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A simple algorithm is described for constructing a maximum packing of cuts directed away 
from a distinguished vertex, called the root, in a directed graph, each of whose edges has a non- 
negative weight, and it is shown that the maximum packing value is equal to the weight of a 
minimum-weight spanning arborescenee directed away from the root. 

1. Introduction 

Let G be a directed graph with vertex set N and directed edges de- 
noted by ordered pairs of  vertices, the edge (i, ]) being directed f rom 
i ~ N to ] ~ N. Let r ~ N be a distinguished vertex of  G, called the root 
of G. (For  the problems we are going to consider, we could assume, 
without  loss of  generality, that all edges of  G incident with r are directed 
from r.) By a cut directed away f rom r we mean the set of  all edges of  G 
that are directed from a subset X ~ N, where r ~ X, to N \ X  = X, where 

4: 0- We denote such a cut by (X, X )  and call it, for short, a rooted 
directed cut or an r-directed cut. Suppose that each edge (i, ]) of  G has a 
nonnegative integer weight w(i, ]). By a packing o f  r-directed cuts in the 
weighted graph G we mean the following: Assign each r-directed cut 
(X, X) a nonnegative weight y~  in such a way that the sum of  all the 
weights of  r-directed cuts that contain a particular edge (i, ]) does not 
exceed the weight w(i, ]) of  that edge. A maximum packing o f  r-directed 
cuts is a packing in which the sum of  the weights assigned to r-directed 
cuts is as large as possible. The main problem we treat is that of  con- 
structing a maximum packing of  rooted directed cuts. 

* This work was supported by the National Science Foundation under grant GP-32316X and 
partially by the Office of Naval Research under grant N00014-67-A-0077-0028. 
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A spanning arborescence in G roo ted  at r is a spanning tree of  the 
underlying undirected graph of  G, having the properties: (i) each vertex 
of  G other than r has just one edge of  the arborescence directed toward 
it, (ii) no edge of  the arborescence is directed toward r. A branching in 
G is a forest of  the underlying undirected graph whose "edges are directed 
toward different vertices. In [2], Edmonds has described an efficient al- 
gorithm for constructing a maximum-weight branching in a weighted 
graph, and has determined linear inequalities that define the convex 
hull of  the (0, 1)-incidence vectors of  all branchings in a directed graph. 
In [8], it was asserted without  p roof  that the algorithm of  [2] can be 
modified to solve the maximum packing problem for rooted directed 
cuts. We shall describe this modification in Section 3, where it will also 
be shown that the packing problem always has an integer solution vector 
y whose component  sum is equal to the weight of  a minimum-weight 
spanning arborescence rooted at r. In the context  of  blocking pairs of  
matrices or blocking pairs of  polyhedra [6, 8], if we let matrix A be the 
(0, 1)-incidence matrix of  all spanning arborescences of  G rooted at r 
(rows of  A) versus all directed edges of  G (columns of  A), and similarly, 
let C denote the (0, 1)-incidence matrix of  all (set-wise) minimal r-rooted 
cuts of  G versus edges of  G, then the max- ra in  equality holds strongly 
for the ordered pair (C, A). That is, the linear program 

yC<- -w ,  y > - O ,  
(1.1) 

max 1 -y, where 1 = (1, ..., 1),  

has an integer solution vector y whenever w is a nonnegative integer vec- 
tor, and this solution vector y satisfies 

1 .y = min a i. w ,  (1.2) 
1 ( i ( _ m  

where matrix A has rows a 1 . . . . .  a m . 

The incidence matrices A and C constitute a blocking pair of  matrices, 
that is, the unbounded convex polyhedra 

¢={c ->  0: A c_> 1}, (1.3) 

s~ ={a _> 0: Ca >- 1}, (1.4) 

are a blocking pair of  polyhedra [6, 8]. The extreme points of  e are 
the rows of  matrix C and the extreme points of  ~ are the rows of  ma- 
trix A .  (It may happen that A has no rows, i.e,, the graph G hasno 
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spanning arborescence rooted at r, in which case matrix C has just one 
row, all its entries being zero. In this case the maximum in (1.1) and the 
minimum in (1.2) are infinite. The algorithm of Section 3 will detect this 
situation, although there are easier methods to detect this case initially.) 

Edmonds'  results in [2] fall naturally in the domain of anti-blocking, 
pairs of  polyhedra [7, 8], rather than blocking pairs of  polyhedra. In- 
deed, the anti-blocking polyhedron of the convex hull of  all branchings 
is determined explicitly in [2]. Before describing a moitification of Ed- 
monds'  algorithm for opt imum branchings that solves the maximum 
packing program (1.1), we proceed in Section 2 to a proof that the poly- 
hedra d and 8 defined by ( l .4)  and (1.3) are a blocking pair. This 
proof  also uses results of  [2]. 

2. The polyhedra 9{ and e 

Let x(i, ]) be a real variable associated with the directed edge (i, j) of  
a directed graph G. If X c__ N, Y c__ N, we use the notation 

x(X, Y ) =  ~ x(i, j ) .  (2.1) 
i ~ X  

It is proved in [2] that the extreme points of  the bounded polyhedron 
defined by the linear inequalities 

x(i, j) >_ O, for all edges (i, j) of  G, (2.2) 

x(N, ]) <_ 1, for all j e N ,  (2.3) 

x(X, X )  <_ IXI-1, for all nonempty  X c G_ N ,  (2.4) 

are precisely the incidence vectors of  all branchings in G. (In (2.4), IX I 
denotes the cardinality of X. ) 

Theorem 2.1. The polyhedra 9{ and e defined by (1.4) and (1.3) for an 
r-rooted directed graph G are a blocking pair. 

Proof. It suffices to show (see [6]) that the extreme points of  ~ are the 
incidence vectors of spanning arborescences rooted at r, i.e., are the rows 
of matrix A. 

Let a be the incidence vector of  a spanning arborescence rooted at r. 
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Then clearly a e s~. For each vertex j ~ r of  G, let X / d e n o t e  the sub- 
set of all vertices t ~ N such that the unique directed path from r to t 
of the arborescence contains the unique edge of  the arborescence di- 
rected into ], and let Xj = N \ Xj. (In other words, if (i, j) is the edge of  
the arborescence directed into ] 4= r, and if we delete (i, ]) from the ar- 
borescence, the resulting subgraph is a branching having two (weak) 
components,_ one having vertex set )(i., with r ~ Xj ,  and the other having 
vertex set Xj = N \  Xj.)  Then vector a is the unique solution of  the set of  
equations 

a(i, j) = 0, for all (i, ]) not  in the arborescence, (2.5) 

a(Xj, X/) = 1, for all j v a r .  (2.6) 

Hence vector a is extreme in s~. 
Let a be an extreme point of  sq. Then a(N, r) = 0, for otherwise a 

would be the midpoint of  a line segment joining two distinct points of  
. We show next that a(N, t) = 1 for each t=# r. For suppose a(N, t) > 1 

for some t =# r. Let a(u 1, t), ..., a(u k, t) denote the positive members 
of the sum a(N, t). Since a is extreme in s4, we claim there exist r-di- 
rected cuts ( X  1, X 1 ), ..., ( X  k, X k), such that (u i, t) ~ ( X  i, X i) for 
i = 1 . . . .  , k  and such that a(X  i , X  i) = 1 for i = 1 . . . .  ,k. For  if this 
were not so, we could "wiggle" the component  a(u i, t) of a by sub- 
tracting and adding some e > 0 to it, obtaining two points o f ~  having 
midpoint a. Now view the vector a as a capacity vector on the flow net- 
work G with source r and sink t [ 5 ]. Each of  the cuts (X  i, Xi) is a mini- 
mum-capacity cut separating r and t in this flow network, and it follows 
from [5, Corollary 1.5.4] that the r-directed cut ( OXi, N X/) is also a 
minimum-capacity cut separating r and t. Thus a( U Xi, N X i) = 1. Hence 

l < a(N, t) <_a( U X  i, flY'i) = 1 ,  

a contradiction. Thus a(N, t) = 1 for each t =# r. 
The vector a thus satisfies (2.2) and (2.3). It also satisfies (2.4), since 

for X C N, X =# 0, we have, using a(N, r) = 0 and a(N, t) = 1 for t v~ r, 

a(X, X )  = a(N, N )  - a(N, X )  - a(X, X ) ,  

< _ I N I - ~ I - ( I N I -  I X I ) = I X I - 1 .  

Thus a Eq~ , and hence, by Edmonds'  theorem [2, Theorem 2], a i s a  
convex combination of  the incidence vectors b 1, ..., b n of branchings. 
But since a(N, r) = 0 and a(N, t) = 1 for t =/= r, the same equations hold 
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for each branching b 1 . . . . .  b n. Thus each of  these branchings is a 
spanning arborescence rooted at r, hence b 1 . . . . .  b n are points ofs~ . 
Since a is extreme in s4, we must have a = b 1 = . . .  = b  n, and thus the 
Vector a is the incidence vector of  a spanning arborescence rooted at r. 
This completes the proof  of  Theorem 2.1. 

It is a consequence of  Theorem 2.1 and of  results of  [6] that the 
m a x - m i n  equality holds for both ordered pairs (A, C) and (C, 71). But 
it does not  follow necessarily from these results that the m a x - m i n  
equality holds strongly in either case, even though both A and C are 
(0, 1)-matrices. In the next  section we shall prove that the m a x - m i n  
equality does hold strongly for (C, A) by a modification of  Edmonds '  
algorithm for opt imum branchings [2]. Edmonds has subsequently 
proved the very interesting result that it also holds strongly for (A, C) 
[3, 4]. That is, the linear packing program 

y A < - w ,  y > - O ,  

max 1 . y ,  (2.7) 

always has an integer solution vector y whenever w is a nonnegative in- 
teger vector, and this integer vector y has component  sum equal to the 
weight of  a minimum-weight r-directed cut, 

1 . y  = rain d .  w,  (2.8) 
l<_j<_n 

where matrix C has rows c 1 . . . . .  c n. Results of  [6, 8] would implyonly 
the existence of  a rational vector y satisfying (2.7) and (2.8). 

A further consequence of  Theorem 2.1 and of  [6] is that the m i n -  
min inequality holds for the matrices A and C (This is the analogue of  
the l eng th-wid th  inequality for paths joining two terminals of  a graph 
and cuts separating the  terminals [ 1, 9].) The m i n - m i n  inequality for A 
and C asserts the following. Let I and w be two nonnegative vectors, each 
having one component  for each edge of  an r-rooted directed graph. Then 
the inequality 

{min a i . l }  {min c ] . w } - < l .  w (2.9) 
1 <_ i <_ m 1 <_]<_n 

always holds, where A has rows a 1 . . . . .  a m , and C has rows c 1 . . . . .  c n. 

In other words, the weight of  a minimum-weight spanning arborescence 
rooted at r, computed using the weight vector / ,  times the weight of  a 
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L2 

Fig. 2.1. 

minimum-weight r-directed cut, computed using the weight vector w, is 
at most equal to the inner product of vectors l and w. (For an example 
of (2.9), see Fig. 2.1, where the components of l and w are recorded as 
first and second members, respectively, on the edges. Each side of (2.9) 
is equal to 12 in the example.) A direct proof of (2.9) would prove 
Theorem 2.1. 

3. Algorithm and example. 

The algorithm for constructing a maximum packing of r-directed cuts 
in a weighted graph is extremely simple. It has the very nice feature that 
nonnegative weights (components of y in (1.1)) are assigned to certain 
r-directed cuts sequentially, and that once such a weight has been as- 
signed, that weight is never changed subsequently in the course of the 
algorithm. (Positive weights can be assigned in the algorithm to r-di- 
rected cuts that are not set-wise minimal, but this does not matter. 
Such weights could be transferrred to rows of matrix C if desired. We 
shall not bother to do so.) 

The proof that the algorithm does construct a maximum packing of 
r-directed cuts is somewhat more involved. It requires showing that the 
algorithm can be continued (see 1.3 of [2]) to produce a minimum- 
weight spanning arborescence rooted at r whose weight sum equals the 
packing sum. The complete algorithm for constructing both a maxi- 
mum packing of r-directed cuts and a minimum-weight spanning ar- 
borescence rooted at r is a modification of that described in [2]. It is 
simpler, however, particularly in the assignment of (what may be re- 
garded, from the point of view of constructing a minimum-weight 
spanning arborescence rooted at r) optimal dual variables, which here 
solve the packing problem (our primal problem), but which in [2] solve 
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Fig. 3.1. 

a certain covering problem (the linear programming dual of (2.2), (2.3) 
and (2.4)). 

After describing the algorithm, we shall apply it to an illustrative ex- 
ample, the weighted graph of  Fig. 3.1, with vertex 1 as the root. 

Begin by selecting from each bundle of  inwardly-directed edges 
( N -  t, t)  at each t 4= r one edge having least weight among all edges in 
( N  - t, t) .  For each vertex t 4= r, assign the r-directed cut ( N  - t, t)  t h e  
packing weight Yt equal to the weight of  the edge selected from this cut, 
and reduce all weights of  edges in this cut by Yt, obtaining a new non- 
negative weight vector w' on edges. If  any one of  the r-directed cuts 
( N -  t, t)  for t ¢ r is empty,  stop. (In this case, the maximum packing 
value is infinite and G has no spanning arborescence rooted at r.) Other- 
wise the subgraph of  selected edges has [ N b -  1 members; if this sub- 
graph has p (weak) components,  then it has precisely p - 1 directed cir- 
cuits, one in each component  not  containing the root  r. If p = 1, stop. 
(The present packing is maximum.) I f p  > 1, contract  each of  the p - 1 
directed circuits to a new vertex in a new directed graph G', i.e., con- 
tract each edge of  G that joins two vertices of  one of  these p - 1 directed 
circuits. Edges of  G' have weights given by w'. (G' may of  course have 
several edges directed from one vertex to another vertex, even if G did 
not. We can replace such multiple edges by one edge whose weight is 
equal to the least of  these weights.) 

The process is now repeated with G' and w' ,  but  in doing so we only 
look at the new vertices of  G'. 

Eventually, we find either an empty  r-directed cut or p = 1. 
Figs. 3 . 2 -  3.5 show the construction for the example of  Fig. 3.1. 

Selected edges are bold in the figures. Multiple edges have been replaced 
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5 

0 

10 

1 

G and w'(p = 3). 
0 

Fig. 3.2. 

Y 

3 

2 

Edge-list w w' 

(1,2)v 10 0 
(3,2) 10 0 

(1,3) 15 10 
(7,3)V 5 0 

(1,4) 9 9 
(3,4) 2 2 
(8,4) v 0 0 

(1,5) 19 9 
(4,5) V 10 0 

(2,6) 20 19 
(3,6) V 1 0 

(4,7) 3 3 
(6,7) V 0 0 
(8,7) 4 4 

(5,8) v 2 0 
(9,8) 5 3 

(2,9) 4 3 
(5,9) v 1 0 
(6,9) 3 2 
(7,9) 2 1 

Edge-list w' w" 

(2,6) 19 16 
(4,7) v 3 0 
(1,3) 10 7 

(1,4) 9 7 
(3,4) v 2 0 
(9,8) 3 1 

G' and w" (p = 2). 

Fig. 3.3. 

by one edge. Each new vertex of G' is identified by the set of  vertex 

numbers of  G that corresponded to the vertices of  G contained in the 
directed circuit of  G that was contracted to form the new vertex. The 
construction is shown in both edge-list form and in diagram form in the 
figures. 
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y Edge-list w" w'" 

(1,3) 7 6 
1 (2,6) 16 15 

(9 ,8)v  1 0 

G" and w'"(p = 2). 

Fig. 3.4. 

0 

y Edgeqist w'"  w .... 

3 (1,3) 6 3 
(2,9) v 3 0 

G" and w'"'(p = 1). 

Fig. 3.5. 

In Fig. 3.3, we have generated two new packing weights: 3 on the 
(nonempty) cut (X, X) with X = {3, 6, 7} and 2 on the (nonempty) cut 
(Y, Y) with Y ={4, 5, 8}. Since p -- 2, we contract the unique circuit of 
bold edges to obtain G" shown in Fig. 3.4. 

The only new packing weight obtained from Fig. 3.4 is 1 on the (non- 
empty) cut (Z, 2), where Z = {3, 6, 7, 4, 5, 8}. Again, p = 2 and we con- 
tract to obtain Fig. 3.5. 

At this stage, p = 1 and we are done, having generated one new packing 
weight of 3 on the (nonempty) cut (W, W), where W= {3, 6, 7, 4, 5, 8, 9}. 
The total packing value is 38. 

It is clear that the algorithm produces an integer packing of  r-directed 
cuts. It remains to show that this packing is maximum. To accomplish 
this, one can work backward in the sequence of graphs produced by the 
algorithm (from Fig. 3.5 to Fig. 3.2 in the example-) to produce a 
spanning arborescence rooted at r whose weight is equal to the packing 
value. The backward process retains certain selected edges and deletes 
others. The proof  that it constructs a soannir~g arborescence rooted at r 
is like the proof  given in [ 2] that the similar procedure there const ructs  
a branching, the main difference being that we start with a spanning ar- 
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Fig. 3.6. 

Fig. 3.7. 

borescence rooted at r, and thus retain this property inductively. The 
idea of the inductive step is simply the following. Suppose we have a 
spanning arborescence rooted at r, with certain non-root vertices being 
distinguished (e.g., the "large" vertices of Fig. 3.6). If we replace each 
of these distinguished vertices by a directed circuit (e.g., as shown in 
Fig. 3.7) and then delete, for each of these circuits, the unique edge of 
the circuit that is directed toward the same vertex as one of the old 
edges, the new graph is again a spanning arborescence rooted at r. 

Thus, in the :example, we work backward in this manner from the 
spanning arborescence rooted at 1 of Fig. 3.5 as shown in Figs. 3.5' - 
3.2'. Fig. 3.2' shows the spanning arborescence rooted at 1 of  the origi- 
nal graph that is obtained together with the original weights on arbo- 
rescence edges. The total weight is 38. 

The backward replacement process can also be viewed globally, rather 
than sequentially, just in terms of the list of selected edges and the 
list of subsets X of the r-directed cuts (X, X) that produced the selected 
edges, one for each cut. (See Fig. 3.8 for the example.) 

Start with the last member of the edge-list, look for all preceding r-di- 
rected cuts containing this edge, and delete their corresponding edges in 
the edge-list. Repeat this procedure. (In Fig. 3.8, edge (2, 9) knocks out 
(5, 9), edge (9, 8) knocks out (3, 4) and (5, 8), edge (4, 7) knocks out 
(6, 7). The remaining edges form the spanning arborescence of Fig. 3.2'.) 

An important point follows from tttis: Any r-directed cut (X, X) 
produced in the packing has just one edge in common with the spanning 
arborescence rooted at r that is constructed. Thus 
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Fig. 3.5'. 

~ , 4, 5, 8 )  

Fig. 3.4'. 

Fig. 3.3'. 

10 
10 

Fig. 3.2'. 

yz>O~a.c x = 1 ,  (3.1) 

where YX is the packing weight assigned to (X, _~), c X is the incidence 
vector of the cut (X, X), and a is the incidence vector of the spanning 
arborescence rooted at r. 

It is also clear that the sum of the weights YX on cuts (X, X) that 
contain a given edge of the arborescence is equal to the weight of that 
edge. Thus 

Edges Subsets )2 _c N 

(1,2) 2 
(7,3) 3 
(8,4) 4 
(4,5) 5 
(3,6) 6 
(6,7)v 7 
(5,8)v 8 
(5,9) v 9 
(4,7) 3, 6, 7 
(3,4) v 4, 5, 8 
(9,8) 3, 6, 7, 4, 5, 8 
(2,9) 3, 6, 7, 4, 5, 8, 9 

Fig. 3.8. 
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a(i, j) > 0 ~ ~ Y2 = w(i, j)  . (3.2) 
(x,,,2)~(i, 13 

Together, (3.1) and (3.2) show that the integer packing of r-directed 
cuts is maximum, the weight of the spanning arborescence rooted at r is 
minimum, and the packing value is equal to the arborescence weight. 
Thus 

Theorem 3.1. The m a x - m i n  equality holds strongly for the ordered 
pair o f  incidence matrices (C, A ). 

The algorithm picks out a square submatrix of the incidence matrix 
C' of r-directed cuts versus edges of G, which has one row for each cut 
selected in the algorithm and one column for each edge selected, and 
simultaneously arranges this submatrix in upper triangular form T, with 
l 's along the diagonal. T is thus nonsingular. In the first part of the al- 
gorithm, the equations y T = ~-, where y(N) denotes the vector of the 
appropriate components ofy(w) are solved, producing a nonnegative in- 
teger solution (and the inequalities y C < w, or y C' < w, are not vio- 
lated). The second part of the.algorithm solves the equations Tfi = 1, 
and the resulting (0, 1)-solution vector ~ is the incidence vector of a 
spanning arborescence rooted at r. (See Fig. 3.9 for the example.) 

Thus, in linear programming terminology, the cut packing program 
(1.1) always has an optimal basis which is triangular. 

1 1 1 1 1 0 0 0 1 0 1 1 )- 
Edges (1,2) (7,3) (8,4) (4,5) (3,6) (6,7) (5,8) (5,9) (4,7) (3,4) (9,8) (2,9) 

10 Subsets 2 

5 j~_C N 3 
0 4 

10 5 
1 6 
0 7 
2 8 
1 9 
3 3,6,7 
2 4,5,8 
li 3,6,7,4,5,8 
33,6 ,7 ,4 ,5 ,8 ,9  

1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 

10 5 0 10 1 0 2 1 3 2 5 4 

, o  

1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Fig. 3.9. 
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