < e and
X > 0. Consequently, X € int Q. Furthermore, X satisfies (3.6) with
equality. We show next that X € @y, i.e., more precisely, that

xT=~T4,, (3.7)

with y; > 0 fori =1, ..,nand £, v, = 1, where 4, is the nonsingular
submatrix of A defined in Remark 3.9. Since by definition, T
= (&/n) €7, we have from the nonsingularity of A, and from Remark
3.9 that (& /n)eT A7! =~T > 0. Furthermore,

Tp=Q T g-1,.%,T(_© =

ve=_e A1 e e < e>

Consequently, (3.7) is true. Now let B, be any nXn nonsingular subma-
trix of the submatrix El defined in Remark 3.7. Then we obtain from
(3.7) that

n—1
el B;r =T,

y' 4, Bl =x1 B] = -

S |2l

Since both A; and B, are nonsingular, it follows that D = 4, Bf is non-
singular. Furthermore, since the columns of BIT are (a subset of) vertices
of P; (satisfying eT x < a with equality), we have that 4, BIT < Elie.,
that D consists of zeros and ones only. Suppose now that D contains a
row of +1 entries. Then there exists a row of A4, say al, such that
al BT =l .Since By e = ae, it follows that a¥ = (1/a) e . Since by pro-
perty (PS) a > 2, this contradicts the integrality of a¥. Consequently,
D cannot contain a row of +1 entries. Hence we have that

7T D :ﬂ—l eT

- (3.8)

with ;> 0 fori=1,..,nand £, v, = 1, and hence that y* De=n—1.
Consequently, y; > 0 implies that the row sum of row i of D equals n—1,
since 2%, v; = 1. Suppose now that y; < ... < v, with k < n satisfies
vy > 0and y;,; = ... =7, =0. Since D is nonsingular we can rearrange
the rows and columns of D such that D has the form

o-(y )
D, D,
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with
01.. 1 1.1
1 L
Dy =1 1) Dy 1..1/°
1. 10

where D, is of size k Xk and has zeros only in the main diagonal, D, is
of size k X (n—k) and consists entirely of ones. If k£ < n, obviously (3.8)
cannot have a solution satisfying y; > 0 and 2%, v; = 1. On the other
hand, 2%, v; = 1 implies k > 1. Consequently, kK =#» and D has the gen-
eral form E—R, where E is the n X#n matrix consisting entirely of ones
and R is a nXn permutation matrix.

Furthermore, we note that from (3.8) it follows that

T =”n;1 T pl=L,T (3.9)

1
n

Theorem 3.11. Let A be the m X n clique-matrix of a p-critical graph
G. Then A contains a nXn nonsingular submatrix A; whose column and
row sums are all equal to & = a(G). Furthermore, the row sums of the
rows of A that are not contained in A are all strictly less than @.

Proof. Let A; be the n X n submatrix of A defined in Lemma 3.10.
Then A, e = @ e. Furthermore, from (3.9) we have that AT =(1/n)eT;
from (3.7) and the definition of ¥ it follows that eT 4, =ael. Conse-
quently, A4 contains a nX#n nonsingular submatrix 4, whose column
and row sums are all equal to a. To complete the proof of Theorem 3.11
we note that the relation 4; B] = E—R of Lemma 3.10 implies that

At =2 E—- BT RT. (3.10)

Suppose now that the matrix 4, defined in Remark 3.9 contains a
row a7 satisfying aT e =a. Then we have that aT 47! =eT — aT B RT.
Since 0 < eT —aT BT RT < eT, it follows that 0 < aT A7l < eT. Denot-
ing by P* the polytope obtained from P by dropping from the constraint
set A x < ¢ the constraint aT x < 1, we conclude that

T

max a! x =maxal x = 1.

xepP* xEP
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Consequently, we have that P* =P, i.e.,a¥ x < 1 cannot be a facet of P
and hence, in particular, it cannot be a facet of P;. By assumption how-
ever, all tows of A define facets of P;. Hence A, cannot contain such a
row aT. Consequently, the row sums of the rows of 4 that are not con-
tained in A, are all strictly less than a.

Remark 3.12. An immediate consequence of Remark 3.4 and Theorem
3.11 is that the vertex x = (1/a)e of P is non- degenerate and that P has
exactly n (hnearly independent) vertices x! satisfying E” 1 X <a with
equality, i = 1, ..., n. Furthermore, every vertex x! is connected to X by
an edge of P, i.e., xi and X are adjacent verticeson P fori =1, ...,n.An
analogous statement holds for the polytope Q.

Remark 3.13. In graphical notation, Theorem 3.11 implies that every
p-critical graph G has exactly |G| maximum cliques of the cardinality
& = a(G) and {G| maximal independent node sets of the cardinality
a = a(G).

Theorem 3.11 suggests the following definition.

Definition 3.14. Let 4 be a zero—one matrix of size m X n,m> n. A
is said to have property m, , if the following conditions are met:

(i) A contains a nXn nonsingular submatrix 4; whose row and
column sums are all equal to 3.

(ii) If aT is a tow of 4 with row sum equal to 8 and aT is not con-
tained in the submatrix 4; defined under (i), then there exists a row bT
of A; such that a = b (equality is meant to hold componentwise).

(iii) All other rows of 4 have row sums strictly less than .

Remark 3.15. Let A be a m X n matrix of zeros and ones and  its as-
sociated intersection graph. A is a clique-matrix, i.e., A contains as row
vectors the incidence vectors of @/l cliques in G if and only if A does not
contain any m Xk submatrix 4’ having the property Ty With 3= k-1
and 3= 2.

Proof (outline). The necessity of the condition is obvious. To prove
sufficiency, let C be the node set of a clique in G such that the associated
incidence vectoraT with a; = lifjeC, a; = 0 otherwise, is not contained
in 4. Define

=PN{xeR":x;=0 forallj € N\C},

P]’-=P’m{x€R”:xj=0} forallj e C.
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By assumption, max{el x: x € P, X; =0orl,j=1,..,n}=1,and further-
more, P has at least one fractional vertex. We now distinguish two cases:

(1) P]’- has integral vertices only for allj € C,

(ii) there exists aj € C such that P]f has a fractional vertex.
In case (i) we can show by an argument completely analogous to the one
used in the proof of Lemma 3.5, that 4 contains a m X k submatrix 4’
having property Mgk with=k—1,8> 2 and k =|C|.'In case (ii) we can
restrict attention to any P]’- having a fractional vertex forj € C. Abusing
slightly the notation we redefine C to be C\{j}, redefine the polytopes
P, P]'- with respect to the new set C and find again the two cases men-
tioned above. (Note that the new set C defines a complete subgraph in
G, which is no longer a clique in G. This, however, does not affect the
argument.) Clearly, case (ii) can happen only finitely many times, and
finally we obtain a set C having at least three elements and which is such

that case (i) prevails. This completes the outline of the proof of Remark
3.15.

We note for completeness that Remark 3.15 is equivalent to a theo-
rem due to Gilmore [3, Ch. 17, Théoréeme 2]. The following theorem
states a necessary and sufficient condition for an arbitrary zero—one ma-
trix to be perfect.

Theorem 3.16. Let A be any zero—one matrix of size m X n. The fol-
lowing two conditions are equivalent:

(i) A is perfect.

(i) For 8 = 2 and 3 < k < n, A does not contain any mXk subma-
trix A" having the property Mg k-

Proof. Suppose that A is perfect and that (ii) is violated. Then there
exists a m Xk submatrix A’ of A having property Tg for some 3= 2
and k > 3. Suppose the columns of A have been ordered such that A’
coincides with the k& first columns. Then X, defined by Xx; = (1/8) for
i=1, .,k x =0 forj =k+1, .., n,isa fractional vertex of the poly-
tope P defined in (3.1). Hence by definition, 4 cannot be perfect. On
the other hand, suppose that A is such that (ii) holds. Then A must be
perfect. For if not, then by Remark 3.15 and Theorem 2.2 the intersec-
tion graph G associated with 4 must be imperfect. By (P2), G contains
an induced subgraph G' that is p-critical. Again by Remark 3.15, the
clique-matrix of G’ is a m Xk submatrix A’ of A, where k =|G'|. Let
A" denote the m'X k submatrix of 4" whose rows correspond to the cli-
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ques of G'. By Theorem 3.11, 4" has the property Mg With = a(GH> 2.
Since the m—m' truncated rows of 4 not contained in A” are dominated
by some row in 4", the mX k submatrix A" of 4 must also have property
Mg k with 8 = «(G"). Thus (ii) cannot be satisfied by 4.

Remark 3.17. Let A be any m X n matrix of zeros and ones contain-
ing a mXk submatrix 4’ having property m; ; with §> [F(k—1)]+1. Let
N' be the index set of the columns of A". Then obviously, Z,c v x; <1
is a valid inequality for problem (P), and the nodes of the associated
graph G that are contairied in N' form a complete subgraph (possibly a
clique) in G. Consequently, in view of Remark 3.15, condition (ii) of
Theorem 3.16 can be written equivalently as folows:

(ii') A is a cligue-matrix and A does not contain any mXk sub-matrix
having property s for5<k<nand 2<p<[F(k—1)].

Corollary 3.18. Let A be a zero—one matrix of size m X n. A is critic-
ally imperfect, i.e., A is the clique-matrix of a p-critical graph G, if and
only if the following two conditions are met:

(i) A has the property mg i for some (8 satisfying 2 < < [(n—1)]
and k = n.

(i) A does not contain any mXk submatrix having property mg i for
=2and 3< k< n-1.

Remark 3.19. The Strong Perfect Graph Conjecture [3, 4], if true,
now is reduced to proving that the only zero—one matrix 4 of size mXn
satisfying the conditions (i) and (ii) of Corollary 3.18 and 2 < §
< [2(n—1)] is the circulant of odd size having exactly two positive en-
tries in every row and column, i.e., 4 is the clique-matrix of an odd cycle
without chords. A characterization of critically imperfect matrices in
graphical terms appears advantageous if one wants to check the perfec-
tion of a zero—one matrix. For, similarly to the criterion for the total
unimodularity of a matrix 4, a direct check of the perfection of a zero—
one matrix via the necessary and sufficient criterion of Theorem 3.16 is
— computationally — an impossible task, whereas graphical criteria — at
least in the context of total unimodularity — are relatively easily verified
or known to be satisfied by the physical conditions of a problem under
consideration.

Remark 3.20. By the definition of perfect zero—one matrices we have
that every totally unimodular zero—one matrix is perfect. In a recent
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paper, Berge [5] has extended the notion of totally unimodular zero—
one matrices by means of the theory of balanced hypergraphs [3]. A
zero—one matrix A is called balanced if it is the incidence matrix of a
balanced hypergraph. In order to show that every balanced zero—one
matrix is perfect we use [5, Theorem 6], which states the following ne-
cessary and sufficient condition for a zero—one matrix to be balanced:
A mXn zero—one matrix 4 is balanced if and only if for every zero—one
vector w € R” and for every zero—one vector b € R” the linear pro-
gramming problem

m

(Lva) min,{Ey].:yA>b,0<y<W]
j=1

provides an integral solution. Consequently, if 4 is balanced, then the

linear program

m
(LP?) min[zyj:y/l>b,y>0]
j=1

provides an integral solution for every zero—one vector b € R”. Conse-
quently, by [12, Theorem 5], the linear programs

n
(D?) max{z’bixi:Ax<3,x>0}
i=1

provide integral solutions for al/l vectors b with integral components,
i.e., 4 is perfect. Consequently, every balanced matrix is perfect. To
prove that the reverse statement does not hold we use a criterion due to
Hoffman and Oppenheim [12]: A4 is balanced if and only if 4 does not
contain any submatrix of odd size having row and column sums equal to
two. Consequently, Example 3.22 is an instance of a perfect zero—one
matrix that is not balanced. In general, we have the statements: Every
totally unimodular zero—one matrix is balanced; every balanced zero—
one matrix is perfect; but none of the two preceding statements holds
in the reverse direction.

Example 3.21. Since a zero—one matrix A4 is perfect if it is the clique-
matrix of a perfect graph (and vice versa), the clique-matrices of perfect
graphs furnish examples of zero—one matrices satisfying the condition
(ii) of Theorem 3.11. Among the graphs known to be perfect are the ri-
gid circuit graphs [7] (or “triangulated” graphs [2]), the comparability
graphs, and the “i-triangulated” graphs, see e.g. [2]. The example of ri-
gid circuit graphs provide examples of zero—one matrices which are per-
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fect, but not totally unimodular. (I am indebted to D.R. Fulkerson for
this example).

Example 3.22. Consider the graph G in Fig. 1 and its associated cli-
que-matrix 4 in Fig. 2. The submatrix A’ made up of the columns 1, 2,
3 and 4 and the rows 1, 6, 11 and 16 has a determinant of 3. Conse-
quently, A is not totally unimodular. Furthermore, the submatrix 4"
made up of the columns 1, 2 and 4 and the rows 1, 6 and 11 has row
and column sums equal to two. Consequently, 4 is not balanced. Due
to the simple structure of 4 we find by inspection that A is perfect.
(Checking condition (ii) of Theorem 3.11 amounts to proving that &
does not contain an odd cycle without chords.) Furthermore, the matrix
A provides us with an example where AT, the transpose of a perfect ma-
trix, is not perfect. This is interesting since it is different from a pro-
perty that both totally unimodular and balanced matrices have. The
above example can be generalized to prove that given any natural num-
ber k, there exists a perfect matrix 4 having a minor whose determinant
in absolute value equals k. (Replace K, by K; ; and the G;,i=1,...,4,
by k + 1 copies of Gy, say, each of which is connected to K ,; in a si-
milar fashion as done above.) This indicates why a characterization of
perfect matrices in terms of forbidden matrices is appropriate rather
than a characterization in terms of forbidden subdeterminants (which is
not possible here, but possible for totally unimodular matrices).

19 20 6 1
G G
4 1
> 8
18 11
2
6 Ky
A 3
16 q 10
3
63 GL
15 14 12 17

Fig. 1.
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