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We consider two convex polyhedra related to the vertex packing problem for a finite, un- 
directed, loopless graph G with no multiple edges. A characterization is given for the extreme 
points of  the polyhedron 12 G ={x ~ Rn: A x <- lm, x > 0}, where A is the m X n edge-vertex in- 
cidence matrix of G and 1 m is an m-vector of ones. A general class of facets of  q~G = convex 
hull{x E Rn: A x --< lm, x binary} is described which subsumes a class examined by Padberg 
[ 13 ]. Some of the results for q~ G are extended to a more general class of  integer polyhedra ob- 
tained from independence systems. 

1. Introduction 

Consider a finite, undirected, loopless graph G = (V, E) with no mul- 
tiple edges; V and E are the vertex and edge sets of  G, respectively. A 
vertex packing (v-packing, anticlique, stable set, independent set) in G is 
a subset P c_ V for which all vi, v~ • P satisfy (vi, v/) (i E. The family of  
all such v-packings in G is denoted 5~ G ={P c_ V: P a v-packing}. Aprac-  
tical reason for studying v-packings is that packing and partitioning prob- 
lems in a family of  sets can be transformed into v-packing problems on 
the intersection graph defined by the family [5, 10, 13 ]. 

We will investigate two classes of  convex polyhedra that arise natural- 
ly from the problem of determining a maximum weighted member  of Pc 
(the weighted vertex packing problem). This problem can be formulated 
as an integer program by representing a packing P by a binary vector x 
such that x / =  1 if and only if vi • P. It then can be formulated as a linear 
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program by considering the convex hull of  the binary vectors that cor- 
respond to packings. Thus the weighted vertex packing problem can be 
written as the linear program 

m a x c x ,  x •  ~ G 
(vP) 

q~G = convex hull {x • Rn: A x  (-1 m, x binary) 

in which n = iVI, 1 m = IEI, c is an arbitrary n-vector, 1 m = ( 1 , . . . ,  1)is 
an m-vector of  l 's, and A is the edge-vertex incidence matrix of  G 
(ai/= 1 if and only if vi is an endpoint of  ei). 

The related fractional v-packing problem is obtained from (VP) by de- 
leting integrality restrictions. This yields 

maxcx ,  x ~ ~2 a 
(VLP) 

.t2 G ={x ~ Rn: A x  <- lm, x >- 0}. 

In the following section we give a decomposit ion theorem which char- 
acterizes all extreme points of  ~?c, in terms of  certain elementary ex- 
treme points. In Section 3, a class of  facets ((n - 1)-dimensional faces) 
of  q0 G is characterized which subsumes the class investigated by Pad- 
berg [13]. Furthermore,  our characterization of  the extreme points of  
~? c leads to a simple proof  that the subclass of  facets of  ~ c developed 

in [13] removes all original non-integer extreme points of  ~2 c.  
In Section 4 we give a natural generalization of  the technique for ob- 

taining facets of  q8 a that characterizes certain facets for independence 
system polyhedra. 

2. Extreme points of  Z? G 

Proposition 2.1. 2 Let x be an extreme point o f  Z? a. Then xj 
for l <-j<-n. 

= O , ~ o r l  

1 IS I denotes the cardinality of the set S. 
This simple and direct proof of Proposition 2.1 was kindly provided by a referee. Alternatively, 
Proposition 2.1 could be proved, as indicated by Balinski and Spielberg [3] and spelled out by 
Trotter [14], using the facts that the edge matching problem in binary variables [6, 2] is 
asymptotically equivalent to (VP) in the sense of Gomory [11] and that the edge matching 
problem in real variables has extreme points all of whose components are (0, 1, D-valued [1, 
p. 28Ol. 
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Proof. Define 

U 1 = { j :  0 < x / . <  ½, l < - j < - n } ,  

U1 ={ ] ' :  1 < X j <  l, l ~ ] ~ n} ,  

x/ + k e  i f / ~  U k ,  ( x j -  k e  i f / ~ U  k ,  
y/ = z/ = 

xj otherwise, xj otherwise 

for k = + 1 and 1 <- j --< n. Then x = ( y  + z)/2. If either U l o r  U 1 is non- 
empty, e > 0 may be chosen small enough so that y, z ~ .2 G and x, y 
and z are distinct. Thus x extreme implies U k = ~ for k = + 1. 

In order to describe the fractional extreme points of  2G we need the 
following characterization of  connected bipartite graphs. 

Proposition 2.2. Let A denote the edge-vertex incidence matrix o f  a con- 
nected graph G. Then A has full column rank i f  and only i f  G is not bi- 
partite. 

Proof . .Only if: G bipartite implies existence of  a vertex partition into 
V 1 u V 2 = V for which Evj~ v 1 aJ = Evj~ v2 a/, where aJ denotes t he j  th 
colt~mn of A. Hence A has linearly dependent columns. 

If: Suppose G is not bipartite and consider multipliers X/forwhich 
E~:.e v X:.d = 0. Let C denote an odd cycle of G and, without  loss of  
generality, assume the vertices of  G are indexed so that C = {v I . . . . .  v2k+~, 

k >-- 1. Now Zo]~ v X/a/= 0 implies ~k 1 = --  ~'2 = ~'3 = " ' "  = )k2k+l = --~'1 SO 
that X/= 0 for all v~ ~ C By the same reasoning we conclude that Xj = 0 
along any path from v/. c C to v k ~ V \ C Since G is connected, this implies 
Xj = 0 for all v /~  V Hence the columns of  A are linearly independent.  

F o r S  ~ V l e t x  s ~ ~G be defined by 

{½0 if v / ~ S '  (1) 
xS  = e l s e ,  

and let G s denote the vertex generated subgraph of  G on S. If x s is ex- 
treme in ~2 a and G s is connected, then x s is called an elementary frac- 
tional extreme point. 

Proposition 2.3. Let G s denote the connected vertex generated subgraph 
o f  G on S c_ V. Then x s defined by (1) is  an elementary fractional ex- 
treme point o f  ~ c  i f  and only i f  G s contains an odd cycle. 
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Proof. Since x s is extreme in 22G if and only if }s  = 1. 1 Is1 is extreme 
in -2as, we need only consider the case S = V with G a connected graph. 
Now, using the well-known correspondence between extreme points of  
/2 G and basic feasible solutions to the system of inequalities which de- 
fine this polyhedron,  the desired result follows directly from Proposi- 
tion 2.2. 

Feasible integer solutions to (VLP) correspond to integer extreme 
points of  22a" Two extreme points of  22 c will be called d i s j o i n t  if their 
sum is also in 22 G- All extreme points of  22G are described in terms of  
disjoint integer and elementary fractional extreme points by 

Theorem 2.4. A v e c t o r  x ~ R n is an e x t r e m e  p o i n t  o f  22a i f  a n d  o n l y  i f  

X = X 0 + X 1 + . . . + X k ,  w h e r e  

(i) x ° is an i n t eger  e x t r e m e  p o i n t  o f  "2 G , 

(ii) x I . . . . .  x x are e l e m e n t a r y  f r a c t i o n a l  e x t r e m e  p o i n t s  o f  22~,  

(iii) x °, x 1 . . . . .  x k are m u t u a l l y  d i s jo in t .  

Proof. Only if: Let S 1 . . . . .  S x denote the vertex sets of  the compo- 
nents of  the vertex generated subgraph of  G on {vj: x] = ~-} and let 
x i = x  Si  be defined as in (1) for 1 < - - i N k .  Also let S O ={v/: x]=l} and 
define x 0 = 2xSo.  From Proposition 2.1 we h~ave that x = x o + x 1 + . . . + x  x 

and it is clear that (i) and (iii) hold. Furthermore,  if any x i were not  
extreme, 1 -< i -< k, then obviously x could not  be extreme, so (ii)holds 
also. 

If: From x o, X 1 . . . . .  X k we define the vertex subsets S o, S 1 . . . . .  S k as 
above. Since x o, x 1 . . . . .  x k are mutually disjoint, x E 22G" If x is not  
extreme, then a simple argument shows that the same is true for at least 
one of  the vectors x 1 . . . .  , x k. Hence x is extreme. 

We call x s l ,  . . . . . .  x sx  the e l e m e n t a r y  c o m p o n e n t s  of x. Theorem 2.4 
shows that an arbitrary extreme point of 22G can be represented u n i q u e -  

ly as the sum of an integer extreme point and elementary fractional ex- 
treme points and, conversely, that any such sum of extreme points 
which yields a feasible solution to (VLP) produces an extreme point  of 
22 G- In contrast to the analogous situation in edge matching, where ele- 
mentary fractional extreme points are in one-to-one correspondence 
with odd cycles in G, Theorem 2.4 shows that (VLP) generally pro- 
duces many more elementary fractional extreme points - one, in fact, 
for each connected vertex generated subgraph of  G that contains an odd 
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cycle. This characterization is used in Section 3 to show that certain 
simple facets of  936 remove all original fractional extreme points from 
Z? G . 

3. Facets of  936 

In [ 13], Padberg has shown that certain facets of  cB 6 may be derived 
from maximal cliques (complete subgraphs) and odd holes (chordless 
cycles of  odd length greater than 3) in G. The procedure used to obtain 
these facets applies much more generally and may be used to derive fac- 
ets of  93a from arbitrary facets due to vertex generated subgraphs of  G. 

Theorem 3.1. Suppose 

aj x~ <- s o (2) 
vFs 

is a facet o f  936s, where G s is the subgraph o f  G generated by S ~ V. 
Then there exists ~j for v/~ V \  S so that 

~] ,~j x i <_ % (3) 
vj.~ v 

is a facet o f  93 6. 

Proof. It suffices to prove the theorem for the case S = { o l , . . . ,  On_l}. 
We define a n = max {0, s 0 - z*}, where 

z * = m a x  ~ a j x  i ,  
oFs 

a/x/<_ lm-a n, xj=O, 1, v / E S ,  
vies 

(4) 

and a/ denotes the column of A corresponding to vj. We need only 
show that (3) is a valid inequality for (VP) that is satisfied at equality 
by n = I Vt affinely independent 3 feasible solutions to (VP). 

For P c 5°G, let Q = P n S and let x P and xQ be the extreme points 
of 93a which correspond to P and Q, respectively. Since Q c_ S, it is 

Here we are considering non-trivial facets (facets other than  xj >- 0, vie V) of  '~G, so c~ 0 > 0 
and consequent ly  (0 . . . .  , 0 )  cannot  satisfy (3) at equality. Hence, in this case, affine indepen- 
dence is equivalent to the  more familiar concept  of  linear independence.  
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clear that xQ satisfies (3). If P--  Q or a n = 0, then x # also satisfies (3). 
if  a n > 0, then z * <  a 0 and since xQ is a feasible solution to (4), 

a / x  Q <_ z* .  
vj~s 

Adding a n = a 0 - z* to this inequality shows that x ~' satisfies (3). Thus 
(3) is a valid inequality for (VP). 

Since (2) is a facet of  q3as,  there are v-packings P 1 , " " ,  P - 1  in S and 
corresponding affinely independent vectors x 1 . . . . .  X n - 1  which satis- 
fy (3) at equality. Now let 2 n be an optimal solution to (4) with corre- 
sponding v-packing/3 n. Since/5 n • 5~ a and the right-hand side of  (4) is 
1 m -- a n, no edge joins V n to a vertex in Pn, so that Pn = l~n tO {Vn}• ~G" 
The definition of  a n then forces the corresponding vector x n to satisfy 
(3) at equality. Furthermore,  since v n • Pn \ P / f o r  1 <_ j <- n -  1, we 
have that x n is affinely independent of  x l  . . . . .  x n - l ,  which completes 
the proof. 

It is clear from the proof  that the constraint (2), assumed to be a fac- 
et of  qBCs, is bo th  a support  of  ~ a  and the projection of  the facet (3) of  
q~c- The crux of  the procedure described for "lifting" this projection 
up to a facet of  93a lies in the recursive definition of  the aj's for 
v/E V \ S via (4). This procedure is simplified considerably by  noticing 
that aj = 0 for v /E  V \ (S u N ( S ) ) ,  where 

N ( S )  = { v i e  V \ S :  (vi, vj) • E  for some v i • S } .  

Unfortunately,  it may still be of  little practical value, since (4) is itself 
a weighted v-packing problem which must be solved for each v! • N ( S ) .  
Furthermore,  for a particular S, different orderings of  the vertices of  

5 4 

Fig. 1. 
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N(S )  may yield several different facets 4 of 93G from (3) as shown 
in 

Example 3.2. In the graph G of Fig. 1, S = {1, 2, 3, 4, 5, 6, 7} is an odd 
hole and ~ 7_ 1 x~ <-- 3 is a facet for 93Cs (see Corollary 3.6). We have 
N(S)  = {8, 9)=and by first considering yertex 8 then vertex 9, we obtain 
the facet of  93 G, 

x 1 + . . .  + x  7 + 2x 8 + x  9 <-- 3 .  

If we consider first vertex 9 then vertex 8, we obtain a different facet, 

X 1 + . . .  + X 7 + X 8 + 2X 9 ~ 3 .  

Theorem 3.1 partitions the facets of  93a into two distinct categories - 
namely, those due to subgraphs of  G which can be lifted to 93G, and 
those which are uniquely due to G. Thus the task of  characterizing all 
the facets of  93 G for an arbitrary graph may be viewed as a problem of 
determining those graphs which produce facets. We now outline several 
such classes of  graphs. Obvious proofs are omitted. 

Proposition 3.3. Suppose  s o is the cardinality o f  a m a x i m u m  v-packing 

in G and suppose G contains n m a x i m u m  v-packings P1 . . . . .  Pn with 
corresponding aff inely independen t  vectors x 1 . . . . .  x n. Then (3) is a 

facet  o f  93 6 with a~ = 1 for  all v~ ~ V. 

Proof. Since P1 . . . . .  Pn are maximum, each of the vectors x l  . . . . .  x n 
satisfies (3), with ~j = 1 for all v / ~  V, at equality. This fact and the 
hypothesis that x 1 . . . . .  x n are affinely independent imply that (3) is 
a facet of  93G. 

By considering certain maximal packings in G, it is possible to gener- 
ate facets that cannot be obtained from Proposition 3.3. In particular, 

Proposition 3.4. Suppose  s o is the cardinality o f  a m a x i m u m  v-packing 
in G and suppose G contains exact ly  n max imal  v-packings P1 . . . . . . .  Pn 
with corresponding aff inely independen t  vectors x 1 . . . . .  x n. Def ine  ~1 

for  v~ ~ V to be the unique solut ion to the sys tem o f  equat ions  

a / x / i = S o  ' i= 1 , . . . , n .  (5) 
o/~ v 

4This fact has been observed in [ 13 ] for the class of facets to be given in Corollaries 3.5 and 3.6. 
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I f  ~j >_ 0 for all v~ ~ V, then (3) is a facet o f  q8 c. 

The following results can be obtained easily from either Proposition 
3.3 or Proposition 3.4. If S is a maximal clique in G, the procedure de- 
scribed in Theorem 3.1 forces ~j = 0 for vj • V \ S. Consequently we 
have 

Corollary 3.5 ([8, 9, 13, 4]). Let  S c_ V be a maximal clique in G. Then 
£vjEs x! <_ 1 is a facet  o f  ~G.  

As a consequence of  Fulkerson's theory of anti-blocking polyhedra 
[8, 9] and the perfect graph theorem [12], it can be shown that the 
clique constraints of  Corollary 3.5 are all the finn-trivial facets of  q3 a 
if and only if G is perfect, s Notice that the clique facet of  Corollary 3.5 
can be lifted from the facet x/<_ 1 for the subgraph ({vj}, ~), for any 
v! • S. Thus we can characterize perfect graphs as those for which the 
only (non-trivial) facet producing subgraphs are singleton vertices. 

Corollary 3.6 ([13]). Let G be an odd hole. Then Zv/~v  x j ~  l(IVl-1) 
is a facet  o f  93~. 

Corollary 3.7. Let  G be an odd anti-hole (edge complement  o f  an odd 
hole). Then Evjev xj <_ 2 is a facet o f  93 c . 

The facets of  Corollaries 3.5, 3.6 and 3.7 all have the property that 
aj = 1 for all v! e S in (2). However, it is not the case that all facets of  
this type can be derived from these corollaries, as shown in 

Example 3.8. In Fig. 2, G contains no 3-cliques, no 7-holes and no 7- 
anti-holes. There are, however, 8 5-holes of  the form 

7 0 

4 3 

Fig. 2. 

s Private communication, Fulkerson (1972). See also [4, 14]. 
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{ i , i + 3 ,  i + 6 ,  i + l , i + 4 ,  i}, i = 0 , 1 , . . . , 7 ,  

where the indices are taken modulo 8. The constraint of  the form (3) 
due to any one of  the 8 5-holes, Sx, is N/~sk x/<- 2. However, for 
S = V, we obtain 8 independent solutions of the form {i, i + 1, i + 2} 
for i = 0, 1 , . . . ,  7. These 8 solutions determine by Proposition 3.3 the 
facet ~/~ v x/-< 3 which is not  implied by the 5-hole constraints, since 
the solution x 0 = ½, x 1 = • "- -- x7 = ~ satisfies each 5-hole constraint but 
violates ~j~ v x/<_ 3. 

The graph of  Fig. 2 and the cliques, odd holes and odd anti-holes of 
Corollaries 3 .5-3 .7  are all special instances of  a class of  facet producing 
graphs investigated in [ 15 ]. 

A facet that cannot be derived by lifting facets obtained from Corol- 
lary 3.6 has been provided by Chvgtal [4]. More generally, Chv~tal's ex- 
ample provides a facet that cannot be obtained from Proposition 3.3. 

Example 3.9. In the graph of Fig. 3, the facet 

7 

2Xl+j~2"= x j < - 3  (6) 

can be derived from Proposition 3.4 since G has exactly 7 maximal v- 
packings and corresponding affinely independent vectors. Although we 
are not  aware of  any general results on lifting supports to facets, it 
happens that (6) can also be derived by lifting the support 

x 2 + x 3 + x 4 ~-- 3 

of qsa s, where S ={2, 3, 4}, in the manner described in the proof of 
Theorem 3.1. However, no S c_ V satisfying the hypotheses of Propo- 
sition 3.3 yields a facet that can be lifted to (6). 

5 

6 7 

Fig. 3. 
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We do not  know whether all facets of  q3 c can be obtained by using 
Propositions 3.3 and 3.4 in conjunction with Theorem 3.1. If such 
were the case, however, and it could be shown that every set S that is 
not  a clique, but  is facet producing, contains an odd hole or odd anti- 
hole, this would prove the strong perfect graph conjecture which states 
that G is perfect if and only if G contains no odd holes and no odd anti- 
holes. 

The following corollary shows that facets obtained from odd holes 
and cliques using Theorem 3.1 remove all original fractional vertices 
from ~2 G. Although this result is interesting, it may be of  little conse- 
quence, since the introduction of  constraints of  the form (3) generally 
will produce new fractional vertices as in Example 3.8. 

Corollary 3.10. Let x be a fractional extreme point o f  Z? G. Then x vio- 
lates a facet o f  93 c o f  the form (3) due to an odd hole or a clique in 
G. 6 

Proof. Let 2 be any elementary component  of  x. Then there exists 
~ V such that 2 = x g as defined in (1); furthermore, by Proposition 

2.3, S D S, an odd cycle in G. Without loss of  generality, assume S con- 
tains no chord. Hence S is a 3-clique or an odd hole. If  S is an odd hole, 
then ~vj~s ~?i = } I S I > ½ (IS I - 1 ), so x violates any facet of  ~ ~ due to S 
(see Corollary 3•6). If  S is a 3-clique, then S is contained in a maximal 

• - -  A ~ ^ 

chque S and Nuj~X x / _  2vjes x/=  3 which shows (Corollary 3.5) that x 
violates the facet of  q3 a due to 

4. Independence systems 

Let 9 be a family of  subsets of  the set I = {1 , . . . ,  n} with the prop- 
erty that 11 c 12 ~ 9 implies 11 ~ 9. The pair S = (I, 9 ) is called an inde- 
pendence system and the individual members of  9 are referred to as in- 
dependent sets. Sets J c I for which J ~; O are said to be dependent and 
minimal such sets are called circuits. For a graph G = (V, E)  the family 
~C of all v-packings in G naturally induces the independence system 

(V, 5a a)  whose family of  circuits is given by E. 
Define an independence system (/, 9 )  to be graphical if there exists 

a graph G = (V, E) such that (I, 9 )  = (V, ~G)- Not  all independence 
systems are graphical since 

6 In [13], it is shown that  these facets exclude those extreme points of  ~?G that are adjacent to 
integer extreme points• 
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Theorem 4.1. Le t  (I, 9 )  be an independence  system. Then (I, ~ ) is 
graphical i f  and only  i f  

(i) {i} e 9 ,  f o r  all i E L 
(ii) I o \ {i} ~ 9, f o r  all i ~ I o ~ I o ~ ~, f o r  all I o c_ L Iio I > 2. 

Proof. If (I, 9 )  is graphical, then Pc  obviously satisfies the conditions 
given. On the other hand, suppose 9 satisfies (i) and (ii) and consider 
G = ( V, E) ,  where V = I and 

E = { ( i , ] ) : i ~ I ,  j E I ,  i4=j and i , j  ¢~ 9 } .  

Clearly J 6 9, I J I _> 2 implies {i, j} c 9 for each 2-subset {i, j} c_ j ,  so 
that J ~  ~c .  In addition, if t J l =  1, t h e n J ~  5~ c since V = L H e n c e  
9 c  5~ c and we need only show that 5~ c c 9, C h o o s e P ~  5~ c. If 
IPI <_ 2, then P c  ~ by (i) and the construction of  E. If IP l -> 3, then 
every 2-subset of  P is in 9 ,  since P ~ {i, j} ~ 9 implies (i, j) e E which 
contradicts P ~ :Pc. Inductively applying condition (ii), we obtain first 
that every 3-subset of  P is in 9,  then that every 4-subset of  P is in 9 , . . . ,  
and finally, that P ~ 9.  

Let e = { C 1 , . . .  , Cm} be the circuits of  an independence system 
S = (I, 9).  The problem of determining a maximum weighted member  
of 9 is a proper generalization of vertex packing and can be formulated 
as the linear program 

maxcx ,  x ~ q3 s ,  

q5 s = convex hull {x ~ R n" A x <_ b, x binary} 

in which n = II t, m = I C l, c is an arbitrary n-vector, A is the incidence 
matrix of the members of  e with /, and b = (b 1 . . . . .  bm), where 
bi= l C i l - 1  , i=  l , . . . , m .  

Theorem 3.1 and Propositions 3.3 and 3.4 are special cases of more 
general results about facets for ~ s which we now present. This genera- 
lity appears only in the statement of these results, not in the techniques 
required for their proof. Consequently, the process of  defining facets was 
given in the more familiar context  of  Theorem 3.1; similar proofs are 
omitted here. 

Suppose I' ~ I and let 9 '  --{J e 9 : J c_ 4 .  Then we say that the in. 
dependence system S' = (I', 9 ' )  is a subsystem of  S = (I, 9 ) genera t ed  
by I'. A generalization of  Theorem 3.1 to independence systems is given 
by 
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Theorem 4.2. Suppose S' = (I', 9 ' )  c_ S = (L 9 ) and 

j~I' 
(7) 

is a facet  o f  ~ s ' .  Then there exist  ~/ for  j E N(I'), where 

N(I ' )  = {k ~ I \ I "  {k} u J ~ 9 for  some J @ ~'} , 

so that 

a sx/+ e ix/<_ o 
yEI' f~N(I') 

is a facet  o f  93 s. 

Thus for the independence system S = (/, ~ ), some of the facets of  
c~ s may be lifted from facets due to subsystems of  S. As is the case 
with the system (V, ~G), certain of these classes of  facets can be char- 
acterized. Analogous to Proposition 3.3, we have 

Proposition 4.3. 7 Suppose S = (I, 9), e0 is the cardinality o f  a m a x i m u m  
independent  set in S and S contains n ma x i mu m independent  sets 
11 . . . . .  I n with corresponding affinely independent  vectors x 1, . . . ,  x n. 
Then (7) is a facet  o f  93 s with a/= 1 for  all j ~ I' = L 

If S = (/, 9)  is a matroid (i.e., in each subsystem all maximal inde- 
pendent sets are of  the same cardinality), the work of  Edmonds [7] 
shows that Proposition 4.3, when applied to all subsystems of S, charac- 
terizes all the non-trivial facets of  q5 s- 

An independence system will be called k-regular if each of its circuits 
is of  size k (k >_ 2). (Note that (V, 5~'~) is 2-regular.) Define I' c_ I to be 
a clique if I I ' [>  k and all( il'l 

- k ) k-subsets of  I' are circuits of  S = (L 9 ). 
A generalization of Corollary 3.5 is 

Corollary 4.4. Suppose I' c_ I is a maximal  clique in the k-regular inde- 
pendence sys tem S = (L 9 ). Then 

x . < ~ k  - 1 (8) 
j~I' 1 

is a facet  o f  93 s. 

7 There is a similar generalization of  Proposition 3.4. 
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Proof. Since any selection of  more than k -  1 distinct elements o f / '  
contains a circuit, it is clear that (8) is a support  of  ~ s .  Hence we need 
only display n independent sets whose corresponding incidence vectors 
satisfy (8) at equality and are affinely independent. Without loss of  gen- 
erality assume that I' = {1 . . . .  , t} and consider the incidence matrix of  
independent sets with elements o f / ' ,  where u is an identity matrix. 

k 
- -  r 

0 1  
0~1 . . . .  

I \ 
M = I  . . . .  1 " 0  

1 . . . . .  I 

t - k  

1 

1 0 I k I 

1 I 
0 I___ 

1 . . . .  1 0 0 l 

'1  . . . .  '1 6 6 u t - k  

Each row of  M represents a ( k -  1)-subset of  I', which is independent be- 
cause S is k-regular. Furthermore,  M is easily shown to be nonsingular, 
so that M represents II'1 = t of  the n independent sets required. The re- 
maining n - t independent sets are chosen by combining an element of  
I \  I' with a (k - 1)-subset of  I'. Since I' is a maximal clique, such a 
( k -  1)-subset o f / '  exists for each element o f / \  I'. 

Example 4.5. Given the graph G = (V, E),  define the independence sys- 
tem S = (1, 9 ), where I = V and J 6 g if and only if J generates a bipar- 
tite subgraph of  G. From Theorem 2.4 we note that the non-integer ex- 
treme points of  ~?a correspond to dependent subsets o r S  and the cir- 
cuits of  S are the chordless odd cycles of  G. If  G is perfect, then G con- 
tains 11_o odd holes (chordless odd cycles of  length -> 5). Thus, G perfect 
implies that S is 3-regular. Furthermore,  the maximal cliques of  G of  size 
greater than 2 correspond to the maximal cliques of  S and so, by  Corol- 
lary 4.4, 2~j~sxj_ < 2 is a facet of  q3 s when IJI > 3 a n d J i s  a maximal 
clique in G. 
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