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I n t r o d u c t i o n  

In this Part III, we shall study minimal algebraic surfaces defined over IE with Ps 
=4,  q=0 ,  and c2=6.  Our purpose is to determine the structures and defor- 
mations of these surfaces. We shall use the terminology and notation of our 
preceding papers [10, 11, I and II], which are respectively referred to as [Q], 
Part I, and Part II. 

Minimal surfaces with pg = 4, q =0,  and c 2 = 6 are classified into five types: I 
to V. These are further divided into eleven types: Ia, Ib, II, IIIa, IIIb, I V a - 1 ,  
I V a - 2 ,  I V b -  2, V -  1, and V -  2. A surface of type Ia is birationally equivalent 
to a sextic surface in IP 3 which has a double curve along a plane cubic curve, 
while a surface of type Ib is birationally equivalent to a double covering of a 
cubic surface in IP 3. A surface of type II is birationally equivalent to a triple 
covering of a quadratic cone in IP 3. A surface of type IIIa or IIIb has a pencil of 
curves of genus 3 with a base point, and a surface of type IV or V has a pencil 
of curves of genus 2. We have the following hierarchy among them: 

I V a -  1 Ia 

/ l l J  I V a -  2 IVb - 

1 
I V b -  2 Ib 

I I I a  / l  
V -  1 IIIb 

1 /  
V - 2  

II 

Here A ~ B  means that B is a specialization of A, i.e. there exists a 1- 
parameter family with a special fibre being of type B and a generic fibre being of 
type A. Several points are left unsettled. In particular, we can not prove nor 
disprove the following specializations: II ~ I I I b  or V, Ia--.V, and I V ~ V - 2 1 .  
The number of moduli for the generic surfaces are 38 for Ia, II, I V a -  1, and 39 

This is not the case as we shall prove in Part IV, w 
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for IIIa .  These surfaces except for those of type IV and V were already known to 
Enriques (see [6], pp. 271-273). 

Here we mention two points about  deformations. First, the generic surfaces S 
of type II  have non-reduced Kuranishi spaces of deformations. This phenome- 
non is connected with the existence of a non-singular rational curve G with G 2 =  
- 2  on such S, which is stable under small deformations. In other words, for any 
sufficiently small deformation S, of S, the canonical bundle of S t is not ample. 
Secondly, the surfaces of type Ia  and those of type I V a - 1  both specialize to 
surfaces of  type I V b - 1 .  This fact as well as its proof  is quite similar to that in 
the case of numerical quintic surfaces [Q]. 

In addition to the three papers cited above, we shall often use the result of 
our paper  on pencils of curves of genus 2 [12], which will be referred to as [P].  
Other  surfaces with c 2 = 2 p g -  2 will be studied in a subsequent paper. 

Among others we shall use the following notation. For  any non-negative 
integer d, Za denotes the 1PLbundle lP({P~)d~(d)) over IP 1, and we call it the 
Hirzebruch surface of degree d. We let F denote a fibre of Za and A o a section 
with A02 = - d .  The latter will be called the 0-section of E a. For  any sheaf ~- on a 
compact  complex, manifold X, we set hi(~r)=dimHi(X,~r), and Z(~-)=  
h~(-1)ihi(~-). If  Z = O ( D )  with a divisor or a line bundle D, we set hi(D)= 

'(d?(D)) and z(D)=z(d?(D)). Finally 0 x denotes the sheaf of germs of holo- 
morphic vector fields on X. 

Acknowledgement. The author would like to thank Professor M. Artin for his help in understanding 
Enriques' argument about the deformations of surfaces of type II (see the last remark in w 
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w 1. Canonical Maps of Algebraic Surfaces 

Let S be a minimal algebraic surface of general type defined over I/7 and let K be 
the canonical bundle of  S. As usual, we denote by pg the geometric genus of S. 
Then the complete linear system IKI defines a rational map ~K:S~IP" with n 
= P s -  1. We shall say that IKI is composite with a linear pencil if the image of 
~ is a rational curve. 
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Theorem 1.1. Let c 1 be the first Chern class of S. I f  c 2 < 3 p g - 4  with pg~3, then 
IKI is not  composite with a linear pencil. 

Proof. Suppose that IKI is composite with a linear pencil IDI. Then we have IKI 
=InDI+F, where F is the fixed part of IKI. Since S is of general type, we have 
KF > O. Hence 

n K D < K 2  <3n. 

It follows that KD=2, because KD = 1 would imply K 2 =  1 and pg<2 (see 1-16] 
or [3]). Therefore, we have the equality 

2 =nD2 + DF. 

Since D 2 is even and since n>2 ,  we conclude D 2 = 0  and DF=2. Hence IDI 
defines a holomorphic map g: S ~ I P  1 whose general fibre is of genus 2. 

We now recall the result of I-P]. By the construction there, we obtain a 
"canonical" rational map f of degree 2 of S onto some Hirzebruch surface 1; d. 
We let B denote the branch locus of f .  Its singularities are classified in I-P], 
Lemma 6 into six types: (0), (Ik), (IIk), (IIIk), (IVk), and (V). Let v(T) denote the 
number of singular fibres of type (T). Then we have, by [P-I, Theorem 3, 

c 2 - (2p, , -  4) 

= Y'(2 k - 1) {V(Ik) + V(IIIk) } + ~ 2k {v(IXk) + v(IVE) } + v(V), (1.1) 
k k 

where Pa = P g - q  is the arithmetic genus of S. 
On the other hand, assume that B is linearly equivalent to 6Ao+2(m+d 

+ 2)F. Then we have 

pg = dim H ~ (Z a, (9 (A o + (m - deg c) F)), 

q = dim HZ (Zd, (9 (A o + (m-- deg c) F)), 

where c is a divisor on IP t determined in terms of singular fibres (see [P],  p. 87). 
Since IK[ is composite with a pencil, we have the equalities m - d e g c = p s - 1 ,  
and d=pg+q. 

Since B has no multiple component, we have 

- d <  AoB=2deg c - 2 d +  2 - 2 q .  

From Theorem 3 in I-P], we obtain 

2 deg c - (c 2 - 2 p , +  4) = ~ (V(Ik) + V(IIIk) ) + vfV). 
k 

We call the right hand side r. Then B contains r fibres Ft, F 2 . . . .  , F,. So let us 
write B = B o + F~ + . . .  + F,. Then we have 

Ao B0 = c 2 - ( 4 P ~ -  6 ) -  2q, 



2t2 E. Horikawa 

and, by assumption, AoB o is negative. Therefore B o contains A o as a component. 
If we set C = B o - A o ,  then we have 

A o C = c 2 - 3 p ~ + 6 - q .  (1.2) 

Next we prove that V(IIIk)=v(IVk)=O. In fact, suppose that F is a fibre of 
type (IIIk) o r  (IVk). Then the curve B o intersects F at a unique point s, and B o 
has infinitely near triple points at s. Since A o is a component of Bo, s is on A o. 
Let n: 14," 1 ~ Z d  be the quadratic transformation with center s, E=rc-l(s) ,  and let 
P be the proper transform of F. Then, by definition, the proper transform/~o of 
B o has a triple point at E c-,P. On the other hand, /~o contains the proper 
transform of A o. These facts imply that/3oE_>4, which contadicts that s is a 
triple point. 

Suppose that F is a singular fibre of type (Ik). Then, by definition, B o = C 
+ A o has at least (2k-1)-fold triple point at s = F n  A o. This implies that C has a 
contact of order __>4k-2 with A o at s, i.e. (A o C)s>4k-2 .  In a similar way, if F 
is of type (IIIk), we have (A o C)~>4k, and, if F is of type (V), we have (A o C)~> 3. 
From these facts we. obtain 

,t o C ~ Y~(4 k - 2) V(Ik) + Z 4k v(IIk) + 3 v(V). 
k k 

Combining with (1.I) and (1.2), we obtain c 2 ~ p g - 2 - 5  q. This contradicts the 
inequality c 2 >= 2pg-  4 (see [Q], Lemma 2). Q.E.D. 

Theorem 1.2. Assume that pg >_ 5 and c 2 < 4 p g -  7. Then IKI is not composite with a 
linear pencil. 

Proof. We suppose that IKI is composite with a linear pencil, and write IKI 
=]nDI +F as before. Then we have 

nKD<=K2<4n-3.  

This implies K D = 2  or 3. But, if K D = 3 ,  we have 3 =nD2+DF, and D 2 is odd. It 
follows that n_-< 3, which contradicts the assumption pg => 5. Thus we have KD = 2 
and we can repeat the above proof. Q.E.D. 

Theorem1.3. Assume that c ~ = 2 p ~ - 2  or 2p~-1  and pg>3. Then IKI is not 
composite with a pencil. 

Proof. If tKI is composite with a pencil {D}, then K is algebraically equivalent to 
p D + F  for some integer/~>__n, where F denotes the fixed part of IKP. From the 
inequalities # K D ~ K 2 ' ~ 2 n +  1, we infer that /~=n. This implies that {D} is a 
linear pencil. But this is impossible by Theorem 1.1. Q.E.D. 

w Holomorphic Maps of Degree 2 

The purpose of this section is to supplement the result of [Q], w Let f : S ~  W 
be a surjective holomorphic map of degree 2 of compact complex surfaces S and 
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W, both being non-singular. We assume that no exceptional curve (of the first 
kind) on S is mapped into a point by f.  We define the ramification divisor R on 
S, and the branch locus B on W as in [Q], w The following lemma proves that 
the assumptions in [Q], Lemma 4 are always satisfied. 

Lemma 2.1. 7here exists a line buhdle F on W which satisfies the following 
conditions: 

(i) [B] = 2 F ;  
(ii) S is the minimal resolution of the singularities of the double covering S' of 

W in F with branch locus B (see [P],  w 
(iii) there exists an effective divisor Z (possibly O) in If* F - R I  such that f * B  

- 2 R  =2Z.  

Proof. Let S--*S'~ W be the Stein decomposition of f ,  and let n : S ~ S ' ,  
f ' :  S' ~ W be the induced maps. Then S' is normal and it. (9 s = Os,. Hence j .  (9 s 
= f .  C s, is locally free of rank 2, and we have an exact sequence 

O~Cw ~ f ,  (gs ~ ( 9 ( - F ) ~ O  

for some line bundle F on W (see [P],  Lemma 4). This F satisfies the condition 
(i) and S' is nothing but the double covering of W in F with branch locus B. 

Let w i be a fibre coordinate on F over an open set U~c W, and let b~=0 be an 
equation of B on U i. Then S' is defined by w~ =b  i over U i (see [Q], p. 48). 
Moreover, the equations wi = 0 define a Cartier divisor on S', and it induces one 
on S. We call this R'. Then we have R'E[f*F[ and 2R '= f*B .  If we set Z = R '  
- R ,  then 2Z is equal to f * B - 2 R ,  and is effective by [Q], Lemma 3. Therefore 
Z itself is effective. The second assertion is proved in [-Q], Lemma 4. Q.E.D. 

w 3. Surfaces of Type I 

From now on, S denotes a minimal algebraic surface with pg=4, q=0 ,  and c~ 
= 6. Let n: S--, S be a composition of quadratic transformations such that the 
variable part ILl of I~*KI has no base point. We assume that n is the shortest 
one among such compositions. We let F denote the fixed part of Ire* KI, and we 
write the canonical bundle / (  of S in the form n ' K +  [El  with an effective 
divisor E. 

Lemma 3.1. We have L 2 = 6 or 4. 

Proof. By Theorem 1.3, ILl is not composite with a pencil. Hence, by IQ], 
Lemma 2, we have 4 < L 2 < 6. It remains to exclude the possibility L 2 = 5. 

Suppose L 2 = 5. Then ILl defines a birational map of S onto a quintic surface 
in IP 3. Let C be a general member of ILl, which we assume to be non-singular. 
Then, by the adjunction formula, C is of genus 6+L(E+F)/2.  On the other 
hand, the image of C is a plane quintic curve, which is at most of genus 6. 
Therefore we have LF=O. But this implies F 2 = l ,  which contradicts Hodge's 
index theorem. Q.E.D. 
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In the rest of this section, we assume L z =6, i.e., by [Q], Lemma 2, the 
canonical system IKI has no base point. The following theorem is obvious. 

Theorem3.1. Suppose that the canonical system IKI has no base point. Such 
surfaces are classified into the following three types: 

(Ia) the canonical map ~r induces a birational map of S onto a sextic surface 
in IP 3; 

(Ib) ~r induces a map of degree 2 onto a cubic surface in Ip3; 
(II) g~K induces a map of degree 3 onto a quadric in IP 3. 

We shall study surfaces of type I in this section, and those of type II in the 
next section. 

Theorem 3.2. Let S be a surface of type Ia, and let S'= ~K(S) be its canonical 
image. Then S' is defined in IP 3 by the equation of the form 

gZ + Ag h+ Bh2 =O, 

where g, h, A, and B are homogeneous forms of degree 3, 1, 2, and 4, respectively. 
Moreover, S is the minimal resolution of the singularities of S'. 

Proof. Let {rpo, gOl,~o2,rp3} be a basis of H~ Then the products g0igo j 
generate a 10-dimensional subspace of H~ (9(2K)). Since we have h~ 11 
(see [16, 3]), there exists ~k~H~ •(2K)) which is independent from the go i ~o~. 

The products goi~ojq~ k and rp~b determine 24 elements of H~ 
Because of the equality h~ there exists a relation of the form 

h ~ = g ,  (3.1) 

where h and g are linear and cubic forms in (q~o, g01,rP2, go3), respectively. We 
may assume h = go o. Then, by the choice of ~k, g is not divisible by rp o. 

Suppose that we have another relation h'ff = g' of the same form. Then we 
have hg'=h'g. Since g is not divisible by ~0o, we conclude that h'=~h and g' 
= g/~ for some constant ~ 4= 0. This implies that the collection 

~O, rpjrPk (O<-i~j<k<3),  .rpi~k ( 1 < i < 3 )  

forms a basis of n~ 6(3K)). 
Next we prove that the following 41 elements 

gO~gOjq~kgO ~ (O<i<j<k<l<3) ,  (3.2) 
rp, goj ~k (1 ~ i < j < - 3 )  

are linearly independent in H~ Suppose we have a relation p~=q,  
where p and q are respectively of degree 2 and 4 in the g0{s. Then we have h q 
=pg .  This is a relation of degree 5 in the go{s. Hence p is divisible by g0 o. This 
proves that there is no relation among the elements in (3.2). 

Comparing the dimensions, we see that (3.2) forms a basis. Therefore, we can 
write ~k z in the form 

~k 2 = - A  r - B ,  (3.3) 
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where A and B are homogeneous forms in the q~{s of degree 2 and 4, 
respectively. Combining with (3.1), we obtain 

g2 + Agh+ Bh2 =O. 

This is a non-trivial relation of degree 6 among the q~i's. Hence S' is defined by 
this equation. 

Next we consider the line bundle to: V ~ I P  3 of degree 2, and let 0 be a fibre 
coordinate on V. By this, we mean that 0 is a section of tn* d9(2) which defines 
the 0-section of w. Then, setting 0=  ~, we obtain a well-defined holomorphic 
map ~ : S ~ V  which satisfies t o o ~ = ~  K. Since (3.2) is a basis of H~ 
the image ~/'(S) has only rational double points (see [3], Main Theorem). From 
(3.1) and (3.3), it follows that ~(S) is defined by 

02+AO+B=O, 

h 0 - g = 0 .  (3.4) 

Since the projection ~ '(S)~ S' is finite, ~Y(S) is the normalization of S'. Hence S 
is the minimal resolution of the singularities of S'. Q.E.D. 

Conversely, if S" is a subvariety of V of the form (3.4), and if S" has only 
rational double points, then its minimal resolution of singularities is a minimal 
surface with pg=4, q=0,  and c~=6 which is of type Ia. These surfaces were 
already known to M. Noether [21] in the generic case. However, the double 
curve g = h = 0 may be singular. 

Corollary. The image of the bicanonical map ~2K is normal and has at most 
rational double points. 

Next we shall study the structure of surfaces of type Ib. 

Theorem 3.3. Let S be a surface of type Ib. Then 

(i) the canonical map is of degree 2 onto a cubic surface g = 0 in IP 3, 
(ii) the bicanonical map ~2r is birational and its image is defined by 

02+AO+B=O, g = 0  (3.5) 

in the line bundle w: V~IP  3 of degree 2, where 0 denotes a fibre coordinate on V, 
and A and B are forms of degree 2 and 4 on IP 3, respectively. 

(i) is obvious by definition. To prove (ii), we first prove the following 

Lemma 3.2. (i) The canonical image W= ~r(S) has only isolated singularities. 
(ii) A general member C of Igl is a non-hyperelliptic curve of genus 7. 
(iii) The bicanonical map r is birational. 

Proof. (i) Suppose that W has a singular locus of dimension 1. Let D be a 
hyperplane section of W and let C be its inverse image on S. We assume that C 
is irreducible and non-singular. Let /5  ~ D be the normalization of D. Then the 
induced map C ~ D  factors through/5. If Kic denotes the restriction of K to C, 
then we have dim H~ O(KIc))> 3, because D is a rational curve of degree 3. 
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On the other hand, from the exact sequence 

0 ~ d~ ~ ~)(K) ~ ~(Kic ) ~ 0, 

and Hi(S, d~) =0, it follows that dim H~ d~(Ktc))= 3. This is a contradiction. 
(ii) Let D be a generic hyperplane section of W, and let C be as above. Then 

the induced map C ~ D is 2-sheeted and the composition C ~ D ~ IP z is defined 
by the linear system IKic I. Since 2Kic is the canonical bundle of C, the canonical 
image of C dominates D. Since D is an elliptic curve, this implies that C is not 
hyperelliptic. 

(iii) We consider the exact sequence 

0 -o O(K) -o 0(2K) ~ ~9 (2 Kic ) ~ O. 

From the assumption q = O, it follows that the restriction map 

H~ d~ (2 K)) --. H~ dg(2Kic)) 

is surjective. Comb{ning with (ii), we conclude that ~2K induces a birational map 
of C onto its image. Hence OZK induces a birational map of S onto its 
image. Q.E.D. 

Proof of Theorem3.3. We take a basis {q~o, qh,~p2, q~3} of H~ Cg(K)) and a 
section ~H~ in the same way as in Theorem 3.2. We claim that the 
products 

q~iqgsqJk (O<=i<=j~k<=3), ~oi~ (0=<i=<3) 

generate H~ (9(3 K)). In fact, the products ~o~ ~ojq~ k generate a 19-dimensional 
subspace. Hence, if our claim is false, there is a non-trivial relation p r = q, where 
p and q are linear and cubic forms in q~[s. But this contradicts that Czx is 
birational. 

In the same manner, we can prove that 

qg~qgjq~kq9 ~ (O<i<j<k<l<3), qg~oj~k ( 0 < i < j < 3 )  (3.6) 

generate H~ It follows that there exist homogeneous polynomials A 
and B in the tpi's of degree 2 and 4, respectively, such that 

~b2 +A~k+B=0 .  

Moreover, ~k defines a' holomorphic map @: S ~ V whose image is contained in 
(3.5). Since the collection (3.6) generates H~ the image ~(S) is bi- 
rationally equivalent to S (see [3], Main Theorem). Hence the projection 
~(S) ~ W is two-sheeted and ku(S) is defined by (3.5). 

Conversely, if (3.5) defines a normal surface with at most rational double 
points, then its minimal resolution is a minimal surface with pg = 4, q = 0, and c 2 
= 6 which is of type lb. By Bertini's theorem, these surfaces actually exist. 
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w Surfaces of Type II 

Let S be a surface of type II. That is, ~ :  S ~ I P  3 induces a holomorphic map of 
degree 3 onto a quadric W. 

Lemma 4.1. W is singular. 

Proof. Suppose that W is non-singular. Then W is isomorphic to IP ~ x lP 1. 
Hence the canonical bundle is of the form [ C + D ]  with C2 = D2 = 0 ,  CD=3. 
This contradicts that K C + C 2 is even. Q.E.D. 

Let Z 2 be the Hirzebruch surface of degree 2. Then 2~ 2 is the minimal 
resolution of the singularity of W. We let F and Ao denote a fibre and the 0- 
section of 2; 2 , respectively. 

Theorem 4.1. Let m: V--} Z 2 be the line bundle associated with 2A o + 3F, and let w 
be a fibre coordinate on V. Then S is birationally equivalent to a surface S' in V 
defined by the equation 

where 

(4.1) 

(~ H~ (_9([d 0])) , 0~6H~ r + 3r])), 

f leH~ 7eH~ 

More precisely, let S be the minimal resolution of S'. Then S contains an 
exceptional curve E over d o and S is obtained from S by contracting E to a point. 

Proof. Since ~K(S) is a quadratic cone, we can find a pencil [D[ and an effective 
divisor G such that tK I=I2D+G [ and KG=O (see [Q], p. 46). From K2=6,  it 
follows that KD = 3, which in turn implies D 2= DG = 1 and G 2= - 2 .  In particu- 
lar, the pencil ]DI has a unique base point b. We let ~:S--}S be the quadratic 
transformation with center b, and set E = n - l ( b ) .  The variable part [s of In* DI 
defines a holomorphic map S ~ I P  x. Since [K[ has no base point, there exists a 
section qeH~ K)) which does not vanish on ~* G wE. Furthermore, we 
take a non-zero section o~ of [ n * G + 2 E ]  over S, which is unique up to a 
constant. Then the pair (to, q) defines a holomorphic map h 'S- -}~ 2 such that 
h* A o = n* G + 2E. We note that the canonical bund l e / (  of S is given by h* [d o 
+ 2 r ]  + [E]. 

Next we shall lift the map h to ~: S ~  V. For this purpose, we consider the 
line bundle 

h* [Z Ao + 3 F] = ITi + [D + ~*G + E ]. (4.2) 

By the Riemann-Roch theorem and the vanishing of H l ( ~ , O ( - b ) )  (see [3], 
Theorem A), we have 

dim H ~ (S, ~ (/( + D)) = �89 (/( +/)) + 5 = 7. 
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If ~ is a non-zero section of [n*G+E],  then, for any ~oeH~ the 
product tpr determines a section of h*[2Ao+3F-J over S. Since we have 
dimH~ there exists ~o such that ~o~ is not induced by a 
section of [2Ao+3F] over E 2. Setting w=~0~, we obtain a holomorphic map 

Lemma 4.2. The holomorphic map fi induces a birational map of S onto its image. 

Proof. Let S' be the image of/~. Since h is of degree 3, if S' is not birationally 
equivalent to S, then the projection w :S ' ~Z2  is birational. Hence we have an 
isomorphism 

H~ t~([2A o + 3r])) ~ ,  n~  ', ~(t~* [2A o + 3r])). 

But this contradicts the choice of tp. Q.E.D. 

Lemma 4.3. The image of ~ is defined by the equation of the form (4.1). 

Proof. We consider the subspace of H~ which consists of 
those sections vanishing on 2n* G + 3E. It contains 

~3~3 

~,~2 

with ~x6H~ dT([A 0 + 3F])), 

with fleH~ (9([3A o + 6F])), (4.3) 

with veH~ ~([4A o + 9F])). 

When ~, fl, and V move in bases of the corresponding spaces, the above list 
represents 53 sections. On the other hand, we have 

[h*(6Ao+9F)-(27r*G+ 3E)] =/ (+h* [3Ao+7F] .  

Hence, by the Riemann-Roch theorem and the Kodaira vanishing theorem (see 
[16, 3]), we have 

h~ 6A o +9/ ')-(2rr* G + 3E)) = 52. 

Therefore we can find a non-trivial relation of the form 

where 6eC and ct, fl, T, ( are as above. From Lemma4.2, we infer that ~4:0 and 
that this is the only relation among the sections in (4.3). Q.E.D. 

Lemma 4.4. Let A be the curve defined by w= (=0.  7hen S' =~(S) has a double 
curve along A, but other singular points of S' are rational double points. 

Proof of Lemma4.4 consists of several lemmas. Let #: V * ~ V  be the 
monoidal transformation with center A and let S* be the proper transform of S' 
by #. 

Lemma 4.5. The holomorphic map ~: S--,S' factors through S*. 
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Proof. Let J be the ideal sheaf of A on S' and let J be the ideal of 6g generated 
by h'* J .  We shall show that J is invertible. In fact, we have 

~* w = q ~ ,  /~* ( = e ~ ,  

where e is a non-zero section in H~ ~([E])). It suffices to prove that q~ and e 
have no common zero. To see this, we first note that, since ( / (+ /5 )E  =0,  q~ is 
constant on E. Secondly, we have the exact sequence 

0 --, r (K) ~ (9 (K + [D]) --, (9 (Kb) --, 0, 

where K b denotes the canonical bundle of / ) ,  and the restriction map 

n~  ~9(R + [D])) ~ n~ d)(Kb) ) 

is surjective. Since IKbl has no base point, it follows that IK+bl has no base 
point on / ) .  

Thirdly, by virtue of the choice of q~, we can find a basis {q~, ~1, "",  ~k6} of 
H~ such that the ~bi~ are induced by the elements of 
H~ In view of the fact that A o is a fixed component of 12A o 
+3FI  and the equality h*do=n*G+2E, the ~ki~ vanish twice along E. Hence 
the ~k i vanish along E. Therefore, if ~p is 0 on E, the linear system IK+DI has 
base points along E. This contradicts what we have proved above. Q.E.D. 

Lemma 4.6. The singular locus of S' consists of the double curve A and a finite 
number of points. 

Proof. Let A be a general member of IAo+2FI on Z 2 and let C be its inverse 
image on S. We may assume that C is irreducible and non-singular. Since C is a 
member of In*KI, it is of genus 7. Let C' be the inverse image of A on S'. Then 
we have the sequence of maps C ~ C ' ~  A. We consider the restriction Via--. A of 
V to A, which is a line bundle of degree 3. From the form of (4.1), we readily 
infer that C' is of arithmetic genus 7. Hence C' is non-singular. This implies that 
there is no multiple curve other than A. Q.E.D. 

Lemma 4.7. The proper transform S* by # has only isolated singularities. 

Proof. In view of Lemma4.6, it suffices to consider #-I(A).  Let U be a 
coordinate neighborhood on Z 2 which meets do, and let (z ,0  be a system of 
coordinates on U such that A o is defined by ( = 0 .  For  a while, we let w denote a 
fibre coordinate on O=t~- I (U) .  Then S'c~O is defined by the equation of the 
form (4.1), where a, fl, 7 are regarded as functions of (z, (). By replacing w by w 
+ 0t(/3, we may assume ct = 0. The inverse image #-1  (U) is covered by two open 
sets V~, i = 1, 2, and the V~ are covered by systems of coordinates (z~, u i, vi), which 
satisfy 

Z~ZInZ2,  ~ U l V l ~ U 2 ,  W~Ul~U2V 2. 

Suppose first that at least one of fl and 7 does not vanish identically on do. 
Then the proper transform S* of S' is defined by 

ul+flvl+Tv~=O on 111, (4.4) 

u2v~+flv2+7=O on V 2. 
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It is clear that S * n  171 is non-singular. On the other hand, the intersection 
I~-I(A)nS*nV2 is defined by u2=flv2+7=O, and is non-singular. Hence 
S* n V 2 is non-singular in a neighborhood of # -  I(A) n S* n V 2. 

Next suppose that fl and V both vanish on A 0  ̀Then A is a triple curve of S'. 
We shall prove that this is impossible. For  this purpose, we take a non-singular 
rational curve C~IAo+3FI on 22, and let C be its preimage on ~. We may 
assume C is non-singular. Then, being a member of [zc*K +/)1, C is of genus 12. 
Let C' be the image of C on S'. Then C' is defined by the Equation (4.1) in the 
restriction of V over C. This restriction is a line bundle of degree 5 over C. From 
these facts, it follows that C' is of arithmetic genus 13. This implies that C' has 
only one double point. Hence A is not a triple curve. Q.E.D. 

Lemma 4.8. S* has only rational double points as singularities. 

Proof. In this proof  we let V denote the IPl-bundle associated with [2 A 0 + 3 F]. 
Since the normal sheaf Ar=~a/v of A in V is isomorphic to 0 ( - 1 ) O ( P ( - 2 ) ,  the 
exceptional divisor ~ = # - I ( A )  is isomorphic to 21~. Furthermore, the normal 
bundle of ~ in V is given by I - -  b -  2 f ] ,  where b and f denote the 0-section and 
a fibre of ~ ,  respectively. This latter fact can be seen, for example, as follows. 

2 
We note that A ~ r = d ~ ( - 3 ) .  Hence the canonical bundle K v induces a line 

bundle of degree 1 on A. The canonical bundle of d ~ is induced by #*K v + 1-28], 
and it coincides with [ - 2 b - 3 f ] .  Since ~ has no torsion line bundle, we 
conclude [811 ~ = [ - b - 2 f ] .  

From (4.4), we infer that [S*]I ~ = [2b + f ] .  Hence, combined with the above 
observation, it follows that [#*S']  induces [ - 3 f ]  on r Hence we obtain the 
exact sequence 

O~t~( -#*S '+(k -1 )8 ) ) - ,~ ( - i z*S '+k~) - - , (g t ( - kb - (2k -3 ) f )~O (4.5) 

for any k. First, by a standard calculation, we prove Z ( C v ( - S ' ) ) = - 3 .  Then 
using (4.5), we obtain Z ( C ( -  #*S '+  2~) )=  - 4 .  Finally we obtain Z((gs,)= 5. 

Thus we have proved Z((gg)=Z(dTs. ). Since S* is normal by Lemma4.7, it 
follows that S* has only rational singularities. Since S* is embedded in a non- 
singular threefold, it has only rational double points (see [1], Corollary 6). This 
completes the proof of Lemma 4.8, and is the end of the proof  of Lemma 4.4. 

As we have seen in the proof  of Lemma4.7, S* is non-singular in a 
neighborhood of #-I(A)c~S*. Now we shall prove that S* contains an excep- 
tional curve in # - I ( A ) n  S*. We divide the case according to whether fl vanishes 
on A o or not. 

If fl does not vanish on A o, # -~ (A)nS*  consists of the two disjoint curves E 
and t~, where E is defined by v 1 = 0  and d is defined by f l+Tv 1 = 0  on 171 and 
f l v 2 + y = 0  on 172, in the previous notation. We claim E 2 =  - 1 .  In fact, let U' be 
another coordinate neighborhood on 272 and let ~', w', v~ etc. be the correspond- 
ing coordinates as above. Then we have 

U~' =(w/W)(hlvD. 
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We identify E with A by the map #, and note that ~/~' and w/w' are respectively 
the transition functions of to* [A o] and the line bundle associated with the 0- 
section of V. On A, the former is of degree - 2, and the latter - 1. This implies 
that E 2 = -  1. Moreover, from the equality ~=-v~([3+Vvl) ,  it follows that the 
pull-back of A o on S* is 2 E + G .  Hence we have t~ 2= - 2 .  

Next we suppose that/~ vanishes identically on A o. Then gls* is of the form 
2E+G', where E is defined by vl = 0  and G' by V=0. In the same way as above, 
we can prove E 2 = - 1. On the other hand, since y has a simple zero on A o, G' is 
a fibre of the projection #-I(A)--,A. Hence we have EG'= 1. Furthermore, the 
inverse image of A o is 3 E + G'. This proves that G' 2 = _ 3. We set (~ = G' + E in 
accordance with the preseding case. 

In the first case, S* is the normalization of S', while, in the second case, S* is 
obtained by blowing up a point on the normalization of S'. In either case S is 
the minimal resolution of the singularities of S'. 

Conversely, we start with S' defined by (4.1) and assume it has only rational 
double points except for the double curve A. Let #: S*~S' be the monodial 
transformation with center A and let S be the minimal resolution of S*. Then 
contains an exceptional curve E over A o. We let n: S--*S be the contraction of 
E. We now prove S is a minimal surface with pg=4, q=0 ,  and c 2 =6.  First, by a 
standard calculation using (4.5), we obtain pg=4 and q=0 .  Secondly, the 
canonical bundle of S is induced by h*(2Ao+2F)-#-I(A), where h: S ~ Z  2 
denotes the natural map. As we have seen above, h*Ao=2E +G and # - I ( A ) = E  
+(~. Hence, rc*K=h*[Ao+2F ]. This implies K2=6 ,  and that IKI has no base 
point. In particular, S is minimal. This completes the proof  of Theorem 4.1. 

It remains to prove the existence of the Equations (4.1) which define S' with 
the properties required above. For  this purpose, we regard (4.1) as a linear 
system of divisors on E It can be easily checked that it has no base point outside 
of A. Furhtermore we have already shown that (4.4) is non-singular provided one 
of fl and ~ does not vanish identically on A o. Therefore, for a generic choice of 
(4.1), S* is non-singular. This proves the existence of surfaces of type II. 

w 5. Surfaces of Type III 

In this and the next sections we shall study the case in which [K[ has base 
points. We let It: S ~ S ,  L, E, and F be the same as in w 

Lemma 5.1. Assume that IKI has base points. Then we have L 2 =4,  LF=2, F 2 =  
-2 ,  and LE=O or 2. 

Proof. By Lemma 3.1, we have L2=4  and (L+Ir*K)F=K2-LZ=2. The second 
equality implies that LF= 1 or 2. On the other hand, by the Riemann-Roch 
theorem and the Kodaira vanishing theorem, we have 

h~ + L ) = L  2 +�89 + F ) +  5, (5.1) 

which is at most equal to h~ 11. We also note that F - E  is effective, and 
hence LF >LE. This is obvious if n is a single quadratic transformation at a 
base point of [K[. The general case immediately follows from this special case. 
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If LF = 1, we have LE = 1, and hence E is irreducible (see [Q], p. 45). From 
the equalities L E = L F = - E F = I ,  we infer that F = E + F '  with L F ' = E F ' = O  
(see[Q],  p. 46). From F 2 = K 2 - L 2 - 2 L F = O ,  it follows that F ' 2 = I ,  which 
contradicts Hodge's index theorem. Therefore, we have L F = 2  and F 2 = - 2 .  
Since L(E+F)  is even by (5.1), we have LE=O or 2. Q.E.D. 

We shall call S of type III if IKI has base points and if S does not admit a 
pencil ID] whose general member is a non-singular curve of genus 2. We refer to 
such a pencil as a pencil of curves of genus 2. Surfaces with such pencil will be 
studied in the next section. Furthermore, we call S of type I I Ia  or IIIb according 
to whether LE = 2 or 0. 

Theorem 5.1. Let S be a surface of  type IIIa. Then ILl defines a holomorphic map 
of degree 2 onto a non-singular quadric W in IP a. I f  we identify W with ~o, the 
branch locus B is in 18/Io+8FI, and, in the generic case, it consists of a fibre F, a 
section Ao, and a curve B o which has a quadruple point at x = F n A  o and two triple 
points, one each on F and A o. 

We first prove the following lemma. 

Lemma 5.2. The equality LE  = 2 implies that F = E and E 2 =  - 2 .  

Proof By (5.1) we have h~ + L ) =  h~ K). Since F - E  is effective, we have 

12 n* KI = IK +LI + ( F - E ) .  

Since 12K[ has no base point (see I-3], Theorem 2), we obtain F = E .  Q.E.D. 

Corollary. n is the composition of  two quadratic transformations. 

Let f :  S ~ I P  3 be the holomorphic map defined by ILl. We first suppose that 
W is singular and derive a contradiction. In the same manner as in [Q], p. 46, 
we can find a pencil IDI and an effective divisor G such that 2D+GeILI  and LG 
= 0. From L 2 = 4, we get 

2 =L D = 2 D  2 +DG. (5.2) 

Hence/~D and D 2 are even integers. By (5.2), we obtain D2=0.  DG=2, and G2= 
- 4 .  Using the inequality 

6 = (n* K) L > 2(n* K) O = 4 + 2 DE, 

we obtain DE = 0  or 1. But DE = 0  would imply that 1DI is a pencil of genus 2. 
Hence we have DE = 1, and hence GE = 0. Let E o be the unique component of E 
such that D E o = I ,  and set E I = E - E  o. Then, by the above Corollary, E I ~ 0 ,  
and 

2~_LEo=2 +GE o, LEt  =GE I. 

Suppose first that GEo=0.  Then, combining with GE=O, we get GE 1 = L E  I 
=0. This implies that ~ is the blowing up of two infinitely near points, for 
otherwise, we would have LE 1 >0. But, then E is of the form 2E'o+E~, and we 
necessarily have Eo =Eb. This contradicts the equality DE = 1. 
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Next suppose GE o <0. Then G contains E o. Hence, from LG = 0, we obtain 
LE O = 0. This again implies that n is the blowing up of two infinitely near points. 
This time we have E2=  - 2  and E 1 =2E~ with EoE' 1 = - E ~ 2 =  1. We also have 

oE~ =0,  /~e~ = 1. (5.3) 

By the same method as in I-Q], p. 46, f induces a holomorphic map 
h: S--.2~ z of degree 2 such that h*Ao=G, and the ramification divisor R of h is 
linearly equivalent to 6 D + 3 G + 2 E .  Hence DR=8, GR=O. It follows that the 
branch locus B is linearly equivalent to 8 Ao + 16/.  We consider an involution ~b 
of S which commutes with h. Such ~b exists because S is the minimal resolution 
of the double covering of z~ 2 with branch locus B (see Lemma 2.1 and [Q], 
Lemma 4). Since ~b induces an involution on the minimal model S, and since it 
fixes the base points of Igl, it follows that q~(Eo)=E o and tk(E~)=E ~. Moreover, 
the equalities DE o =LE' 1 = 1 imply that h is generically one-to-one on E o and E~. 
Therefore h(Eo) and h(E~) are contained in the branch locus B. By con- 
struction, E o is mapped onto Ao, and, by (5.3), E~ is mapped onto a fibre F o. 
Since B is in 18Ao+16FI, the divisor B - A o - F  o intersects Ao transversally at 
one point. This implies that B has no infinitely near triple points in a neigh- 
borhood of A o. Hence the minimal resolution coincides with the canonical 
resolution in a neighborhood of the preimage of A o (see [Q], w Lemma 5). But, by 
the canonical resolution, we have to blow up the intersection of A o and F o, and 
it turns out that E o and E~ cannot intersect. This contradicts our previous 
observation. 

Thus we have proved that f(S) is a non-singular quadric W. We identify W 
with 27 o, and use the same symbol f to denote the induced map S~27o. From 
the equality L = f *  [A o + F], we obtain 

gl f *  Ao + g f *  F=8. 

Since S has no pencil of genus 2, it follows that g i f * A o = I ( f * F = 4 ,  and hence 
E f * A o = E f * F = I .  We take an irreducible component Eo of E such that 
E o f * F = l  and set E I = E - E  o. Note that E o is a simple component of E. 
Hence, by Corollary to Lemma 5.2, E 1 is either an exceptional curve or is 
double in case the two base points are infinitely near. Anyway, E1 is not mapped 
into a point by f. Therefore we have LE~ >0. Since E 1 f ' F = 0 ,  it follows that 
E 1 f *  A o = 1 and E o f *  A o = 0. Eventually, E 1 is reduced and irreducible. 

By a straightforward calculation we see that the ramification divisor of f is 
linearly equivalent to 3 L + 2E and the branch locus B is linearly equivalent to 
8 A o + 8 F. By Lemma 2.1, there exists a divisor Z e l f *  (A o + F ) - 2  El. This implies 
the existence of 

Zoe l f*Ao-2Eo l ,  and Z l e l f * F - 2 E l l .  

Therefore B contains f(Eo) and f(E1) as components. 
Let S' be the double covering of 270 with branch locus B, and let S* be the 

canonical resolution of S'. Then S* has the following numerical characters: 

Po(S*) = 9 - �89 Y' [m,/2] ([m,/2] - 1), 

c~(S*) = 16 - 2 ~ ([m,/2-] - 1) 2, 
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where the m i denote the multiplicities appearing in the process of the canonical 
resolution, and the brackets denote the integral part (see I-Q], w We recall 
po(S*)=4 and c2(S*)-<c2(S)=4. Therefore, we have [ m J 2 ] = 3  for one i and 
[ m J 2 ] = 2  for two i's. Hence, we have c2(S*)=c2(S), and S is the canonical 
resolution of the singularities of S'. 

Let ~ be one of the intersection EoC~Z o and set x=f(~2). Let q: W1~2~ o be 
the quadratic transformation with center x. Then, by the above observation, f 
can be lifted to f l :  ~-'* I411. Let Ex= q- l(x) and let R 1 be the ramification divisor 
of f l .  Then (f*Ex)R 1 is 6 or 4 according to whether x is on f(El) or not. 
Applying a similar consideration to E 1, we see that B has a sextuple point at 
f(Eo)c~f(E1). Now we take x to be f(Eo)c~f(E1). Then the branch locus B 1 of fx 
has two quadruple points, one each on the proper transforms of f(Eo) and 
f(E1). 

Conversely, we take a section A o and a fibre F on 2~ o, and we let x be the 
intersection A o n e  Let q: W~ ~ ~0 be the blowing up of x, and let q: I?r W 1 be 
the blowing up of two points y and z, which are on the proper transforms of A o 
and F, respectively. Here y and z may be over x. We consider the composition # 
= q l  o q, and a divisor 

Bo~ll~*(7 Ao + 7 r ) - 4  E~- 3 Ey-  3 Ezl, 

where E,=q*(q-l(x)), Ey=q7l(y), and Ez=q-?l(z). We assume that /~o has no 
multiple component nor infinitely near triple points, and does not contain the 
proper transforms zJ o and f of A o and F. Let S be the double covering of IIr with 
branch locus /~o+Z]o+/~. Then S contains two exceptional curves E o and E 1 
over z] o and F. Contracting E o and E~, we obtain a minimal surface S with pg 
=4,  q= 0 ,  and c2=6.  

We prove that S is of type IIIa. For  this purpose, we first note that the 
canonical bundle /~ of S is defined by f*(Ao+F)+2Eo+2E 1 (see [QI, w 
Hence the canonical system IKI of S has two base points. Next we shall prove 
that there exists no pencil IDI of genus 2 on S. In fact, if such IDt exists, it has no 
base point (see [P],  Theorem 5). Hence we have 

2 = (n* D)/~ = (n* O) ( f *  A o) + (~z* O) ( f*  F), 

where rr denotes the contraction map S ~ S .  If (n*D)(f*F)=l, then D is 
mapped birationally onto IP ~, which is impossible. Hence, one of the above 
summands vanishes. Suppose, for instance, ( n ' D ) ( f ' F ) = 0 .  Then, since (rr* D) 2 
= 0, n* D is numerically equivalent to a rational multiple of f * F  (see, e.g. [23], 
p. 92). But this is impossible. This completes the proof of Theorem 5.1. 

Remarks 1. The existence of/~0 can be checked by a method similar to I-Q], 
pp. 52-53. Here we note that y and z may be both infinitely near to x, in which 
case B o has a quintuple point at x. 

2. We can contract on W~ the proper transforms of A o and F. This trans- 
forms W 1 into IP 2, and B into a curve of degree 10 which has two 2-fold triple 
points (cf. Enriques [6], p. 272). We shall use this fact in w 11. 
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Theorem 5.2. Let S be a surface of type IIIb. Then S is birationally equivalent to a 
double covering of ~'2 whose branch locus B consists of the O-section d o and 
B0~17do+ 14FI which has a quadruple point at x~F and a 2-fold triple point at 
yeF on a fibre F, with x and y being possibly infinitely near. 

Proof. Using the previous notation, we have E=0 .  Let f :  S ~ I P  a be the 
holomorphic map defined by the variable part ILl of IKI. We first prove that the 
image W of f is singular. If not, then W = Z o ,  and L = f * [ d o + F  ]. From KL 
=6, we obtain K ( f * A o + f * F ) = 6 .  Since K f * d  o and K f * F  are both even, one 
of them must be equal to 2. This contradicts that S has no pencil of genus 2. 

Thus W is a quadratic cone, and hence ILl is of the form [2D+GI with a 
pencil [DI and LG=O (see [Q], p. 46). It follows that 

2DE+DG=DL=2, 2DF+GF=2, (5.4) 

where F denotes the fixed part of IKI. Hence we have D 2 = 0  or 1. But, if D 2 =0, 
then KD is even, and hence so is DF. Since GF =KF is non-negative, from the 
second formula in (5.4), we obtain DF = 0. This contradicts that S has no pencil 
of genus 2. Thus we have proved D E--- 1, DG=O, and G2=0. By Hodge's index 
theorem, we obtain G=0,  and hence DF= 1. In particular, ID[ has a base point 
b. 

Let n: S-~S be the quadratic transformation with center b, and set E 
= n - l ( b ) , / ) = n * D - E .  Then we obtain a holomorphic map f :  S ~ Z 2  of degree 
2 such that f *do=2E.  The ramification divisor R and the branch locus B are 
linearly equivalent to n*(3 L + F) + E and 8 A o + 14 F, respectively. In particular, 
B is a disjoint sum do+B o with Boel7do+ 14FI. By Lemma 2.1, there exists an 
effective divisor Z e  [/~ + E -  n* FI. Since f (Z)  is a finite set, Z does not contain E. 
On the other hand, E is a fixed component of I/)+EI. Hence n*F is of the form 
E + F' with F' > O. 

Let S* be the canonical resolution of the double covering S' of Z2 with 
branch locus B. Then S* has the following numerical characters: 

Pa = 6 - �89 ~ EmJ2] ([mJ2] - 1), 

c~ = 8 - 2  ~. ([mJ2] - 1) 2 

(see I-Q], w It follows that there are exactly two i's with I-mJ2] =2. Hence S* is 
a quadratic transform of S. Moreover, since Z is linearly equivalent t o / ) - F ' ,  
the essential singularities of B are on a single fibre F (cf. [Q], Lemma 5). 

We have the following four possibilities: 

1) B has two quadruple points. 
2) B has a quadruple point and a 2-fold triple point. 
3) B has a quadruple point x which, after a quadratic transformation at x, 

gives a 2-fold triple point. 
4) B has a 4-fold triple point. 

Among these, only 2) and 3) are possible. In the case 1), S* would contain no 
exceptional curve which is mapped to a point on S'. In the case 4), S* would 
contain two of such exceptional curves. Neither of them is the case. 
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First we consider the case 2). Let x and y be two points on a fibre F and not 
on Ao, and let q: W I ~  2 be the blowing up of x and y. We set Ex=q-l(x), Ey 
=q- l (y ) .  Then, take a point y' on E r which is not on the proper transform of F, 
and let ql : I~r W 1 be the blowing up of y'. We set/z =q~ o q, E'y =qi- X(Y'), and/~r 
=q*Ey-E'y, and for simplicity we write E x instead of q~Ex. We consider 
divisors B o on I~ linearly equivalent to 

#*(7Ao+ 14 F) -4  Ex-  3 ff~y-6 E' r 

Let A~elA o + 2 F I be an irreducible curve through x, and let A relA o + 2 F I be 
through y at the direction of y'. We let z~ and zty be their proper transforms by 
p. Finally we denote by P the proper transform of F by p. Then J/~ol contains 

4zl~+3zJ r, 6P+2Ex+3Ey+7#*Ao+I8p*F[, and 

4 F +  " " ' * 3Ay+4Ey+4Er+l# (4Ao +4F)I .  

It follows that I/~01 has no base point on I~. Using the Riemann-Roch theorem, 
we obtain dim I/~o1.=41. 

Remark 3. The above argument can be applied with a slight modification to the 
case where x and y are not on a single fibre, and dim I/~ol remains constant. But 
in this case, we obtain a surface of type IIIa  instead of type IIIb. This fact will 
be used in constructing a family of deformations of a surface of type IIIb 
(see w 

Next we shall prove that the singularities of 3) actually occur. We distinguish 
the case according to whether the 2-fold triple point is on the proper transform 
of the fibre F or not. Let z and ~/be inhomogeneous coordinates on the base 
curve and on F, respectively. We may assume that x is at z =~ =0.  Then any 
section of [7A o + 1 4 / ]  over 2~ 2 is represented by a linear combination of 

t/~z j with j < 1 4 - 2 i .  (5.5) 

Let A be the subsystem spanned by ~fz j with 3 i+j> 10. Then a generic member 
B of A has the singularity of type 3) at x. In fact, after a quadratic transfor- 
mation at x, the proper transform of B is defined by a linear combination of 
(rl/z)iz i+j-4 with 2i+(i+j-4)>6.  This has a 2-fold triple point at z=rl/z=O 
(which is not on the proper transform of F). We can also check that A has no 
base point other than x. Hence B is non-singular at other points. 

N e x t w e  consider the linear subsystem A' of (5.5) spanned by 

~fz i with i+2j_>10 
?](~2 "~- Z)3, Z2(?~2 "31- Z)2, ~3 Z2(I~2 -J~- Z). 

Then a member of A' has, after a quadratic transformation at z = r/= 0, a 2-fold 
triple point at ~/= z/r I =0,  with the tangent being ~/+(z/rl)=0. Moreover, A' has 
no base point other than x. Hence we can also find a seeked branch locus in this 
c a s e .  

Conversely, if we start with a branch locus B of the above form, then we 
obtain a minimal surface with Ps = 4, q = 0, and c 2 = 6. We can easily prove that 
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S has no pencil of genus 2 (cf. the final part of the proof of Theorem 5.1). Hence 
S is of type III. In the case 2), S is of type IIIb (but, see Remark 3). However, in 
the case 3), S is of type IIIb or IIIa according to whether the 2-fold triple point 
is on the proper transform of F or not. 

Remark 4. A surface of type IIIb is birationally equivalent to a double covering 
of IP 2 with branch locus of degree 10 which has a 4-fold triple point. To obtain 
this, we apply the elementary transformation to Z 2 at the quadruple point x. 
Then we obtain 2~ and this can be transformed into IP 2 by contracting an 
exceptional curve. 

w Surfaces of Types IV and V 

In this section we shall study the case in which S has a pencil IDI of curves of 
genus 2. We apply the result of [P] to such surfaces. By I-P], Theorem 5, IDI 
defines a surjective holomorphic map g: S--,IP 1. For each integer m, we set 

b(m) = h~ + roD) - h~ + ( m -  1) D). 

Then we have b(m)<b(m+ 1)<2. Since h l ( - D )  vanishes (see [3], Theorem A), 
we have h~ Hence it follows that b(1)=2. We set 

m~ = Min {mlb(m)>j}, j =  1, 2, 

and d = m 2 - m  1. We consider the rational map �9 defined by IK+mDI for 
sufficiently large m. By [P], Theorems 1 and 2, the image of �9 is isomorphic to 
S d with d=pg mod 2. Since pg=4, and since IKI is not composite with a pencil 
(Theorem 1.3), we have - 2 < m ~  <m 2 < 1. This implies d = 0  or 2. Therefore, 
induces a rational map f :  S ~ 2~ d of degree 2, and d = 0 or 2. If d = 0, S is called 
of type IVa. If d=2 ,  S is called of type V or of type IVb according to whether 
the 0-section Ao is contained in the branch locus or not. The singularities of the 
branch locus B are classified in I-P], Lemma 6. In the present case, by [P], 
Theorem 3, one of the following holds: 

(i) S has two singular fibres each of which is of type (I1), (1111) or (V). 
(ii) S has one singular fibre of type (II1) or (IV1). 

We shall add - 1  or - 2 ,  e.g. I V a - 1  or I V a - 2 ,  to indicate that S has 
singular fibers of the above type (i) or (ii). 

Let us first suppose that S has singular fibres of (i). Then, employing the 
notation of [P], Lemmas 9 and 10, we have deg c =2, and, by lP],  Theorem 2, 
deg [ = 3 + d/2. Hence B is linearly equivalent to 6 A o + (10 + 3 d) F. 

Theorem 6.1. Let S be a surface of type I V a -  1, IVb - 1, or V - 1. Set d = 0  in the 
first case, and d = 2 in the second and third cases. Then S is birationally equivalent 
to a double covering o fZ  a whose branch locus B is linearly equivalent to 6 A o + (10 
+3d)  F and is of the following form: B contains two fibers F 1 and F 2, and B o = B  
- F  1 -1"  2 has two triple points on each of  F 1 and 1" 2, which may be infinitely near. 
In this case IKI has two simple base points. 
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Next suppose that B has a singular fibre of type (ii). In this case, we have 
deg r = 1 and deg ~ = 2 + d/2. Hence B is linearly equivalent to 6 A o + (8 + 3 d) F. 

Theorem 6.2. Let S be a surface of type I V a - 2 ,  I V b - 2 ,  or V - 2 .  Set d = 0  in the 
first case, and d = 2 in the second and third cases. Then S is birationally equivalent 
to a double covering of Z d whose branch locus B is linearly equivalent to 6A 0 +(8 
+ 3 a t} F and has two 2-fold triple points on a fibre F, which may be infinitely near. 
In this case, IKI has a unique fixed component F which is a non-singular rational 
curve with F 2= - 2 .  

These are all in I'P], except that we regarded a singular fibre of type (V) as a 
degenerate case of a singular fibre of type (1111) to simplify the statement. 
Especially, the last statement about the fixed component follows from Lemma 10 
in [P].  

Remark. The pencil of genus 2 is unique on each surface of type IV or V, because 
it is induced from the canonical map in a natural way. 

w Deformations of  Surfaces of Type I 

Theorem 7.1. Let S be a surface of type Ia, and assume that K is ample. Then the 
number of moduli re(S) is defined and is equal to dimHl(S,  0s )=38 ,  where 0 s 
denotes the sheaf of germs of holomorphic vector fields on S. 

Proof. See 1,9]. 

Theorem 7.2. The surfaces of type I have one and the same deformation type. 

Proof. In view of the simultaneous resolution of the rational double points [4], it 
follows from the constructions in w that each type Ia  or Ib has one and the 
same deformation type. Therefore, it remains to show that a surface of type Ib is 
a deformation of a surface of type I a. 

We let t be a parameter which moves in a neighborhood of the origin in (E. 
Using the notation in w we define S, in V by the equations 

02+AO+B=O, 

thO-g=O.  (7.1) 

Then S O is of type Ib. If t ~ 0 ,  (7.1) reduces to g2+tAgh+tZBhZ=O.  Hence the 
S,,t4:0, are of type Ia (cf. I-6], p. 280). Q.E.D. 

w Deformations of Surfaces of Type II 

The main result of this section is the following. 

Theorem 8.1. ( i ) Le t  S be a surface of type II. Then any sufficiently small 
deformation of S is of type II. 

(ii) I f  S is of type II and generic, then the number of moduli re(S), in the sense 
of Kodaira-Spencer 1,17], w is defined and is equal to 38. 
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(iii) We have dim Hi(S, Os)= 39 and the Kuranishi family of  deformations of 
S is parametrized by a non-reduced space M for which Mre d is non-singular of  
dimension 38. 

Remark. The assertion (i), combined with the result of w implies that S cannot 
be directly deformed to a surface with ample canonical bundle. This seems to be 
a new example to the author. We shall find a similar example in [14], with pg 
=6,  q=0 ,  and c2=11. 

Proof of (i). We let D denote a small disc at the origin of • with coordinate t, 
and let p: ~ D  be a family of surfaces such that S = p - l ( 0 )  is of type II. We 
take a generic member C of JKI on S. Then, since HI(S, ~(C)) vanishes, C can be 
extended to a family q: Cg~D of curves of genus 7. This family carries a line 
bundle L a such that 2 L~ a is the canonical bundle ~ of c~. The following lemma 
corresponds to our classification of surfaces with pg = 4, q = 0, and c 2 = 6. 

Lemma 8.1. Let C be a non-singular curve of  genus 7, and suppose that there 
exists a line bundle L on C such that 2L  is the canonical bundle K c and such that 
dim rL[=2. Then one of the following is true. 

(Ia) C is birationally equivalent to a plane sextic curve with three double points 
on a line. 

(I b) C is a double covering of  an elliptic curve. 
(II) C is a triple covering of IP 1 and L is induced by t~(2). 

(III) C is a hyperelliptic curve and L is induced by 5 Q1 + Q2 with two Weierstrass 
points Q1 and Q 2. 

Proof  is parallel to ~3-5 ,  and is much simpler. 
If C is a canonical curve on a surface of type II, then C is of type II in 

Lemma 8.1. We need some more precise informations. We first prove a general 
lemma. 

Lemma 8.2. Let C be a non-singular curve which is a triple covering of  another non- 
singular curve D. Then C can be embedded in a IPl-bundle over D. 

Proof. Obviously, we can find a possibly singular model C' of C in the product  D 
x IP 1, which intersects a general fibre F at three points. If C' has a singular point s, 
we apply the elementary transformation at s. Since C'F = 3, and since s is a singular 
point, it does not produce any new singularity, and it has the same effect on C' as the 
blowing up ofs. Hence, after a finite number of such elementary transformations, C' 
is transformed into a non-singular curve in a IPl-bundle over D. Q.E.D. 

Lemma 8.3. Let C be a non-singular curve of genus 7 which is a triple covering of  lP 1. 
Then C can be embedded either in r, t or in ~ a. Moreover, C carries a line bundle L as 
in Lemma 8.1, if and only if C can be embedded in ~'3. 

Proof. By Lemma 8.2, C can be embedded in 2~ d for some d. If C is linearly 
equivalent to 3 A o + m F, then K c is induced by d o + ( m -  d -  2) E Hence, we have 
the equality m = (3 d + 9)/2. Since C is irreducible, we have m__> 3 d. Hence d is 1 or 3. 
Conversely, such C certainly exists for d = 1 and 3. 

If d=3 ,  then C is disjoint from A o. Therefore K c is induced by 4/'. Hence L 
= [ 2 F ] t  c satisfies the condition of Lemma 8.1. Conversely, if C is of type II in 
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Lemma 8.1, then L can be written as 2L o, and, by the Riemann-Roch theorem, we 
have h~ L0)= 5. If {~o o, q~l} is a basis of H~ then H~ Lo) ) is generated 
by the products q)~ ~oat -i, 0 ~ i < 3, together with an element @. Hence we can define a 
holomorphic map 7J: C ~ Z  3 such that ~k corresponds to the w-section of X 3. To 
prove that ~v is an embedding, it is enough to note that 

tpoq h i  4-i (0__<i<4), q)o~k, epx~b 

form a basis of H~ H~ and that C is not hyperelliptic. Q.E.D. 

Let ~1r Mo be the family of the triple coverings oflP 1 in X 3 which are close to 
C, and let To(Mo) be the tangent space of M o at the point 0 corresponding to C 
(see [15]). This determines an infinitesimal deformation map 

Po: To(Mo)~HI( C, Oc)" 

In a similar way, let J t I ~ M  1 be the family of all triple coverings of IP ~ (not 
necessarily in ~3) which are close to g: C ~ I P  1 (see [8], I). We denote its 
infinitesimal deformation map by 

PI: To(M1)~HI( C, ec). 

Lemma 8.4. We have dim I m p o =  13 and dim Imp~ = 15. 

Proof. The tangent space To(Mo) can be identified with H~ W), where W is the 
normal sheaf of C in W = Z 3. Since C is linearly equivalent to 3 3 o + 9 F, we have 
dim H~ In view of the exact sequence 

0 ~H~ ~H~ ") ~Hl(Oc), 

we need to calculate dim H~ For this purpose, we consider the exact 
sequence 

0 ~ Ow/r,~ Ow-~P* Or,-~ 0, (8.1) 

where p: W ~ I P  1 is the projection and Ow/rl is the sheaf of vector fields along the 
fibres. As is well known, we hax;e the isomorphisms Ow/r~(9(2Ao+3F ) and 
p* Or, ~d)(2F). The sequence (8.1) induces the exact sequence 

0 --* r Lo) ~ Owlc ~ d)(2 Lo) ~ 0 

on C, where L o denotes the restriction of [F] to C. We note that the two maps 

H~ Ovc)~n~165 d~(2F)), n~ r176 O(2Lo) ) 

are surjective. Hence, it follows that 

dim H~ OWlC) = h~ 3 L0) + h~ 2 L0) = 8. 

This proves the first equality dim Im Po = 13. 
To prove the second equality we use the theory of deformations of holomorphic 

maps [81 and consider the exact sequence 

O~ Oc~g* O r , - ,  ~c/r, ~ 0. (8.2) 
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By [8], I, Theorem 3.1, we have 

dim Im Pl = dim H~ - dim H~ * Or,  ). 

Using (8.2) and the fact that Supp ~c/r, is discrete, we obtain h~ = 18. Then, it 
immediately follows dim Im Pl = 15. "Q.E.D. 

The embedding oflP a into IP 2 as a conic depends on 5 parameters. Adding these 
parameters to M1, we obtain a family ~r162 and a holomorphic map 
~:  J/ '2 ~ ]p2 • M2" Let f :  C ~ IP 2 be the holomorphic map defined by 12 Lo[. Then 
(~r162 ~u) contains those small deformations of f which factor through conics. We 
now change the meaning of M 0 and let it denote the set of those points of M 2 which 
correspond to the triple coverings of IP I contained in ~3. 

Let q: r  be the family of curves of genus 7 which was obtained form the 
family of surfaces at the beginning of the proof. Then f :  C--,IP 2 extends to a 
holomorphic map ~: cg~Ip2 x D over D provided D is sufficiently small. 

Lemma 8.5. There exists a holomorphic map s: D --* M o with s(O) = 0  such that cg and 
@ are respectively induced from .1r 2 and ~ by s. 

Proof. We set D u = Spec (t12 [t]/t ~ § ~) and prove the existence of holomorphic maps 
su: D u ~ M  0,/a= 1, 2, ... such that (~, ~) modulo t ~+ 1 is induced from (~r ~) by 
s,. 

For  ~ = 1, ~ x D a (the product being taken over D) corresponds to an element p 
of H 1 (C, Oc). The existence of �9 implies that p is in the image of the coboundary 
map 

6: n~ nX(c ,  @c) 

of the exact sequence 

O ~ O c ~  f *  Or~---,3-c/r~O. (8.3) 

In order to calculate h~(f * Or~), we use the exact sequence 

0 - .  r  (P(2Lo)a-~f * Or~ --. 0. (8.4) 

The second arrow induces the map Hl(tPc)~Hl(O(2Lo)) a which is dual to the 
map H ~ (~O(2Lo)) a ~ H ~ ((~(4Lo)) defined by 

(a,b,c)~aq~2 +b(oo(Oa +etp 2, 

where {~Po, tPl} is a basis of H~ Since the image o f f  is a conic, this map has a 
5-dimensional image. Therefore, we have 

dim Ker(H I (t~c) ~ H 1 (d?(2Lo)) 3) = 2. 

Hence, from (8.4), we obtain h~  * Op2) = 10, h l ( f  * Or2)=4. 
On the other hand, we have the exact sequence 

o--, g* o, 
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where Jffr, denotes the normal sheafoflP 1 in lP 2 as a conic. Using h~ = 18 and 
h~176 we obtain h~ and h1(~c~,2)=1. Then, using 
(8.3), we conclude d i m l m g = 1 5 .  Since Img contains Imp t ,  these two spaces 
coincide (Lemma8.4). This implies that there exists a holomorphic map 
s I : D 1 --* M 2 such that cg x D~ is isomorphic to s* ~/2" 

Here we insert the following lemma. 

Lemma 8.6. Let s: N ~ M 2 be a holomorphic map with N being possibly non-reduced 
and s(O) = O, and let cg I ~ N be the family of deformations of C induced by s from ~r162 
Suppose that qr carries a line bundle . ~  inducing L on C such that 2.L~al is the relative 
canonical bundle of c~ 1 ~ N and such that any section ~k of L over C extends to a 
section of -~1 over ~gl. Then s factors through M o. 

Proof. We define a line bundle L a on Jr by the conditions .L~'lc = L  and that 2L, e is 
the canonical bundle of ~g2. We note that such ~ is uniquely determined. Recall 
that the obstruction for extending ~EH~ ~)(L)) to a section of Aa lies in 
H~(C, O(L)). We define M* to be the maximal subspace of M 2 over which any ~k 
extends (cf. [20, 20a]). Then, by assumption, s factors through M~. We remark that 
M* is possibly non-reduced. 

Sublemma 1. (M*)red = M o. 

Proof. Let C t denote the curve over teM*,  and let L t be the restriction to C t of the 
line bundle .~e. Then, for any teM*,  we have dim H~ (9(Lt)) = 3, and 2L~ is the 
canonical bundle of C~. Hence, by Lemma 8.3, t belongs to M o. Q.E.D. 

Sublemma 2. M~ is reduced. 

Proof. By Lemma 8.4, M o is a non-singular submanifold of M 2 of codimension 2. 
Hence, it suffices to find two linearly independent tangent vectors o n  M 2 at 0 for 
which some ~keH~ •(L)) does not extend. 

Recall that C is a triple covering g:C--* IP 1 defined by  the linear system [Lol 
such that 2 L o = L .  We take a point P~ at which g ramifies. We assume that g has 
ramification index 2 at P1. The case where the index equals 3 will be discussed later. 
We further take two points P2 and Pa with g(P0=g(P2)4:g(P3) such that g is 
unramified at P2 and Pa. We set P = P1 + P2 + P3, and consider the elements in the 
kernel of the natural map 

ie: H 1(c, 6)) --* H 1 ( C, O(P)), (8.5) 

where O = 0 c denotes the tangent sheaf to C. To investigate the kernel, we consider 
the exact commutatiye diagram 

0"-*@ ..... , d~(~Lo) ; ~ 0  

O ~ O ( P ) .  , t~ (2Lo+P ) , Jc/r ,(P) ~ 0 .  

It induces the exact commutative diagram 
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0 ~  H~ ~ H~  ~H1(O) 

l (8.6) 
0 ~ n ~ ((9 (2L o + P)) ' H ~ (~c/rl (P)) , n 1 (O (P)). 

First, we note that h~176  18, and, in fact, this is true for any 
divisor P. Secondly, by the choice of P, we have h 1 (2Lo + p ) =  1, and hence, by the 
Riemann-Roch theorem, h~ + P)=4.  Since we have h~ this implies 
that there exists a non-zero element p e H ~ ( O )  which is the image of an element 
z E H ~  and which is annihilated by i e. Such p is unique up to a constant factor. 
By specifying z e H ~  over p, we may consider that p corresponds to a tangent 
vector on M 2. 

Let Sp ~ D~ be the infinitesimal deformation corresponding to p. We shall 
prove that some r 1 7 6  (9(L)) does not extend over Sp. 

Let { U~} be an open covering of C by sufficiently small discs U v We assume that 
each P~ belongs only to U~, 1 < i < 3, and that Uj, j > 4 intersects at most one of the 
U~, 1 < i < 3. We let z i be a coordinate on U~, and assume that it is centered at P~ for 
1 < i < 3. Then, the above cohomology class p is represented by the 1-cocycle {Po} 
on the nerve of the covering { Ui} with 

P i j  = 
z t dzi  z i az i' 

where ~j = 0 forj > 4. Let {/it} and {xi~} = {dzJOzi} be systems of transition functions 
for L and K c, respectively. Then, we have a 0-cochain {ui} of non-vanishing 
holomorphic functions such that 

12 = uj xit u? 1 on U/c~ Uj. 

Let Kp be the canonical bundle of Sp. Then, it is defined by the transition functions 

xij + wit ( -  div Pij) t, 

where div Pit = c3fliHdzi if Pit = flij(d/dzi) (see [Q], p. 68). Let Lp be the extension of L 
over Sp such that 2Lp = Kp. Then Lp is defined by the transition functions 

vii = lit + �89 lit( - div Pit-- Pit" log ui) t. 

In fact, it can be easily verified that 

u t tit(1 - div Pit t) = v 2 ui(z t + flit t) 

over D 1, where the last factor means the u I evaluated at z i = z j + f l o  t. 
Let r be a section of L which vanishes at the P~'s. We represent ~, by a 0-cochain 

{r with ~i = lit ~j. If ~b extends to a section of Lp, then we can find a 0-cochain {hi} 
such that 

Pij" ~bi + �89 ~ki( - div Pii - PO" log ui) = l 0 hj - h i (8.7) 
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(see [Q], w or [13]). We take i~_3 and j=>4, with U/r~ U~=~. Then, we have 

_ ~t~ d_d div Pu ~i 
PO = Z i ~Zi' = Z--~i " 

Hence, (8.7) reduces to 

z t t~z~ 21Pi -~i zi c~zilogu~ = l q h j - h  i. (8.8) 

The expression on the left side does not depend on j. So we call it ),~, and set ),j = 0 for 
j > 4 .  Then (8.8) implies 

h i +),~ = l~j(hj +),j) on U/c~ Uj. 

This obviously holds for any pair (i,j). Since ff vanishes to second order at P~, it 
follows that ),1 is holomorphic. On the other hand, ),2 and ),3 may have poles of 
order 1 at P2 and Pa, respectively. Hence, the collection {h~ +),~} defines an element 
of H ~ (C, d~(L + P2 + P3))- But, by the Riemann- Roch theorem, we have h ~ (L) = h o (L 
+ P2 + P3)= 3. Therefore, )'2 and Y3 actually have no poles. This implies ~2 = a3 = 0. 
Recalling the choice of p, we conclude that p is annihilated by (8.5) with P being 
replaced by P1. But, in the diagram (8.6) with P =PI, we have h~ = h~ + P1) 
= 3. Therefore, there is no such p except 0. This proves that ~b does not extend over 
Sp. 

Next suppose that g has ramification index 3 at P1. In this case, we consider i v 
with P = 2 P~ and P = 3 P~. From the equalities h o (2 L o + 2 P~) = 4, h 0 (2 L o + 3 P~ ) = 5, it 
follows that there exists an element peri l (O) which is the image of an element 
zeH~ such that i2p, ( p ) * 0  and i3/, 1 (p)  =0. We take as ~b a section of L which 
vanishes exactly to order 3 at P~. We repeat the above argument. In this case, we 
have 

/~1 a2 a3\  ~ 
p l j =  - / - 2 ~ + - 2 ~ + - - 1  . 

\Z  1 Z 1 Z 1 I ~Z 1 

Hence, (8.8) becomes 

[~1 ~2 ~3 \ ~k 1 1 [ 3 ~ 1  2(X2 eta 1C(1 ~2 ~3 \ ~ "] 
-/~-+-~-+--| ~-z -~bl/-=~+-Sr-+ _-~ --/-~+-~-+--/--logul/  

\Z  1 Z 1 Z 1 / / Z 1 Z 1 Z 1 \Z  1 Z 1 Z 1 / 6qZ 1 J 

= llj hj - h t. 

We call the left side ), 1, and set ),j = 0 for j 4:1. Then we obtain an dement  {h~ + 7i} of 
H~ d~(L + P~)). Since it actually has no pole at P~, it follows that al vanishes. This 
contradicts i2p , (p) ~ 0. 

In any case, we can find a divisor P of degree 3 and peH~(O) with ie(p) = 0  such 
that some d/eH~ (9(L)) does not extend over Sp. We choose a similar divisor Q of 
degree 3 which is disjoint from P, and let p' be the corresponding element of H 1 (O). 

Sublemm_a 3. The two elements p and p' are linearly independent. 
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Proof. Using the natural injections IV ~ IV(P) and IV ~IV(Q) we obtain the exact 
sequence 

0 -, IV ~ IV(P)E3IV(Q) --* IV(P + Q) --* O. 

This induces 

0- ,  0 ~ O(P)~O(Q)-* O(P +Q)-*O. 

If p and p' are linearly dependent, we have iF(p) = iQ (p) = 0. But, since H ~ (P + Q)) 
vanishes, this is impossible. 

This completes the proof of Lemma 8.6. 
We continue the proof of Lemma 8.5. By Lemma 8.6, the map s I : D I - - , M  2 

factors through M o. Then, the two holomorphic maps induced by �9 and s* qJ are 
both defined by the same line bundle. Hence they differ by an automorphism o f I P  2 

x D 1. Therefore, by modifying s~, we may assume these two maps coincide. 
Now suppose that s,: D~ --, M 0 is constructed in such a manner (~r ~) over D~ is 

induced by s t from (Jr2, ~). We take an arbitrary extension s,+ 1: D~+ 1 -* M2- Then 
, o the two families c~ x Dr+ 1 and s~+ 1 ~(2 differ by an element o f 6 H  (C, JC/l,2). Since 

Imp  1 coincides with Im 6, we can modify s~ + 1 so that these two families should be 
isomorphic over D~+ 1 (cf. proof  of the theorem of completeness [18]). By 
Lemma 8.6, st+ 1 factors through M o. Then, we can modify s~+ 1 so that �9 and 
st+* 1 ~ should coincide over Du+ i. (This part may be replaced by a general theory 
[24].) 

The existence of a formal solution implies that of an analytic solution (see [2], 
or proof of Theorem 2.1 in [8], I). Thus, we obtain a holomorphic map s: D --* M o 
such that q: c~ _. D is induced by s from ~/t 2. It follows that any member of ~ is of 
type II. This completes the proof  of the assertion (i). 

Proof of (ii) and (iii). We assume that S is generic, and consider the family ~ of 
deformations of S defined by (4.1), in which we regard ~t, fl, and ? as parameters. We 
further assume that fl does not vanish on d o. Using the notation of w we have 
dim H~ ./V~/v, ) = 52, where -/ff~/v, denotes the normal sheaf of S in V*. 

Next we use the exact sequences 

0 ~ dV'~/v, -* "~-~/v "-~ ~v*/rlg --* O, 

0 ~ R / v ,  -" ~* ~ / v  --}~*/v--} O. 

The second one results from the exact commutative diagram 

0--, iz ,Ovi,~ ,.A/'s/v. "*0*] 

O~*Oa-----* ~*Ovie '~*XA/v ~0 

1 �9 

1 ] 
0 0 
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Here, using the standard coordinates on g, we can easily verify ~v,/v| 
and that gVt/v,--, p* JVa/v is injective. 

From these exact sequences we infer that h~ and h~ 52. We 
let ~': S--, V be the natural map and calculate h~ * Or). This sheaf fits in the exact 
sequence 

O-+(~(h*(2 Ao + 3 F))--*fi* Ov--*h* 0~2 --,0, 

where h is the projection S--* 272 (el. (8.1)). We also use the exact sequence 

0-* d~(h*(ZA o + 2r))-+ h* Ox2 ~ ~ (h* (2 r)) + o. 

From the second one, we get h~ * O~2)= 7. To calculate hi(h*(2Ao + 3F)), we use 
the equality (4.2). Since / 5 + n * G + E  is a reduced connected curve, we have 
hi (h*(2A o + 3 F)) = 0 (see [3], Theorem A). Hence, by the Riemann- Roch theorem, 
we get h~ o + 3 F) )=  7. Using the first exact sequence, we obtain h~ * Ov) 
= 14. Therefore, from the exact sequence 

o ~ o~ -~ fi* ov.-+ 9~/v  -+ O, 

it follows that our family ~ contains 38-dimensional infinitesimal deformations. 
Let 5 r be the family of the minimal models of the members of 5 ~ (see [8], III). Then 
5 e contains the same number of infinitesimal deformations (cf. [Q], Lemma 26)2. 

We now want to prove h x (Os)= 39. First recall that S contains a rational curve 
G with G 2 = - 2  and that the natural map (.:HI(S, Os)~HX(G, JV~/s)~-IE is 
surjective (see [5]). Since G extends to a family of curves on 5 ~, the infinitesimal 
deformations in 5 a are annihilated by ~.. Conversely, suppose that peH 1 (S, Os) is 
annihilated by ( . .  Then the divisor G extends over the corresponding deformation 
Sp-~ D x. Since the canonical bundle extends automatically, it follows that the line 
bundle [2 D], and hence [D] extend over S o. Moreover, we can easily prove h 1 (D) 
= 0, and h t (/~ +/5 + n* G + E) = 0 as remarked above. Therefore, the construction 
in Theorem 4.1 can be carried out over S o. This implies that p is contained among 
the infinitesimal deformations in 5 a. Thus we conclude h 1 (Os)= 39 and h2(Os)  = 1. 

TO complete the proof of (ii)an d (iii), we take the Kuranishi family 5Co ~ M o of 
deformations orS. Then M o is defined at the origin o f ~  39 by a single equation (see 
[19]). It contains a non-singular component M x of dimension 38 which corresponds 
to our family 5 g. We shall prove (Mo)re a = Ma. In fact, let 5 a' -* M' be any family of 
deformations of S with reduced base space M'. Then, by virtue of (i), any member of 
5 a' is of type II. 

Here we use the following lemma. 

Lemma 8.7. Suppose that the canonical image of each member of 5a'--* M' is a 
quadric. Then the images form a flat family. 

Proof. We take a basis {tpo, q~x, tpE, tp3} of H~ and assume that q~2 
= Q(q~l, ~02, q%), where Q is a quadratic form. We extend each q~ to a section ~ of 
the canonical bundle of 5 e'. Let {~O o, $1 . . . .  , ~blo } be a basis of H~ OP(2K)) and 
suppose that these sections are already extended to those over 5 a'. We may further 

2 See Part IV, w for a detailed proof 
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assume that the nine of them, for instance, ~'2, ~%,..., ~10 are quadratic forms in 
~o, ..., ~3. Then we can write 

10 
= Y 

i=O 

where the ~(t) are holomorphic functions on M'. By assumption, the rank of the 
space generated by the products ~ ~5 i is 9 at each point t of M'. Therefore, we have 
ao(t)=cq(t)=O. Hence qgo . . . .  ,~s  satisfy a quadratic relation which depends 
holomorphically on t. Q.E.D. 

Changing the basis of H~ r if necessary, we may assume ~g = ~1 92 on 
~ ' .  Then, as is proved in w the locus (oo=(o1=~2=0 has two connected 
components, because we assumed that fl does not vanish on A o. One of them 
induces G on S, and the other is the locus of the base point of ]DI. This implies that G 
extends to a family of divisors on So,. Therefore, by the same argument as before, we 
can prove that 6~ is induced from 5 r This completes the proof  of the equality 
(M0)re ~ = M 1. Since the equation of M o is at least of order 2, it follows that M o is 
non-reduced (see 1,19]). 

Remark. Enriques' proof of (i) is as follows (see I-6], p. 273). Let { C~} be a 1- 
parameter family of plane sextic curves with three double points on a line for t 4: 0, 
and suppose that C t tends to a triple conic 3Q as t ~ 0 .  Then the line passing 
through the three double points tends to a tangent line to Q. Hence these three 
points come together to a point P. If t is sufficiently close to 0, C, is close to a union 
of three conics in a neighborhood of P. If two of them intersect like as in Figure 1, 
then the third component must be reducible, which is a contradiction. 

Fig. 1 Fig. 2 

j/ 
Enriques did not mention the possibility of Figure 2. Some examples indicate 

that, in this case, the limit of C t is a curve of arithmetic genus 7 with one double 
point. But the author could not produce a rigorous proof of (i) on this line. 

w Deformations of Surfaces of Type III 

We first assume that S is of type IIIa. Let n: $ ~ S be the blowing up of the two base 
points of [KI. Then IKI defines a holomorphic map f :  ~ ~ Z 0 of degree 2. It follows 
that Igl is composed of two pencils I CI and IDI of genus 3 with C 2 = D 2 =  1. 
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Lemma 9.1. Let g: S-~lP I be the rational map associated with {CI. Then, for any 
family p:~gV-~M of deformations of S, g extends to a family ~: Ae~lP 1 x M of 
deformations of g, provided M is sufficiently small. More precisely, the line bundle 
[ C] and a basis {go, gl} of H~ (P([C])) extend to a line bundle on ~ov and to a pair 
{ ~Po, ~P1 } of its sections 

Proof. We apply [13], Theorem 5. Recall that the sheaf ~ is defined by the exact 
sequence 

0 - ~ - . ~ ( [ c ] )  2 ~ o ,  

where the first map is defined by a--~(ago, agl). By the theorem cited above, it 
suffices to prove ./_/1 (S, J f , )_0,  or equivalently, Hi(S, z~* 9fig)= 0. For this purpose, 
we write n* C= C+E 1 on S, where C is the proper transform of C and E 1 is an 
exceptional curve. From the commutative diagram 

0 ~  r , r  2 , ~ * ~  ~ 0  

1 1 1 
o--,~(EI) ~o(~+E1) 2 ,r 

we obtain the exact sequence 

0--, 0 ~ , ( -  1) - ,  re* ~ - - ,  ~(2 ~ +E0-- ,0 .  

Hence, it suffices to prove h l (2C+E1)=0 .  To prove this, we use the exact 
sequence 

O ~ ( ( ?  + EI)~(~(2C + E1)~Od(EI)--*O. 

From CE 1 = 1, it follows that dim H~ d~e(Ex) ) = 1. On the other hand, we have 
h~ + E 1) = 2. Therefore, h~ ~ + El) -< 3. Since the converse inequality is obvious, 
we have h ~ (2 C + El)= 3. Then by using the Riemann-Roch theorem, we obtain 
h~(2 C+E1)=0.  Q.E.D. 

Theorem 9.1. Let S be a surface of type IIIa. Then any sufficiently small deformation 
of S is of type IIIa. 

Proof. Let p: ~ M  be a family of deformations of S. Then, by Lemma 9.1, the 
rational map g: S ~ I P  1 extends to a rational map ~:  6P~IP  1 x M. Similarly, the 
rational map h:S ~ IP 1 defined by I DI extends. Therefore, we have two pencils I C, I 
and [Dr[on each St= p-  1(0. If we take the bases {glt, gz,} of H~ d~([Ct])) and 
{hx~, h2t } of H~ tP([Dt])), then the products g, hj,,i,j= 1,2, form a basis of 
H ~ t9 (Kt)), where Kt denotes the canonical bundle of S r Hence, [K tl is composed 
of two pencils of genus 3. This proves that S t is of type IIIa. Q.E.D. 

Theorem 9.2. Let S be a generic surface of type IIIa. Then the number of moduli re(S) 
of S is defined and is equal to dim H I (S, Os)= 39. 

Proof. Let I~--, W = Zo be the blowing up of the three points as in w 5. Then we can 
prove 

h~  hl(,q~/a,)=2, and h~ 



Algebraic Surfaces of General Type. III 239 

where h: S ~  W is the induced map (cf. [QI, w Next we consider the exact 
sequence 

0 --* ,~-~/fe ~ / w  ~ h* 5fr/w "-} O. 

In the same way as in [Q], Lemma.15, we can prove that the coboundary map 

H~ h* ~r~/~)--, n l(g, ~/~) 

is surjective. Therefore, we have h~ and hl(~~/w)=O. 
Finally, we use the exact sequence 

O ~ O g ~  f *  Ow ~ ~ / w  ~O. 

We note that h~ * Ow)=6, h l ( f  * Ow)=4, and h2(f  * Ow)=0. Hence we obtain 
ht(O~)=43 and hl(Os)=39. 

We take a complete family o@ ~ E o x M of deformations of S--* Z o such that the 
characteristic map z: To(M)~H~ is surjective (see [8], I, Theorem 3.1). 
Then 6~ contains 39-dimensional infinitesimal deformations of ~. We let 6 e he the 
family obtained from 6~ by contracting exceptional curves (see [8], III). Then, using 
[Q], Lemma 26, it is not difficult to prove that S a contains 39-dimensional 
infinitesimal deformations 3. Hence the map p: To(M)~HI(S,  Os) is surjective. 
Since H ~ (S, Os) vanishes, there exists a 39-dimensional family of deformations of S, 
which is complete and effectively parametrized. Q.E.D. 

As to the deformations of surfaces of type IIIb, we only prove the following 

Theorem 9.3. A generic surface of type IIIh is a specialization of surfaces of type 
IIIa. 

Proof. Let S be a generic surface of type IIIb. Then, it is birationally equivalent to a 
double covering of Z 2 whose branch locus B has a quadruple point x and a 2-fold 
triple point y on a fibre F (see Theorem 5.2). Let x, be a point depending 
holomorphically on a parameter t with Xo=X, and consider the curves in 18A o 
+ 14FI on Z 2 having the above singularities at x t and y. Then, by Remark 3 in w 
and by Grauert's theorem (see [7], Satz 5), we can extend B to a family {Bt} of such 
curves. Let {St} be the family of the canonical resolutions of the double coverings of 
Z 2 with branch loci B,. Contracting the exceptional curves on ~t, we obtain a family 
{St} of deformations ors  (see [8], III). Suppose that the x,, t 4= 0, are not on the same 
fibre as y. Then, by Remark 3, in w the S t, t#O, are of type IIIa. Q.E.D. 

With some more efforts, we can prove that any surface of type IIIb is not a 
specialization of surfaces of type I, IV, nor V. But we do not go into details. On the 
other hand, we do not know whether a surface of type IIIb is a specialization of 
surfaces of type II. This is not the case for the generic surfaces of type III b, as follows 
from the fact that the generic surfaces of type IIIb depend on 38 parameters which is 
equal to the number of moduli of the generic surfaces of type II. 

a See Part IV, w for a detailed proof 
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w Deformations of Surfaces of Type IV 

We begin with the following two theorems. 

Theorem 10.1. Let S be a surface of type IVa. Then any sufficiently small deformation 
of S is of type IVa. 

Proof. Let ]O[ be a pencil of curves of genus 2 on S. Then we have hl(2D) =0. This 
implies that the pencil tDt is stable under small deformations (cf. [Q], proof of 
Proposition 1). Hence, if {St} is a family of deformations of S = So, then each S t is of 
type IV or V. By Lemma 8.7, the canonical images form a flat family. Hence they are 
non-singular quadrics. This proves that S t is of type IVa. Q.E.D. 

Theorem 10.2. A generic surface of type I V a -  2 is a specialization of surfaces of type 
I V a -  1. 

Proof. Let S be a generic surface of type I V a -  2. For simplicity, we assume that S 
has one singular fibre of type (III 1). Then the corresponding branch locus B has two 
2-fold triple points x, y on a fibre F. As in the proof of Theorem 9.3, we consider x r 
with x 0 =x.  By the same argument as there, B extends to a family {Bt} of curves 
having 2-fold triple points at x t and y. This gives rise to a family of deformations of 
S. If x t and y are not on a single fibre, then the corresponding member S t is of type 
I V a -  t. This can be seen by applying the elementary transformations at x~ and y. 
The proof in the case where S has a singular fibre of type (IV1) is similar. Q.E.D. 

Next we study deformations of surfaces of type IVb. 

Theorem 10.3. Let S be a generic surface of type I V b - 1 ,  and let p: 6~ ~ M be the 
Kuranishi family of deformations of S (see [19]). Then M has two 38-dimensional 
non-singular components M o and M1, which intersect transversally along a 37- 
dimensional manifold N. The points of M o - N and M 1 - N respectively correspond to 
surfaces of type Ia and IVa - 1, and the points of N to surfaces of type IVb - 1. 

Proof is similar to [Q], w167 So we shall give only an outline. Let g: S ~ I P  1 be the 
unique pencil of genus 2 on S. The following two propositions can be proved in the 
same way as in [Q], w 

Proposition 10.1. Let p: Sf ~ M be a family of deformations of S which is of type IVb 
- 1. Suppose that each fibre S t=p- l ( t )  is of type III, IV, or V. Then g extends to a 
holomorphic map ~: S,~ ~ IP  ~ x M over M (shrinking M if necessary). 

Proposition 10.2. Let S be a generic surface of type I V b - I .  Then, there exists a 
family p i : 6fl ~ Mt of deformations of S = p - l ( 0 )  with 0 e M  1 such that 

i) M 1 is a 38-dimensional manifold, 
ii) the infinitesimal deformation map p: T0(Mt)~ Hi(S, Os) induces an isomor- 

phism of To(M1) onto the kernel of the canonical homomorphism 

G: Hi(S, Os)-~ HI(S, g* Or,), 

iii) each fibre S t is of type I V a -  1 or I V b -  1, and the generic members are of 
type I V a -  1. 
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The calculation in [Q], w can be carried out with the following modifications. 
First, [K[ is of the form [2D+G[ with ~ 2 =  - 2  and K G = 2 .  Hence (~ is an elliptic 
curve. With minor changes in Lemmas 21 and 22, we obtain h 1 (Os) = 39 and h2(Os) 
= 1. The analogue of Lemma 24 can be proved in a similar way. That is, the 
canonical homomorphism 

~.:Ha(S, 6)s)-* HI(G, Wa) 

is surjective, where ~ denotes the normal sheaf of G in S. By the same way as in 
[Q], pp. 71-72, we define a linear map 

y: n t (S, Os) --* H~ (G, d~ (KI,)), 

which has the following property. 

Lemma 10.1. Let bx, b2EG be the base points of [K]. Then 

1) G p=O if and only if V(p) vanishes at b 1 and b2, 
2) ~. p=O if and only if 7(P) vanishes identically on G. 

We now take a basis {Pl, P2 . . . .  ,P39} of Ha(s, Os) such that 

Gp14=O, Gp2=O, ~,P24=0, ~ , p ~ = 0  (2>3), 

and let (tt, t 2 . . . . .  t39 ) be the corresponding coordinates on {E 39. 

Lemma 10.2. We fix a hermitian metric on S and let go(t) be a (0,1)-form with 
coefficients in 0 s which defines the Kuranishi family. Then we have 

39 
H [g0(t), go (t)] = ~ a a t i tz + (higher terms), 

)t=l 

with a 2 4 = O, where H denotes the projection to the harmonic part with respect to the 
given hermitian metric on S. 

Proof. Lemmas 30 and 31 can be applied without change. Hence, it suffices to prove 
that the product V(pl) v(p2)~H~ is not a restriction of an element of 
H~ 0(2K)). For this purpose, let f :  S--} Z2 be the map of degree 2 defined in w 
Then the branch locus B has four quadruple points x~, 1 < i _ 4 .  From the 
construction in w we infer that [2n* K[ contains the linear system 

2 A o + 6 F -  4 xi .  X (10.1) 
i= l  

Comparing the dimension of these two linear systems, we see that they coincide. Let 
A 1 and A 2 ~]A o + 2F[ be irreducible curves through x 1, x2, and x3, x, ,  respectively. 
Then, J2FJ +A 1 +'42 is a subsystem of (10.1), and induces a 2-dimensional linear 
system on G. On the other hand, since h~ + 2D)= 8, the image of the restriction 
map 

res: H~ d~(2 K)) --, H~ d~(2 Kta)) 

is 3-dimensional. Hence it coincides with the image of the pull-back 
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H~ 1, •(2)) ~ H~ d)([2b I + 2b23)) 

by the restriction f :  G--.IP ~ of f .  We note that f is a double covering which is 
ramified at 4 points including b~ and b 2. Therefore, if ~(p~) 7(P2) is in the image of 
res, its divisor is 2b 1 +2b2,  for, it vanishes at bl + b  2. But this is impossible by 
Lemma 10.1. 

We shall prove that S is not a specialization of surfaces of type II in Theorem 
10.4 below, and the remaining assertions of Theorem 10.3 can be proved in the 
same way as in [Q-I, Theorem 3. Q.E.D. 

In order to complete the proof of the hierarchy in Introduction, we need to 
prove the following theorems. 

Theorem 10.4. Let S be a surface of type IV. Then, any sufficiently small deformation 
of  S is either of type I or IV. 

Theorem 10.5. Generic surfaces of  type I V b - 1  and I V b - 2  are respectively the 
specializations of surfaces of type I V a - 1  and I V a -  2. 

We first prepare with the following lemma. 

Lemma 10.3. Let S be a surface of type IVb, and let IDJ be a pencil of genus 2 on S. 
Then there exists a unique divisor G e l K - 2 D I ,  and G is one of the following. 

I f  S is of type I V b -  1, then 
(i) G is a reduced irreducible curve, which is an elliptic curve or a rational curve 

with one node, and G 2= - 2 ,  or 
k 

(ii) G is a sum ~ L k of non-singular rational curves Li, with k > 1, 1,2o = - 4, 
i = 0  

D L o = 2  , and L2~ = . - 2  for l<_i<k. 
I f  S is of  type I V b - 2 ,  then LKI has a unique fixed component F which is a non- 

singular rational curve with F 2 =  - 2 .  In this case, 
(iii) G = F + L o where L o is a non-singular rational curve with L2o = - 4, and FL  o 

= D L o = 2 ,  or 
k 

(iv) G = F + ~ L~ with k >= 1, where the L~ are non-singular rational curves with 
i=O 

/,20 = L ~ =  - 3 ,  DL o = DLk= 1, and L] = - 2 ,  DL,=O for 1 < i < k -  I. 
In the cases (ii) and (iv), the curves form the configurations whose dual graphs are 

as follows: 

!ii) 

? 

6 

(iv) 

Lop 

4 '  F t ! 
I 
, 

6 

These can be proved by examining the possible singularities of the branch locus 
given in w 6. 

Proof of  Theorem 10.4. Let p: Se ~ D be a 1-parameter family of deformations of S 
= p -  1 (0), where D is a small disc centered at 0 ~ .  In view of Theorem 10.1, we may 
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assume that S is of type IV b. We suppose that the general fibres S t = p -  1 (t) are not of 
type I. Then, the canonical images of S t form a fiat family of quadrics in IP ~ (see 
Lemma 8.7). Therefore, we can find a basis {q~o(t), ..., ~o3(t)} of H~ ~)(Kt)) 4 such 
that 

q~2 (t) 2 = q~o(t) r (t) + at(t) ep 3 (t) 2, 

where at(t) is a holomorphic function in t with at(0)= 0. 
First suppose that at(t) is identically 0. In this case, g = ~0o/~02 = q~2/~01 defines a 

meromorphic function on ~e. We write the divisor (g) in the form ~ - ~1, where 
and ~1 are effective divisors without common component on 99. Furthermore,  
there exists an effective divisor ff on ~ such that 

( q 7 o ) = 2 ~ + ~  , ( r  ( q ~ 2 ) = ~ + ~ 1 + ~  (10.2) 

(cf. [Q], p. 46). The restrictions ~ls  and ~llS may have some common components. 
So we express them as 

~ I s = D + C ,  ~ l l s = D I + C ,  

where D and D 1 have no common component. By construction, IDI is the unique 
pencil of genus 2 on S. Moreover, it follows that 2 C + ~ls coincides with the unique 
divisor G in I K -  2 D I- But, by Lemma 10.3, G has no multiple component.  Hence 
IDI extends to pencils on S t. Since we have assumed at(t) = 0, this implies that each S t 
is of type IVb or V. To exclude the second possibility, we consider the family {G,} 
= {ffls,} of divisors on S t. As remarked above, G O has no multiple component. 
Hence neither Gt has one, provided I tl is sufficiently small. But, if S t is of type V, then 
A o is in the branch locus. Hence, Gt contains a double component. This proves that 
S t is not of type V, and settles the case when at(t)=0. 

Next suppose that at(t) is not identically 0. In this case, taking a square root  of t, 
we may assume that at(t) is of the form fl(t) 2. Then we have two meromorphic 
functions 

~0 0 (p2 - -  ]~ (-~3 ~0 0 (p 2 "[" fl (p 3 g = , h = = (10.3) 
q,2+fl~03 ~ol ~02-fl~03 ~01 

on ~ We write (g)= ~ -  ~x and (h)= ~ ' - ~  as above. Then we can write 

(~00) = ~ + f~l, (q~ + /~  q~ = ~ 1  + ~1 ,  

( r  (q,1)=~1 + ~ 2  . 

By (10.3), we have 

(g) + (h) = (q~o) - (cp 1) --- (~  - ~ 1 )  + (~1 - @z). 

Hence, we have f~l-f~2 = ~ ' - ~ ,  and we can write 

~1 = ~ ' + ~ 0 ,  f ~ 2 = ~ + @ o  

4 K t denotes the canonical bundle of St 
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with an effective divisor f~o. Finally, we get 

(~Oo)=~ + ~ ' + ~ o ,  

We write as before 

~ls = D  + C, 
~Is= D' + C ', 

(~02 + / ~ 3 )  = ~1 + ~'  + fgo, 
(~01) = ~ t  -~- ~ -{-- ~ 0 . 

(10.4) 

~x t s=Dt  + C, 

~ IS = D~ + C'. 

Then IDI and ID'l both coincide with the unique pencil of genus 2 on S. Hence, it 
follows that C + C ' +  ~ols coincides with G ~ I K -  2 D I. 

We now suppose that a general member S t is not of type I nor IV. Then, since we 
have assumed ~(t) ~0,  S t is necessarily of type IIIa. This implies that IDI + C and ID[ 
+ C' both extend to pencils of genus 3 with one base point on S t. Therefore, we have 

K(D + C) = K(D + C') = 3, 

(D + C) 2 = (D + C') 2 = 1. 

The first line implies K C = KC'  = 1. By Lemma 10.3, this is possible only in the case 
(iv). But then we have DC = 1 and C2= - 3 ,  which contradicts the above second 
line. Q.E.D. 

Proof of Theorem 10.5. The assertions can be proved by the same method as in the 
proof  of [Q], Proposition 2. 

Remark. If we apply the construction of Theorem 10.2 to a surface of type IV b -  2, 
we obtain a family of surfaces of type I V a -  1 which specialize to a surface of 
type IVb - 2. 

w Deformations of Surfaces of Type V 

In this section we shall prove the following three theorems concerning the 
deformations of surfaces of type V. 

Theorem 11.1. Surfaces of type V - 1  and V - 2  are specializations of surfaces of 
type I I Ia  and IIIb, respectively. 

Theorem 11.2. A surface of type V - 1 is not a specialization of surfaces of type IV. 

Theorem 11.3. A surface of type V - 2 is a specialization of surfaces of type V - 1. 

Proof of Theorem l'l.1. We recall that a surface of type III is birationally 
equivalent to a double covering of IP 2 with branch locus of degree 10 which has two 
2-fold triple points or a 4-fold triple point (see w Remarks 2 and 4). On the other 
hand, a surface of type V is birationally equivalent to a double covering of ~4 with 
branch locus B in 16 A 0 + 20 FI which has the same singularities as above. This can 
be seen as follows. First, it is birationally equivalent to a double covering of Z2 as in 
w Then, we apply the elementary transformations at the two singular points on 
Ao of the branch locus. 
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Using these facts, we can construct, by the same method as in Lemma 4.4 in 
Part I, a family in which surfaces of type IIIa  (or IIIb) specialize to a surface of 
type V -  1 (or V -  2). Q.E.D. 

Before starting the proof of Theorem 11.2, we prepare with the following 
lemma. 

Lemma 11.1. Let S be a surface of type V - 1, [D[ the unique pencil of genus 2 on S, 
and let G be the unique divisor in [K-2D[ .  Then, G contains a unique double 
component A, which is a non-singular rational curve with A 2 = - 2 ,  and two 
components L o and E o which satisfy KL  o = K E  o = 1. Other components, if  any, are 
non-singular rational curves with self-intersection number - 2 .  They form the 
configuration whose dual graph is as follows. 

0 

L'o~ l - ~  

Moreover, .4 is the unique component of G which intersects D. 

This lemma, like Lemma 10.3, can be proved by examining the singularities 
of the branch locus. Here A is the unique component over do, and, in the generic 
case, L o and E o are elliptic curves with L 2 o = E 2 = -  1, and there are no other 
components. The above notation for the curves on S will be used in the following. 

Proof of Theorem 11.2. Let p: ~ -} D be a 1-parameter family of deformations of S 
= p -  1(0) of type V - 1, and suppose that a general member S t = p -  1(0 is of type IV. 
Since ]KI has no fixed component, S t is of type I V a - 1  or I V b - 1 .  Hence, the 
canonical system ]Kt[ of S t has two base points. Therefore, we can consider the 
family g obtained from ~ by blowing up the locus of base points, and we have a 
holomorphic map ~: ~ - }  IP a x D, which induces the canonical map on each fibre. 
By Lemma 8.7, we can find a basis {g0o(t), ..., g0a(t)} of H~ •(Kt) ) such that 

r =gOo(t)rpl(t)+~(t)~Pa(t) 2, ~(0)=0. 

First suppose that ~(t) =0. Then, a pencil of the form [D[ + C extends to a pencil 
[Dtl on St (cf. proof of Theorem 10.4). If C 4=0, C is the unique double component A 
of G in Lemma 11.1. Since S, is of type IVb - 1, [D,I is a pencil of genus 2. Hence, in 
(10.2), the divisor (gls, is connected for t4=0, and is disconnected for t=0 .  This 
contradiction proves that C=O, i.e. the pencil [D[ extends to ]Dtl. 

From this fact, we readily infer that # can be lifted to ~: # - - ,  ~2 x D. Now let 
I ~ ' ~  2 be the blowing up of four quadruple points of the branch locus of S ~ 2  
(Theorem 6.1). Then, we can prove that ~ can be lifted to 5 ~ - - .~  extending the 
natural map h: S ~  W, where q: ~ / ' ~ D  is a family of deformations of ~.  In fact, by 
[8], II, Proposition 7.1, it suffices to prove that the natural map 

H~ ~f~' '~/~2) ~ H ~  ~, h* "~'a'/~2) 
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is surjective. This can be proved to be bijective by a method similar to [Q], 
Lemma 13. 

In this way, we get a family of maps h t: St-* ~ = q -  ~ (t) of degree 2. We note that 
the branch locus of h has no infinitely near triple points. Hence, it follows that the 
branch loci B t of the h t form a flat family (see Part I, p. 369). But, while B o has 4 
connected components, Bt, t # 0  has three, which is a contradiction. 

Next suppose that at(t) is not identically 0. Then the general fibres are of 
type IV a -  1. By the second half of the proof  of Theorem 10.4, we may assume that 
two pencils ID[ + C and ID[ + C' extend to those on S r Since [Kt} has no fixed 
component,  we have C + C ' =  G (cf. (10.4)). Moreover, since a generic member S t is 
of type IVa, we may assume that IDI + C extends to a pencil ID, t of genus 2. This 
implies that K C = 0 and K C '=  2. Suppose C 4: 0. Then, C consists of non-singular 
rational curves with self-intersection number - 2. If D C = 0, then from (D + C) z = O, 
we have C2=0,  and hence C=0 ,  by Hodge's index theorem. So we have D C >  1. 
Similarly, D C ' >  1. Combined with D G = 2 ,  these imply D C = D C ' =  1. Then from 
(D+ C)2=0, we get C 2 = - 2 .  By Lemma 11.1, 

C =A +(rational curves), 

and the equality K C = 0 implies that this is a disjoint sum. Hence, using C 2 = A 2 = 
- 2, we conclude C = A. 

We now want to apply an elementary operation to A (see Part II, Appendix B). 
For  this purpose, we need to show that A does not extend to a family {At} of divisors 
on S t. Suppose A extends. Then, A t is the rational curve on S t with K t A~ = 0, and is 
away from the base points of tKtt. Hence A t is mapped into a point by the 
canonical map OK, on S t. This contradicts the equality DtA t = 1. 

By the elementary operation, we may assume IDI itself extends to IDtl. Then, we 
have 

(~00)~---~+~' ,  ( q ) 2 + f l ( ~ 3 ) = ~ l + ~  ', (11.1) 

where ~ and ~1 are disjoint (cf. (10.4)). Recall that the image of O: ~ - - , IP  3 is 
defined by the equation 

(Z2 +/~Z3) (Z2 - /~ Z3) = Z o Z~, 

for a system of homogeneous coordinates (Z0, Zt,  Z2, Zs) on IP a. By blowing up 
the curve Z o = Z  2 + f l Z  a =0, we obtain a family ~ of deformations of 2~ 2. F rom 
(11.1),-it follows that the ideal sheaf generated by ~0 o and ~02+fltp3 on 5 ~ is 
invertible. Therefore, the map �9 factors through ~ This leads us to a contradiction 
as before. Q.E.D. 

Proo f  o f  Theorem 11.3. A surface of type V - 2  is birationally equivalent to a 
double covering of 2~ 2 such that its branch locus has two 2-fold triple points on a 
fibre, one of them being on A o. By displacing the other triple point out of the fibre, 
we obtain a family of double coverings of Z 2 (cf. Theorem 10.2). Applying 
elementary transformations, we see that the general members are of type V 
- 1 .  Q.E.D. 
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w 12. Simply-Connectedness 

Theorem 12.1. Any minimal algebraic surface S with pg = 4 ,  q = 0 ,  and c 2 = 6 is simply 
connected. 

Proof. I t  suffices to p rove  the theorem,  for instance,  for surfaces of  type  Ib ,  II,  and  
I I I  a. F i rs t ,  it  can  be  easily p r o v e d  tha t  S has  no  finite non- t r iv ia l  un rami f i ed  
cover ing  (see I-3], p. 212). Hence ,  it  is enough  to show tha t  the  fundamen ta l  g r o u p  
nt (S)  is abel ian.  F o r  surfaces of  type  I b  and  I l i a ,  this last  fact fol lows f rom [22],  
P r o p o s i t i o n  3 (cf. the  p r o o f  of  T h e o r e m  3.4 in Par t  I). The  p r o o f  for surfaces of  
type  II  is as follows. Since they have  one and  the same d e f o r m a t i o n  type,  we m a y  
assume,  in (4.1), tha t  c t = f l = 0  and  tha t  the d iv isor  y = 0  is non-s ingular .  Then  the  
b r anch  locus  B of  S - - , Z  2 is se t - theore t ica l ly  def ined by ~ ~ = 0 .  By the resul t  c i ted 
above,  the fundamen ta l  g roup  of  Z 2 - B  is abel ian.  This  impl ies  tha t  ~1(S) is 
abel ian.  Q.E.D.  
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