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This paper presents a method for obtaining computable bounds for the error in an ap- 
proximate Kuhn-Tucker  point of a nonlinear program. Techniques of interval analysis are em- 
ployed to compute the error bounds. 

1. Introduction 

Consider a general nonlinear programming problem of the form 

minimize {0(x): g ( x )  ~< O, h ( x )  = O, x ~ F } ,  (1) 

where O, g and h are differentiable, not  necessarily convex functions 
from an open set P c R n into R, R m, and R q, respectively. The usual 
result of  the numerical solution of (1) by an algorithm is a triple 
('X, U~, V~) @ R n+m+q, with ~ e P, at which the (first-order) K u h n - T u c k e r  
conditions [ 2, § 2.1 ], 

O'(x)  + u T g ' ( x )  + v T h ' ( x )  = O, 

g ( x )  < O, tA T g ( x )  = O, h ( x )  = O, u ~ 0 (2) 

are approximately satisfied; we usually have ~ >~ 0, but in general none 
of the other conditions will be exactly satisfied. It is usually assumed 
that there is a K u h n - T u c k e r  point (2, fi, 0) for (1) "close" to (~, ~, 7). 

* Sponsored by the United States Army under Contract No. DA-31-124-ARO-D-462. 
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However, it is of  interest to know whether this assumption is actually 
true, and if so how far away from (~, ~, ~) the point (2, ~, ~) could be. 

In this paper we outline a procedure applicable to a wide class of 
problems of the form (l),  including in particular all those in which 0, 
g, and h are rational functions. If  certain conditions are satisfied, this 
technique enables us to prove that the point (2, F~, ~)) exists and to 
give rigorous, computable bounds for its distance from (~, "/7, ~). The 
entire procedure is implementable on a computer; it employs interval 
arithmetic [5] and is based on recent work of  Nickel [6] which in turn 
rests on earlier results due to Hansen [3]. 

2. Notation and definitions 

We introduce in this section several definitions and notational con- 
ventions, mostly related to interval arithmetic, which we shall use in 
what follows. A complete discussion of interval analysis can be found 
in [5]. 

A real interval is an interval [a, ~] on the real line R: an interval in 
R v is a p-vector each of whose components is a real interval, and an 
interval matrix is defined in the corresponding way. All interval quan- 
tities will be written with a bar over them: e.g.. y is an interval vector. 
We shall not distinguish between the vector y • RV and the degenerate 
interval vector whose components are  [Yi, Yi ] for 1 ~< i ~< p; this con- 
vention permits us to treat points as intervals if it is more convenient 
to do so. 

Let Y < R p be a fixed interval vector, and let f be a function from 
R p into R •. We denote by f a n  interval extension of f on ~: that is, an 
interval function (one which operates on intervals to produce intervals) 
satisfying the following two properties: 

(i) for each z • z, f ( z )  = f (z ) ,  
(ii) for each ~ c g c 5, J~(i~) c f (y ) .  

Let M be an n × n interval matrix. If  each n × n matrix P • M (i.e., such 
t h a t  Pif • N i l  for 1 ~< i, j ~< n) is invertible, then we say that J~ is non- 
singular. We denote by ~t-1 an interval inverse of ~¢: that is, a matrix 
such that for each P • M  we have p-1 • ~ - 1 .  Interval inverses, like 
interval extensions, are not unique. 

One of the reasons for employing interval analysis in computing is 
that it can be implemented on a computer in such a way as to take into 
account automatically the errors due to roundoff  at each stage of the 
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computations. For details of  two such implementations, see [1 ,4] .One  
can thus in many cases obtain rigorous error bounds for a computed 
quantity by means of  interval analysis when such bounds could not 
have been found by conventional (analytic) methods. For  examples, 
see [3, 5, 6]. 

3. Error bounds for a Kuhn-Tucke r  point 

in this section we develop an error-bounding technique for non- 
linear programming. The method is based on two observations: first, 
that the Kuhn-Tucke r  conditions for a stationary point can be written 
as a system of nonlinear equations augmented by certain inequality 
conditions; second, that techniques are known [6] for obtaining com- 
putable bounds on approximate solutions of  systems of  nonlinear equa- 
tions by means of interval analysis. Our strategy for bounding a K u h n -  
Tucker point will be to combine these two facts with a simple device 
to ensure that the inequalities of the Kuhn--Tucker conditions are 
taken into account. 

The system of nonlinear equations which we shall employ is ob- 
tained by letting p := n + m + q, denoting by z the triple (x, u, v), and 
defining a function f from R p into itself by 

f(z):= 

-[ O'(X) + bl T g ' ( x )  + O T h'(x)] T- 

ulg l (x )  

Idm gm (X) 
h 1 (x) 

hqix) 

(3) 

where we have represented the derivatives by matrices of  n columns. 
Note that (x, u, v) is a K u h n - T u c k e r  point of (1) if and only i f f (z )  = 
O, g(x) <~ 0 and u > 0. The function f is basic to the analysis of  opti- 
mality and sensitivity in nonlinear programming ([2; §§2.3, 5.2];  see 
also [ 71 ). 

To obtain the additional conditions required to deal with the ine- 
qualities in the K u h n - T u c k e r  conditions, we introduce two definitions: 
For any interval g c R, we let 
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c o n v [ 0 , ( ]  i f ~ - c R + ,  
~-0:= ~- otherwise, 

{~onv[O, a] i f~-c  R_, 
a° := - otherwise, 

where cony[0, ~] denotes the convex hull of  0 and r, and R+ and R 
are respectively the non-negative and non-positive real numbers. We 
also recall that strict complementary slackness is said to hold at a 
Kuhn-Tucke r  point (2, ~, ~) if for each i, 1 ~< i <~ m, exactly one of  
the quantities ui and gi (2)  is zero. 

We are now ready to present the main result. To do so, we must 
first define two interval quantities which will be used in stating the 
theorem. Let x, u and 0 be intervals in R n, R m and R q, and let 0, g 
and h be twice differentiable on ~. Define ~:=(2, ~, O), and denote 
the components  of  ~ by Z- i for 1 ~< i ~< p. For 1 ~< i, ,/~< p, we suppose 
that there are available interval extensions, denoted by afi(z)/az/,  of 
afi(z)/az i on 2, where of is defined by (3). We define an interval matrix 
F ' (~ ,  ~)  for w, y c E by 

F'(w_ ~)i / :=  a¢~(~  ..... ~j_~, Y/ ..... Yn)/az/ ,  1 < i, j < p. 

Let the interval Newton operator N be defined for z ~ ~- by N--(z, ~):= 
z -  F'(z, ~ ) - l f ( z ) ;  note that since the last expression involves an inter- 
val inverse, N is not uniquely defined. 

Theorem. Let O, g and h be functions o f  class C" from an open sub- 
set F o f  R n into R, R m and R q, respectively. Let ~ < P c R n, ~ c R m 
and O C R q, and let ~ be an interval extension o f  g on ~. Suppose that 
0 ~ gi (X)o • u~i for 1 <~ i <~ m, that ff'(g, 7) is nonsingular, and that 
there is a point ~ ~ ~ such that N(g, ~) c ~. Then N(Z, g) contains a 
Kuhn-Tucker  triple ~ := (~, h, ~) o f  (1) at which strict complementary 
slackness holds with linear independence o f  the gradients to the active 
constraints;further, (2, ~, f)) is the only Kuhn-  Tucker triple o f ( 1 )  in ~. 

Proof. By a theorem of  Nickel [6],  a point ~)V(2",  ~) exists with 
f(~) = 0, and £ is the unique zero of  f in g. Since f(~) = 0, the inequa- 
lities of  the K u h n - T u c k e r  conditions are satisfied. Choose any i be- 
tween 1 and m; since gtigi(2) = 0 we have either fii = 0 o r  gi(~)  = O. 
Suppose the former, then 0 = h i E ui c 3 °, so by hypothesis 0 q~ g i ( ~ ' )  0 , 
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and it then follows easily that ~ i ( ~ ) c  int R ,  where int denotes interior. 
But the interval extension property implies that g / (2 - )Dgi (~)=g i (2 ) ,  
so we must have gi(.~)< 0. Similarly, we can show that if gi(2) = O, 
then ui must be strictly positive. Hence ~ > 0 and g(2) ~< 0, so g is a 
K u h n - T u c k e r  triple for (1) at which strict complementary slackness 
holds. Since F'(Z, ~) is nonsingular, the matrix f ' (2 )  (which, by the 
interval extension property,  equals />(2, 2) and so is contained in 
F ' (L  7)) is also nonsingular. Linear independence of  the gradients to 
the active constraints follows from the nonsingularity of f ' (~)  and the 
strict complementary slackness. This completes the proof. 

It is of  interest at this point to consider whether the hypotheses 
of  this theorem can be satisfied for real problems. In order to apply 
the theorem, one needs to be able to find interval extensions for g and 
for all of  the second partial derivatives of  0, g and h; in addition, to 
apply the techniques in practice one will require interval extensions 
also for h and for all of  the first partial derivatives of  0, g and h; these 
are necessary because it is generally impossible to compute  f(g)  ex- 
actly, and so one is forced to resort to an interval extension f in com- 
puting N(Z, f). For wide classes of  problems, such extensions are avail- 
able; for example, if 0, g and h are rational functions of  x there are 
available the so-called *'natural" extensions obtained by replacing the 
real variable x with its interval equivalent 2 and computing the func- 
tions in interval arithmetic. These may or may not be the best exten- 
sions to use in a given situation; for more details, see [5, §6] .  

Another question bearing on the practicality of  this procedure is 
that of  determining f. This interval must be large enough to contain ~, 
yet  for purposes of improved accuracy it is desirable to choose 2- to be 
as small as possible. If  the wrong choice is made, the procedure cannot 
be carried out: one may have F'(g, f)  singular, or else N(~', f ) ~  g. 
However, in practice it should not be very hard to choose a suitable f ,  
since it is very often possible to estimate from the progress of  the com- 
putation roughly how many decimals of  accuracy one has in an ap- 
proximate solution. In such a case it is not hard to select a ~ which one 
has good reason to think will contain 2. Of course, if ~V(~', 5) c ~, then 
one knows with certainty that a correct choice was made: the proce- 
dure will never yield a false error bound. 

It is not difficult to show that if 2 satisfies the second-order suffi- 
ciency conditions [2] with strict complementary slackness and linear 
independence of  the gradients to the active constraints, i f ' the  second 
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derivatives of  0, g and h are continuous in a neighborhood of  2, and if 
the interval extensions employed are continuous in the usual interval 
metric topology [5, Ch. 4],  then there is an open neighborhood of  
such that any interval E contained in this neighborhood and containing 

in its interior will satisfy the conditions of  the theorem, provided that 
is close enough to ~. Thus, in theory the method can always be made 

to work with good enough initial approximations. In practice one would 
simply choose Z and try the method;  if it does not work, adjust Z (and 
possibly 5) and try again. 

We note that if g is close to 2 and the matrix f ' (2)  is not  ill con- 
ditioned, then N(z, ~) will usually be much smaller than Z. Hence the 
method improves the approximate solution at the same time as it es- 
tablishes error bounds. This phenomenon is illustrated by the example 
in the next section. Of course, the improvement is paid for by the 
fairly considerable labor involved in calculating all of  the second par- 
tial derivatives of  0, g and h. For this reason, since a great many deriva- 
tives will be involved if the problem is even moderately large, it would 
seem advisable in such cases to employ a pre-compiler which performs 
automatic (analytic) differentiation on the computer. Such programs 
are available, and their use often saves time as well as removing a pos- 
sible source of error. 

4. Numerical example 

We present here a simple numerical example to show how the meth- 
od actually works in practice. Consider the nonlinear program in R 2 
given by 

minimize O(x):=Xe, 

I-x1 + x~ (4) 
subject to g(x): = I ( X l - 1 ) 2 + x 2 - I  ~<0. 

+ 4 - 1  " 

Suppose that by using some algorithm we have obtained the following 
approximation to the solution 2 and the associated vector h of  multi° 
pliers: 

0.352 ) 
x = \ -0 .786  / ' 0.284 

We define f :=(0.618,  -0 .786 ,  0.352, 0, 0.284) T, and let g : = ~ + d ,  
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where d is an interval vector each of whose components is [ -0 .001,  
0.001]. Using the techniques developed above, we find by computat ion 
with interval arithmetic, using the natural interval extensions for all 
functions involved, that 

~[ 0.618032, 0.618037] 
] [ -0 .786153,  -0 .786150]  

?V(g,~)c I[ 0.351574, 0.351581] c~-, 
1[--0.1727× 10 -s, 0 .1727× 10-51 
~[ 0.284430, 0.284434] 

while with 2-:=(2-, ~) we have 

~ - 0 . 2 8  × 10 -2 , 0.24 × 10-211 
ff(2) c ] [ -0 .2387 ,  -0.23391 

~.[-0.31 × 10 -2 , 0.26 × 10 -2 

so that ~-i(ff)0 n ~0 = ~ for 1 ~< i ~< 3. Applying the theorem, we con- 
clude that there is a K u h n - T u c k e r  point in the interval N(~; ~) at 
which strict complementary slackness holds, and that this is the only 
K u h n - T u c k e r  point of (4) in ~. Note that the method has produced 
a bound exact to approximately five decimal places, whereas the ori- 
ginal g was correct to only three. 

In fact, (4) can easily be solved analytically; if we carry out the so- 
lution we obtain 

-'- 1 x 1 = 5 ( - 1  + v/-5) E [0.61803398, 0.61803399],  

22 = - f f2~ E [ -0 .78615138,  -0 .78615137] ,  

while fi2 = 0, and fil and u3 are the solutions of 

0 

so that 

&l ~ [0.35157758, 0.35157759],  ~3 c [0.28443224, 0.28443225].  

Hence the error bounds given above are correct. 
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