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1. Introduction

In this paper we investigate how far M. Artin’s Approximation Theorems [2, 3]
can be extended to the case of differential equations. We also obtain related
decidability and undecidability results. Artin {3] proved

Theorem 1.1. Let K be any field, and let K[[x,, ..., x,1] be the ring of formal power
series over K in the variables x4, ..., x,. Let Y. be a system of polynomial equations
over K[x,, ..., x,] in the unknowns y=(y,, ..., V-

(i) (Approximation Theorem.) If ¥ has a solution ye K[[x,,...,x,]] then it
also has a solution ye K[[x,, ..., x,]] which is algebraic over K[x,, ...,x,] and
which agrees with the original solution y to any specified order.

(i) (Strong Approximation) If for every ie€N, 3 has a solution in
K{[xy,....,x,]]1 modulo the ideal (x,,...,x,), then 3 has a solution in
K{[xy,...,x,]1]-

(iii) (Existence of an approximation function.) For every a € N there exists f(a)
€N with the following property. If Y. has a solution j in K[[x,,...,%,]]
mod(x,,...,x,)"® then Y has a solution y in K[[x,,...,x,]] with y
=jmod(x,, ..., x,)"

In the special case n= 1, this theorem was first obtained by Greenberg [11] (see
also Birch and McCann [7]). For more about strong approximation theorems see
(6] and [10].

_In Sect. 2 we consider algebraic ordinary differential equations (ADE’s) (i.e.
dlff?rential equations which are polynomial equations in x, y;, ..., y, and the
derivatives yi of the y’s) and we obtain analogues of Theorem 1.1 (for n=1):If K
has characteristic zero, then Theorem 1.1(i) (for n= 1) remains valid for systems of
ADEs, if we replace “algebraic” by “differentially algebraic” (see Theorem 2.1). A
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power series (in one variable) is called differentially algebraic if it satisfies some
nontrivial ADE in one unknown. Much is known about differentially algebraic
power series, e.g. Maillet [16] and Popken [20] (see also Mahler [15]) gave
bounds on the rate of growth of the coefficients a, of such a power series, viz
la,| < c (n!)2 (See also the recent results of Sibuya and Sperber [27]).

If K is an algebraically closed field, a real closed field, or a field which is
henselian with respect to a discrete valuation (e.g. the field of p-adic numbers Q,),
and if K has characteristic zero, then the Strong Approximation Theorem 1.1(ij)
(for n=1) remains valid for systems of ADE’s (see Theorem 2.10). In 2.10 we prove
this Strong Approximation Theorem by a method (ultraproducts) which is not
effective, but in Sect. 3 we give an effective proof, which is however longer and
much more tedious. In 2.12 we show that the Strong Approximation Theorem for
ADEFE’s is not true when K =IR(r). (We expect it is not true for K =@, but have not
been able to prove this). Theorem 1.1(iii) (for n= 1) is false for ADE’s, but a weaker
version (Theorem 2.14) remains true for ADE’s, if K=R, C or Q,.

In Sect. 3 we use the results of Sect. 2 to give an algorithm (Theorem 3.1) for
deciding when a system 3. of ADE’s over Q[x] has a solution in C[[x]], or
R[[x]], or @,[[x]]. For this, we show how to compute a € N such that > hasa
solution if and only if it has a solution mod x?. Note that the existence of a solution
of 3" in R[[x]] is equivalent with the existence of a solution which is a C* function
in a neighborhood of 0. {This follows easily from Theorem 10.1 of Malgrange
[17].) Hence there is an algorithm for deciding when a system of ADE’s has a C°
solution near x=0. However (Proposition 3.3}, there do not exist algorithms for
deciding when a system of ADE’s has a nonzero solution, or a convergent
solution in C[[x]] (or R[{x]]).

In Sect. 4 we present some results about algebraic partial differential equations
which show, inter alia, that most of the above results do not extend to this case.
From the above mentioned Theorem 2.1 it follows that if a system of ADE’s hasa
unique power series solution y=(y,, ..., y,,) then the y; are differentially algebraic.
However, in the case of partial differential equations we obtain the following result
(Theorem 4.2): For every computable function f:IN—Q the power series
y1= Y. f(n)x" occurs as part of the unique solution (y,, ..., y,) e C[[x,, ..., x,J] of

some system of algebraic partial differential equations. (The converse is also true -
see Theorem 4.1.) We also show (Theorem 4.11) that there does not exist an
algorithm to decide if a linear partial differential equation (in one dependent
variable) has a solution in C[[x,, ..., x,]]. We also show (Theorem 4.12) that there
is a system of linear partial differential equations which has infinitely many power
series solutions over @ but no computable solutions. (For other results of
differential equations with no computable solutions see [1, 21, 22].) For algebraic
partial differential equations the Strong Approximation Theorem 1.1(ii) holds over
€ but not over R or @ (the algebraic closure of Q) - see 4.10 and 4.7 below.

In this paper we only consider power series over a field of characteristic zero. If
K is a perfect field of characteristic p 0 then the solvability in K[[x]] of a system
of ADE’s can be reduced to the solvability of a system of polynomial equations, by
writing the unknowns y as y=2z5+xz5+...+x? 'z8, where the z; are ne¥
unknowns.
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2. Approximation Theorems for Differential Equations

In this section K is a field of characteristic zero, K(x) is the field of rational
functions over K, and K[[x]] is the ring of formal power series over K, in one
variable x. Thus K[[x]] is a differential ring with derivation trivial on K, and
x’=1. Let F be a differential freld, R a differential subring of F, and j an element of
F. We say that y is differentially algebraic over R if there exists a non-zero
differential polynomial over R in one variable y, which vanishes on j (see
Kaplansky [13].) (If R=Q[x], then j is called differentially algebraic.) We will
prove

Theorem 2.1 (Approximation Theorem). Let R be a differential subring of K[[x]],
and let Y. be a set of differential polynomials in y,, ..., y,, over R. Suppose 3, ...,V
eK[[x]] is a solution of 3, =0. Let « € IN. Then there exist ¥, ..., V€ K[[x]]
which are differentially algebraic over R, such that

(71, .., V) is a solution of 3_=0
F1=V1seees I = Ypmod x*.

Remark. From Ritt [23] and Seidenberg [26] it follows that if a system of algebraic
differential equations has a solution in some differential field extension then it hasa
differentially algebraic solution (but not necessarily a power series solution).
The key lemma in proving the algebraic analogue of Theorem 2.1 (i.e.
Greenberg’s theorem [11]) is the Hensel-Rychlik lemma: If p(x, y) e K[[x]] [¥]

d
and ye K[[x]] satisfies p(x, 7)=0 modx?**! and 6—p(x, 7)%£0 modx**1, then
y

there exists y € K[[x]] such that p(x, y)=0and y= jmodx**'. Lemma 2.3 below
gives a generalization of the Hensel-Rychlik lemma to the differential case. The
proof of Lemma 2.3 is based on a result of Hurwitz [12], that if j=Y a,x'is a

. .. OP
solution to P(x,y,y, ..., y¥™)=0 with p ) (%, 7,75 -oos 7™)#0 then the a,, for i
y

large enough, are determined by a recursion formula. Hurwitz used this recursion
formula to prove that X
z

x (n")!
is not differentially algebraic. The key lemma in Hurwitz [12] is the following

Lf?mma 2.2. Let P(x,y,y, ..., y™) be a differential polynomial over K[[x]] in the
differential indeterminate y, of order n. Let ke N be fixed. Then

P(2k+2)=y(n+2k+2)_f;‘+y("+2k+ l)fn+1 +y(n+2k)fn+2
+"'+y(n+k+2)fn+k+fn+k+19 (1)

Where the J; are differential polynomials in y of order at most j, for j=n,
n+1,. . n4k+1, and

n

oP

h= 5 @)

(Notice that Suvts Jutas ... depend upon k.)
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Let ge N, then
P(2k+2+q)=y(n+2k+2+q)f;‘+y(n+2k+1+q)[.f;l+1+qf;'/]

+... +y(n+2k+2+q_k)[fwk‘*‘an/Mﬂ

+...+ <i> n(k)] +hn+k+q+19 (3)

where h, ... is a differential polynomial in y of order at most n+k+q+1.
Proof. We have
P'=y"Vf +g,,

where g, is a differential polynomial in y of order at most n. Formula (1) is easily
proved by induction on k. Formula (3) is obtained by differentiating (1) g times,
and using Leibniz’s rule. Q.E.D.

Lemma 2.3. Let P(x,y,y, ..., y™) be a differential polynomial over K[[x]] in the
differential indeterminate y, of order n. Let je K[[x]], and suppose

oP
(X, T, 7y s T =X+ X x L, M
ay™
with ¢y +0.
There exists a least r e N, 0<r Lk, such that, with the notation of Lemma 2.2,
4 q r o e
|:f;n+r+qf;l+r—1+"'+ <r> n( )](O,y(O),y(O),) (2)

is a nonzero polynomial in q.
Let ye N be bigger than any root qe N of polynomial (2). Suppose

PO, 7,75 ..., 7™)=0mod x?k*2+7+r €)
then there exists € K[[x]], such that
F=jmodx"t2+t 24y @)
and
P(x,7,7,....,7")=0. )
Proof. From (1) and formula (2) in Lemma 2.2, it follows that
13900, 70), 7(0), ...)=co*0.

Thus polynomial (2) is non-zero for'r= k, from this follows the existence of r. WF
will write 7§ for 79(0) and 3 for $/(0). From (2) and formula (3) in Lemma 2.2,
follows for all e K[[x]], with 7§’ = 7§ for j<n+r, that

PEKE2E(0, Fo, o, - ) =5 T2 27170 4(0, Fo, Fos -+ 9)
+Hn+2k+1+q—r(O’J709j.}6a"')9 (6)
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where
’ 7 q r
A(x,y,y,...,q)=f,,+,+qf,,+,_1+...+<r> ", )

and H,,54414+4-- 18 a differential polynomial in y of order at most
n+2k+1+g—r. We determine ye K[[x]] by

Yo=JYo
Yo="¥o
T)(Orl-i‘—2k+1+y):-)781+2k+1+y) (8)
and,
= _Hn —r0a=,=la-~~
y(on+2k+2+q-r): +2k+1—_:fq=/( Yo Yo ), (9)
A(OaYO’yOs ---,Q)
forgzy+r.
Notice that (8) implies (4), and that (9) and (6) imply
PEEY2Y(0, 5, 5, .-.) =0, for gq=y+r. (10)
From (3) and (4) it follows that
P, 7,7, ....,7)=0modx2**2+7,
hence
PY0, 5,75, ...)=0, for j=0,1,2,...,2k+1+7. (11

From (6) and (8) it follows for g=7, y+1, ...,y +r—1 that
P(2k+2+q)(0’70a%"")
==((;I+2k+2+q—r)A(O’?0’)=]E)’""q)+Hn+2k+1+q—r(09)=)O’.70’"')
=)78'+2"+2+“"’A(0,J70,)73,...,q)+H,.+2k+1+q_,(0,)70,}76,..-)
(because n+2k+2+qg—r<n+2Zk+1+7y)

=P(2k+2+q)(09.)70’)72)"“)‘

Thus from (3) it now follows that
PCk*2*0(0, 50, Vo, ..)=0, for g=v,y+1,...,7+r—1. (12)

Thus from (11), (12) and (10), (5) follows.

Lemma 24, Lot neNN, and
P(Yy, Yi,..., V) e K[[x]] [Yo, ..., Y.
Letjek [[x1] be a solution of the differential equation

PG, 7, ..., 7™ =0. (1)
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Suppose
oP
(s T 0. 2
o, 3,55 7) * (2)
Let a € N. Then there exists f € N, such that for all
ﬁ(YOa Yla (Y} Yn)GK[[X,]] [YO’ erey }fn] ’
with
P=Pmodx*,
there exists Ve K[[x]] such that
P3,7,....7™)=0,
y=jymodx*.
Proof. From (2) it follows that there exists k€ N such that

oP
oy,

(x9)77}_}/a---,y(n))zcxk+01xk+1+... >

with ¢=+0.
If fzk+1, then
oP
0y,
Let £, fisis.us fos s+ be Obtained from P, in the same way that f, ..., f, .., ar
obtained from P in Lemma 2.2.
If =3k +3, then

Ji2,40,50), 57(0), ..) = £2,(0, 70), 7(0), ...} , ©
for u=0,1,...,k, and 1=0,1,.. .,k
Let r and y 2« be as in Lemma 2.3. From (3) it follows that this r and y also
satisfy the data of Lemma 2.3 if we replace P by P.
If $=2k+2+7y+r, then (1) implies
P(x,3,7,...,7)=0modx?*+2+r+r

Now apply Lemma 2.3 with P replaced by P. Q.E.D.

(xaf,}_’/,--.,)7("))=6xk+....

The following lemma follows immediately from Ritt [23, p. 6], but we give a self
contained proof. (A different elimination result is given in Rubel [25].) First we
need some notation. Let 3" be a set of differential polynomials in y,, ..., y,, over?
differential field L of characteristic 0. Let j,, ..., J,, be a solution of 3" =0. (By
solution we mean any solution in any differential field extension of L.) Let S be the
differential ring generated by j,, ..., j,._, over L, and suppose j,, is differentially
algebraic over §. Let

Py Vo> -0 V)

be a non-zero differential polynomial over S in y,, of lowest rank vanishing on jn
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(i.e. lowest possible order n, and lowest degree in y). Let n be the order of P, and d
the degree of P in y®. Let

Fi, Vi eoos Vs -5 V)
be a differential polynomial over Lin y,, ..., y,, of order n in y,, and of degree d in
¥ such that
F(F1s 71 -vs I 15 T 15 -0 Vs Yous w+5 Yo ) = Pns -5 V) -
Write
Fi, b1 s V) =AoW1s - ¥ ) )
+ A1 Y DO (1)

with A4y, A,, ... differential polynomials of order less than n in y,,. Then from the
minimality of P we have

oF

m(fl,-«-,iﬁ'))*o and  Ao(Jy, ... Ju )*0. @

Let 3" be the set of all differential polynomialsin y,, ..., y,,—, over L vanishing on
Visoo> Vm—1- Let Jq, ..., J,, be any solution of

2'=0, 3
F=0, C)
OF
0 +0, 5)
A°+0. (6)

Lemma 2.5. With the above notation 7, ..., ¥, is also a solution of Y.
Proof. [We write 7 for (§;, 71, -..» 72» P2s +++» Pms Vs ---), and similarly for 7.] Let

G(yls ylls s Vms oes ygl))
be a differential polynomial over L in y,, ..., y,,, of order l in y,,. Suppose that G
€3
Tbe following arguments apply to every (7,, ..., 7,,) satisfying (3), (4), (5), and (6).
Differentiating (4) we obtain

oF

7$+1)W(?)=H(71’--'svmw“a?g:))a (7)
Ym

Wwhere H is a differential polynomial in V15 ---» ¥ Over L of order at most n in y,,.
{And the same H works for all y satisfying (3)-(6)].
By substituting (7) several times in G, we obtain

oF 5 ’ = s s 5 5 5(n)
a_ym(.)_/) G(ym”ym)zM(yl’yls’ynv,ym) (8)

for Some 4€ N and some differential polynomial M over Lin y,, ..., y,, of order at
™Most n in y,. [And the same M works for all ¥ satisfying (3)6).]
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From (1) and (4) it follows that

AFps s T DO == A4,Frs . T I T = ©)
By substituting (9) several times into M we get
(AO(}:l,- )ysr': 1)))YM(7D- 9y$r':)) W(.v—_la-'w?s:))a (10)

for some y € N and some differential polynomial W over Lin y,, ..., y,, of order in
¥,. at most n and of degree in y less than d. (And the same W works for all j
satisfying (3)6)). From (8) and (10) it now follows that

(a @ @) (AP GG =W (). (11

Now y satisfies (3)}6), hence

F N )
<W(y)> (4G =W(P) . (i)

Since Ge ¥ and 3 (¥)=0, we obtain G(y)=0, and by (11"
W(y)=0. (12)

Since Wiy, oo 79 1) Vs - YD) is a differential polynomial in y, over S,
vanishing on ,,, of smaller rank than P, we obtain (by the minimality of P) that

W()-]l, (S J-;grll)—ly ym9 - syg:))

is identically zero as a polynomial in y,, y,., ..., y. Thus we can write

W1, yw)= ZVU(yl’- SV DORY

with V;;e>.
Thus (3) implies now that
W(3)=0.
Hence, from (5), (6), and (11) it follows that
G(3)=0.

Lemma 2.6. Let K C L be differential fields. Suppose z,, ..., z,,€ L are differentially
algebraic over K. Let F be the differential field generated by Zyyennszy over K If
Zm+1 € L is differentially algebraic over F, then z,,. . is also differentzally algebraic
over K.

Proof. It is easy to verify that z € L is differentially algebraic over K if and only i
TrdegyK(z,z',2",2",...)< 0.
Thus we obtain
TrdeggF <oo, TrdegpF(z, s 1, Zpr1s.-) <0,
Hence
Trdegg K(z,mi1sZms1s-..) <O.
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Proof of Theorem 2.1. We prove Theorem 2.1 by induction on m. The case m=01is
trivial. We may suppose that Y contains a non-zero polynomial, otherwise the
theorem is trivial. Then, by renumbering the y,, ..., y,,, we may suppose that y,, is
differentially algebraic over S (S defined as in Lemma 2.5). We now use the result
and the notation of Lemma 2.5, with L the fraction field of R. Without loss of
generality we may suppose that aeN is big enough so that we have for all
=01 - ) € K[[x]] that

oF
7 =ymodx® implies 30 () +0 and A,(MN+0).
Vm

Let  be asin Lemma 2.4 (for j replaced by 7,,). Choose §’= a big enough such that
we have for all y,, ..., ¥, € K[[x]]

5)_—15,)71’ ---’_)=)m—1E_)7m—1mdeﬂ/
implies

P(Yo Y, s Y)=F(Fy, ooy Fue gy ooy Yoo Yo, ..o, Yy modx?, in K[[x11[ Yo, ..., Y.].

By the induction hypothesis there exist y, ..., V,.—, € K[[x]], which are differenti-
ally algebraic over R, and such that

Vis-+» Vm—1 18 a solution of ¥’
V1=P15 s Im 1 =Jm— g modx?.

From Lemma 2.4, it now follows that there exist 3,,€ K[[x]] such that

F(?l, -'-97m—1’ ---’7m57'ma aj:)g:))zo
V=Y, modx*.

From the result of Lemma 2.5 it follows now that y,, ..., y,,is a solution of 3". From
Lemma 2.6 it follows that ¥,, is differentially algebraic over R.

Theorem 2.7. Let K CL be fields of characteristic zero satisfying one of the three
following conditions.

(1) K and L are algebraically closed fields

(2) K and L are real closed fields

(3) K is Henselian with respect to a discrete valuation, (i.e. K is the fraction
field of a Henselian discrete valuation ring) and every finite system of polynomial
equations over K, which has a solution in L, also has a solution in K.

Let Y be a set of differential polynomialsin y,, ..., y,, over K[[x]]. If 3. =0, has
a solution y,, ..., y.€ L[[x]], then 3 =0 also has a solution ¥, ..., ¥, € K[[x]].

Remark. Case (3) applies when L is the field of p-adic numbers, Q,, and K is the
algebraic closure of @ in Q,[11].

p roof. From Theorem 2.1 it follows that we may suppose that j,,...,J, are
differentially algebraic over K[[x]]. Let P(x,,¥,...,y™) be a differential

. . P
Polynomial over K[[x]] of lowest rank vanishing on 7,. Hence == (% V1, V15 --0)
+0. Let ay

_ a . .
Ji= i—"x‘, with aq;eL.

i

iMs
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From formula (6) in Lemma 2.3 it follows that

g = H; y(ag,ay,0;,...,8;-1)
' R()

for all i bigger than some 5 € N, where R(i) is a polynomial in i with coefficients in
L, and the H;_, are polynomialsin ay, a,, ..., a;_ , with coefficients in K. (We have
R@@) =0, for i>n).

Thus we obtain that there exists a subfield L, of L which is finitely generated
over K, such that

, “

)71’ cers PmeLl[[x]] :

However, we have even more: from the special form of the denominator of (4) it
follows that there exist a finite number of elements ¢, ...,¢, € L such that the
coefficients of y,, ..., 7, lie in

1 1 1
Klcyy s Coy— 35 iy oen |,
W oW, w;

where the w; are polynomials over Q of bounded degree in the 4, ..., c,.

Our system of differential equations 3 =0, reduces in the obvious way to a
system of equations and inequations in the cy, ..., ¢,. Thus the theorem follows at
once from the following lemma.

Lemma 2.8. Let K and L be as in Theorem 2.7, satisfying condition (1), (2) or (3). Let
F(xy,...,x,)€K[xy, ..., %), for ieN, and let W(xy,...,x)eQ[x,,...,x,], for
jeN. Suppose there exists De N, such that degW(x,,...,x,)<D for all jeN.

Let cy,...,c,€ L, be such that Fi(cy, ...,c,)=0, Wjcy, ....¢) %0, foralli,jeN.
Thenthereexistb,, ...,b,€ K suchthat Fy(by, ..., b,)=0, W(b,, ..., b,) +0 foralli,j
eN.

Proof. Since K[x, ..., x,] is a Noetherian ring, we may suppose that the set of the
F, is finite. When the set of the W, is also finite, then the Lemma is true, because
every finite system of polynomial equations over K which has a solution in L also
has a solution in K (see e.g. Lang [14, Theorem 5, p. 278]), and because every
inequality a+0 is equivalent with 3b: ab=1. By taking more polynomials F;, w¢
may suppose that the F; generate the prime ideal I of all polynomials over K
vanishing on ¢, ..., c,. Since the singular locus of a variety, has codimension at
least one, we have that (c,, ..., ¢,) is a nonsingular point of the K-variety V defined
by I. Thus we may suppose that

oF,
det(———') €1y ) %0,
i=1,...,h

Ox
k=d+1,...,r

where d is the Krull dimension of ¥ and h=r—d. Thus there exist a,, ...,a,€ K,

OF; .
suchthat Fy(a,, ...,a,)=0forall i, and det (a—l> (a4, ...,a,)*%0. Hence(ay, ..., 4,)1
Xk

a nonsingular K-rational point on V. The lemma now follows from the following
Lemma 2.9, which we will also need in Sect. 3.
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Lemma 2.9. Let K be asin Theorem 2.7 and let K , be a finitely generated subfield of
K. Let I beaprimeideal of Ko[x,,...,x,], and let W(x,, ..., x,),j € N be a collection
of polynomials over K, of bounded degree. Let

V={(xy,...,x,) € K: I vanishes on (x,, ...,x,)},

where K is the algebraic closure of K. Suppose that for every j there exists
(X1, .- X,) € V such that W(x,, ...,x,)+0. Suppose that there exists a nonsingular
point (ay, ..., a,) on V which is rational over K. Then there exists a K-rational point
(bys...»b,) on V such that Wib,,...,b,)*0 for all je N.

Proof. To simplify the argument we will suppose in case (1) that K L€ and in case
(2) that KCR. This hypothesis can be eliminated by using the elementary
equivalence of all algebraically closed fields of characteristic 0, and all real closed
fields. We may suppose that

OF;
det(a ') (a;,...,a)%0, §))

xk i=1,...,h
k=d+1,...,r

where F eI, for i=1, ..., h and where d is the Krull dimension of ¥ and h=r—d.
We claim that there exists ¢€ R, ¢>0, such that for all b,,...,b,€ K, with
lay—byl <e for k=1, ...,d, there exist b, ,...,b,€ K with Fy(b,,...,b,)=0, for
i=1,...,h. [The absolute value || is the usual one in case (1) or (2) and the one
associated to the valuation in case (3)]. Indeed, in case (1) or (2), the implicit
function theorem implies that there exists b, (, ..., b, & €, respectively € R, with
the required property. But this implies that we can find b, |, ..., b, € K with the
required property. In case (3) we use the Hensel-Rychlik Lemma [10, Sect. 3]
instead of the implicit function theorem. This finishes the proof of the claim. It is
well known (see e.g. [19, p. 342]) that (1) implies F,, ..., F, generate the ideal I
localised at (x, —a,, ..., x,—a,). Hence, we conclude that if (by, ..., b)) € K is close

enough to{ay, ..., a), then there exist by, 4, ..., b, € K such that (b,, ..., b,y e V. We
have that

def =4 o
S;={(xg, .., x)eK:3Ix;44,....,x, €K

(x1,...,x)eV and Wfx,,...,x)=0}

1S a constructible set (in the sense of algebraic geometry). By looking at the explicit
climination procedure, and by the fact that the W, have bounded degree, we see
that there exists Dy e N, such that all the S; can be defined by polynomials of degree
at most Dy, and with coefficients in K,. Moreover, no S ; contains a non-empty
Zariski-open subset of K9, because (since W;¢1) the Krull-dimension of the
Intersection of ¥ with the zero set of W, is at most d— 1.

Thus if (b,,...,b,)e ¥, and if Wib;,...,b,)=0, for some j, then there is a
nontrivial polynomial over K, in d variables, of degree at most D, which vanishes
on(b,,...,b,). Since K satisfies (1), (2) or (3), it is easy to see that for every finitely
8enerated subfield K , of K, there exists an element of K which is arbitrarily close to
Zero and which has degree larger than D, over K.
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Let K, be the field generated by a,, ..., a, over K,. Then there exist by, ..., b,
€ K which are arbitrary close to a, ..., a4, and such that every field extension in the
tower

K, CK(b))CK(by,by)C...CKy(by,.... 0y 2

has degree larger than D,

There exist by, ,...,b,€ K such that (b,,...,b,)e V. If W(b,,...,b,)=0, for
some j, then there is a nontrivial polynomial over K, of degree at most D, which
vanishes on (by, ..., b,). But this would contradict (2).

Theorem 2.10 (Strong Approximation). Let K be an algebraically closed or a real
closed field, or a field which is Henselian with respect to a discrete valuation (e.g.
K=Q,). Suppose that K has characteristic zero.

Let ’ 4 4 ”
Pl(yl’yl’yh <oos Ymo Voo Vo )7 l=172’37

be differential polynomials in y,, ..., y,, over K[[x]1]. Suppose that for every ne N
there exist ¥4, ..., . € K{[x]] such that

P31, V15 eees P -y =0mod x",
then there exist y,, ..., ¥, € K[[x]] such that

Pl(?l’.}—_)/la-”’.):)m’“'):()’ l=152, .

Proof. We use the ultraproduct construction, see [6, Sect. 1]. A (longer) proof
without using the ultraproduct construction is implicit in the proof of Theorem
3.1. Let K* be the ultraproduct (H K) / D with respect to a nonprincipal ultrafilter

ieN

D on N. As in [6], there exist y,, ..., y,€ K*[[x]] such that
PiF1s s eees Vs Fows --)=0, I=1,2, ...
We now apply Theorem 2.7.
Remark 2.11. Theorem 2.10 for the case K = is trivial, because C*~C over any
countably generated subfield [6]. Thus when K =C, Theorem 2.10 remains true

for partial differential equations. However, when K =IR, Theorem 2.10 is not true
for partial differential equations (see [5] or 4.10, below).

Remark 2.12. Theorem 2.10 is not true for all fields K. Indeed let K =IR(¢). In [9] it
is shown that there exists a polynomial P € K[u, z,, ..., z,] such that forall o € K we

have
aeNe3zy, ..., z,e K P(a, 2y, ..., 2,)=0. (1)

Consider the system of differential equations
xy —(@+x)y—1=0,a'=0, @

in the differential unknowns y and «.
The solutions of (2) in K[[x]] are
o0 x'l
= ,0e K—-N.,
Y S C) (=0 (=)
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Moreover, if o € N then (2) has no solution in K[[x]], but it has a solution mod x*.
Thus the system
4 y P(a,zq,...,2,)=0,
o'=0,z7=0,...,2,=0,
xy —(a+x)y—1=0

in the differential indeterminates y, o, z,, ..., z, has no solution in K[[x]], although
it has for every n, a solution modx". Q.E.D.

Recently Sibuya and Sperber [27] have shown that if y= 3" a,x", with a,c@Q
(the algebraic closure of Q) is differentially algebraic then y has a positive v-adic
radius of convergence for every non-archimedean valuation v of ). Putting this
together with our results we get

Theorem 2.13. Let ¥ be a set of differential polynomials in y, ..., y,, over Q(x). If
2.=0 has a solution in Q,[[x]], then it also has a solution in Q,[[x]] which has a
nonzero radius of convergence (with respect to the p-adic metric).

Proof. Let K be the algebraic closure of @ in Q,. From Theorem 2.7 (and the
remark following 2.7) it follows that 3" =0 also has a solution in K[[x]]. From
Theorem 2.1 it follows that 3> =0 has a solution in K [[x]] which is differentially
algebraic over K(x), and this solution is convergent by the result of [27].

Theorem 2.14 (Existence of an Approximation Function). Let K be C, R or Q, and
let ¥ be a set of differential polynomialsin y =y, ..., y,,) over K[[x]]. For every
&€ N there exists f(x) € N with the following property: Letce R, e>0. If =3 d,x"

. . . . ’
is a solution of 3" =0 mod x*® then there exists a solution y= 3 a,x" of 3 =0 such
that n

la,—a,l<e for n=0,1,...,a. D

Proof. Suppose that the theorem is not true. Then there exists o€ N with the
f_ollowing property: For every feN there exists gge R, g4>0 and a solution
¥ p= 2. d,px" of 3 =0 mod x* such that there is no solution y = ¥ a,x" of 3" =0 with

lan—~ &gl <&y for n=0,1, ..., Let K* be the ultraproduct (H K) D with respect
ieN

1o a nonprincipal ultrafilter D on N (see [6, Sect. 1]). The sequence (Vp)pen

determines a solution y=Y a,x"e K*[[x]] of 3 =0, with 4, the equivalence class

in K* of the sequence (@np)pen- From Theorem 2.7, with L= K*, it follows that there
CXists a solution y= Y a,x"e K[[x]] of 3. =0. However even more is true: We

claim that there exists a f € N such that for every e € IR, ¢ >0 there exists a solution
V=2a,x"e K[[x]] of £ =0 such that |a,—d,sl <& for n=0,1, ..., Notice that

this contradicts our hypothesis. The proof of the claim is identical with the proof of
Theorem 2.7 - we need only adapt Lemma 2.8 as follows: Ifin Lemma 2.8, L=K*
and ¢y =(cy g)gps ... ¢, =(¢,p)pen then there exists f e N such that by, ..., b, can be
taken arbitrarily close to ¢, g» -++» Crp- Indeed, in the proof of Lemma 2.8 we can take
41=Cyp,..., a,=c,, for a suitable &N, and in Lemma 2.9 we can take b, ..., b,
arbitrarily close to e PR
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Remark 2.15. In Theorem 2.14 we cannot replace (1) by a,=d, for n=0,1, ...,2. A
counterexample follows from (2) in Remark 2.12.

3. Some Decision Problems

Theorem 3.1. Let K be C, R or Q. There exists an algorithm for deciding whether a
Sinite system of algebraic ordinary differential equations over Q[ x] has a solution in
K[[x]]. (An algebraic ordinary differential equation (ADE) over @Q[x] is an
equation P =0, where P is a differential polynomial in several variables over Q[x].)

Proof. We give an algorithm such that given such a system >, we can compute a f
€ N such that 3 has a solution in K[[x]] if and only if it has a solution mod x*. We
can consider this as a constructive proof of the Strong Approximation Theorem
2.10.

We first give an algorithm for systems 3 of the following form (1)+(2)+(3)

Ph(yl’st ""yh’ylla .._’y;’"h))z()

Py i1 Y25 ooos Voo 15 V1o oo Vi 1) =0 (1)
PVts Vs s Vo Vs s Jo) =0
and
{ordHl(ylj .'..,‘y,,,, Vi )<k 0
OTdH (V15 es Vi V15 ) S kg
and

G)

{a finite number of polynomial equations and inequations
over @ in the Taylor coefficients of y,, ..., y,,.

Here, the P; are differential polynomials over Q[x] in y,, ..., y; of order n,; in y
(thus they form a triangular system), the H, are differential polynomials over Q[x]

oP
including among others all the 6—' and the k,, ..., k, are natural numbers. By ord

ye
we mean the discrete valuation on K[[x]]. By a solution of 3" mod x# we mean a
solution in K[[x]] of (2)+(3) which satisfies (1) mod x*.

We will apply Lemma 2.3 to every P;, with the y of Lemma 2.3 replaced by y:
By running over a finite number of cases (i.e. by replacing Y by a disjunction of
bigger 3 ’s), we may suppose that for any P, the numbers k and r in Lemma 2.3 ar¢
the same for every solution in K{[x]] of (2)+(3). Let t be the vector whose
components are the Taylor coefficients of y,,...,7,€K[[x]]. Let I(4, )
€Q[q, t] be the polynomial (2) of Lemma 2.3, for P=P;.

(i) From Lemma 2.3 it follows that for every y € N we can compute f & N such
that if j,,...,7,€ K[[x]] satisfy (1) modx? and (2)+(3) and y>max{q
e N:I(g, t)=0 for some i} then (1)+(2)+(3) has a solution in K[[x]]. Start with
y=0.

(i) Compute § for this value of y as in (i). By running over a finite number .Of
cases, we may suppose that " modx” is equivalent to a finite system of polynom}al
equations 3, and inequations Y, over Q in the Taylor coefficients t. (Only a finit¢
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number of components of t are involved.) We calculate the prime ideals of Q[t]
belonging to the ideal generated by the equations of 3. By running over a finite
number of cases we may suppose that Y, is irreducible over Q). Let K be the
algebraic closure of K, and let

V={teK:t satisfies 3;}.

If V has no K-rational point, then 3" has no solution modx”, and g satisfies the
requirement of the theorem.

Suppose that V has a K-rational point. We may suppose that there exists a
nonsingular point on V which is rational over K. Indeed, otherwise we add the
equations of the singular locus to 3°;, and decompose the new system into
irreducible components over @, and keep repeating this process, which has to
eventually stop because the Krull dimension of V decreases at each stage. We may
suppose that there is a K-rational point on ¥ which satisfies all the inequations of
¥, because otherwise 3" mod x# has no solution and this f works. Compute (by
elimination theory over an algebraically closed field)

def
E ={qeN:3ivte V(I{q, t)=0)}.
Notice that the number of elements of E is not larger than
> (degree of I, in ¢q). )

Ify<MaxE, then choose a new value for y which is bigger than Max E, and start all
over again at step (ii). Thus we calculate a new § and get a new set E, which
contains the previous E. Since the cardinality of E is bounded by (4) the process has
to stop eventually, and we may suppose that

y>MaxE. (5)

We now claim that the B which is calculated from this y by (i), satisfies the
requirement of the Theorem. Indeed we will prove that, in this case, 3 has a
solution in K[[x]]. We know that V is irreducible over @, and that V has a
K-rational nonsingular point. Moreover from (5) it follows that no inequality in
the list 3°,, I(q, )40 for g=7, y+1, y+2,... is violated for every te V. From
Lemma 2.9 it now follows that there exists t € K such that >, and Y, are satisfied
and such that
I{g,0)%=0, for q=yp,y+1,....

Thus (i) implies that 3 has a solution in K[[x]]. This proves the Theorem for
Systems of the form (1)+(2) +(3). We shall now deal with the general case. (The
Tmaining part of the proof can be considerably shortened by using the notion of
Char_acteristic setin Ritt [23, pp. 3-7]). We shall prove that given a system of ADE’s
2. in indeterminates Vis-oos Y and a system IT of conditions of the form
ordH, <k;, i= 1, ...,s where the H, are differential polynomials in y,...,y, one
ancompute a f & N such that the system 3, IT has a solution if and only if it has a
SOI“‘{OH modx?. We shall prove this by induction on the rank of ¥ defined below.
First we introduce some notation. Let 3 be the set of polynomials in 3 which
olve only the indeterminates Vi ....¥; and which do not involve only
Y15+, yi— 1. We define the rank of a differential polynomial Pin ¥ ' as rk(P) = (m, n)

iny
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where m is the order of P in Y, and n is the degree of P in y{™. We order the ranks
lexicographically. This is a well ordering. (We shall use 0 to denote the rank (0, 0),)
We define the rank of 3'={P,, ..., P} with tk(P) 2 tk(P;, ) forj=1,...,k—11to
be the sequence (rk(P,), tk(P,), ..., tk(P}), 0,0, ...) and we order these sequences
lexicographically. Finally we define the rank of Y, [T to be tk(3)=(k(E™,
k(X" Y, ..., tk(31)). (We take the rank of an empty system to be (0,0, ...)). We
order these sequences of length m lexicographically. It is not hard to see that the set
of ranks is well ordered — we leave this to the reader. Now let 3", IT be given and
assume that we can compute f for all systems of lower rank. Let j be the largest
value of i for which the following conditions do not hold: ¥ consists of at most one
" < k occurs in IT for some ke N. If
ay™

there is no such i, after a relabelling of the indeterminates we are in the special case
treated above. Let P; be a polynomial of lowest rank (m, n) in 3"/ and consider 2
cases

oP;
(i) ord P;<k does not occur in IT (where Pi= P ,f,))
y.
(i) ord P;<k does occur in IT and there is at least (])ne other polynomial Q in

2
1

Case (i). Obtain ¥, from ¥ by replacing P;=0 by P;— ~ y{”P}=0 and adjoining
n

polynomial P; (of rank (m, n) say) and ord

P;=0. Here tk(P;)=(m, n). Notice that rk(¥,) <rk(3) and so we can compute f§,
for 3", IT. Let IT, =ITu{ord P;< B,}. Notice from the definition of 8, that 3’, II
has a solution iff either }_,, IT or 3, IT, has a solution. And for any y= f,,if 3, II
has a solution mod x?, then either 3°,, IT or 3, I1, has a solution mod x”. Hence if
we could compute 8, for ¥, IT, we could take f=max(,, B,) and so it is sufficient
to treat case (ii).

n . n . . .
Case (ii). Let P;= ¥ a;y" and Pj= Y iay™" ' Again we consider 2 cases: (3)
i= i=1

i=0
ord (a,) £k occurs in II for some ke N or (b) it does not.

Case (ii) (a). Let rk(Q)=(m’,n). Then m'>m or m'=m and n'=n. Let

m’'—m

" i ) d .
Q=3 by!™”. Recall that if m">m then ﬁ_—;P ;=P;y™) + S where S has order
i=0 X

<m'in y;. In this case let T=(Pjy™ +S)y™" b, f m'=m let T=b,P;y"" "
Now obtain 3, by replacing @ =01in ¥ by P;Q — T=0if m’>m, or by a,Q — T=0
ifm’=m. Notice that Y, IT has a solution iff 3", IT does, and for each yif 3", IT hasa
solution modx’, then Y5, IT has a solution modx? ™™ *™. Also rk(¥;)<rk(2)
and so we are done by induction.

Case (ii) (b). Thus ord(a,) <k does not occur in II. Let 3, be ¥ with P;=0
replaced by P;— a,y" =0 and with a,=0 adjoined. Notice that 3, has lower rank
and so we can compute f, for 3, IT. Let I1 s = I1 U{ord(a,) < 8, }. Then as above X,
IT has a solution iff either 3", IT or 3, I15 does. And for any y=,,if 3, IT has a
solution modx? so does either 3, I or 3, I1,. This completes the proof of
Theorem 3.1.
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Remark 3.2. (i) We have used the facts that we can decide whether a finite system of
polynomial equations has a solution in €, R or Q,. The first two are well known.
The third follows from [4].

(i) Theorem 3.1 remains true for differential equations over K [x]if Ko CK is
a computable field (i.e. a field in which + and - are computable), for which there is
an algorithm to test whether a polynomial in one variable over K|, is irreducible
(this implies that we can compute the prime ideals belonging to our ideal), and for
which N is a computable subset of K.

(iii) If we replace K in Theorem 3.1 by any Henselian discrete valuation field of
characteristic zero then it remains true that we can compute S.

(iv) If one were just interested in the existence of an algorithm to decide if
systems of ADE’s have power series solutions one could proceed as follows. Use
Lemma 2.3 and some elimination theory to put a recursive structure on the ring of
differentially algebraic power series over k[ x], where k is the algebraic closure of @
in K. We know from Theorems 2.1 and 2.7 that if a system > =0 has a solution in
K[[x]] then it has a differentially algebraic solution in k[[x]]. On the other hand
if 3 =0 has no solution in K[[x]], then, by Theorem 2.10, 3" =0 mod x" has no
solution for some n. Hence to check if 3 =0 has a solution or not, one could search
for a differentially algebraic solution in k[[x]] (using the above mentioned
recursive structure) and at the same time check whether 3" =0 has a solution
modx” forn=1,2, ....

(v) Identity problems. Let K, be a field satisfying the conditions of Remark
32(i)above (e.g. Q or @) and let f;, ..., f, € K,[[x]] be differentially algebraic. We
consider terms T(z,, ..., z,) built up from elements of K, variables z,, z,, ..., +,
-, - and f,...,f, where compositions f(g) are only allowed when ¢
€(zy,2,, ... )0Ko[[215 25, -.- 1], (identifying a term with its Taylor series. Notice that
the Taylor series of any such term is computable.) There is an algorithm for
deciding if T=0 (as an element of K,[[z,,2,,...1].)

This can be proved as follows. First reduce to the one variable case by replacing
z; by t,x where the t; are algebraically independent over K, (so K, is replaced by
K=Ky(ty,t,,...)). With each term T=je K[[x]] associate a system of ADE’s
21(¥1, .+, Yu,) Which has a unique solution j,, ..., 7,,.€ K[[x]] and j,,.=7. To
test if T=0 apply the above algorithm to the system Y ;U{y,,=0}. We shall
publish a more detailed account of this application elsewhere.

Corollary to Theorem 3.1. There exists an algorithm for deciding whether a system
of ADE’s over Q[x] has a C® solution near x=0.

Proof. This follows easily from Theorems 3.1 and 10.1 of [17].

Part (i) of the following theorem appears in Singer [28]. We include it for
Completeness.

Proposition 3.3. (i) There is no algorithm to decide whether a finite system of ADE’s
over‘fQ[x] has a solution in C[[x]] with y, 0.

(i) There is no algorithm to decide whether a finite system of ADE’s over Q[x]
has a convergent solution in C[[x]] (or R[[x]]. The corresponding problem for
Q,([x1] is decidable — ¢f. Theorems 2.13 and 3.1).



230 J. Denef and L. Lipshit;

Proof. (i) Consider the system
xy'=oay,«'=0,y+0

in the differential indeterminates y and «. Notice that the solutions of this system
are y=ax", a+0 and hence this system has a solution ye C{[x]] if and only if o
€ N. Hence the question of the solubility of any diophantine equation in IN can be
reduced to a question of the solubility of a system of ADE’s, together with some
inequalities y;#+0, in C[[x]].

(ii) Consider the system

x2y —{x(a—1)+1}y+1=0,0'=0

in the differential indeterminates y and «. In C[[x]] it has the solutions aeC,

y= Y (I—a)(2—a)...(n—a)x" which converges iff xe N, in which case y is a
n=0

polynomial. Hence again any diophantine problem can be reduced to the question

of whether a system of ADE’s has a convergent solution.

Remarks 3.4. (1) Theorem 3.3(i) shows that there is no algorithm for deciding
whether systems of ADE’s have solutions in €((x)).
(2) If in the proof of Theorem 3.3(ii) we use an ADE whose solutions are

l—a)2—a)...(n—
y=2( %) ?) (n—a) x" we can conclude that the problem of determining
n

whether systems of ADE’s have entire solutions, given that they have convergent
solutions, is also undecidable.

(3) The model theory of differentially closed ficlds has been extensively studied,
see for example Robinson [24], Blum [8], Wood [29], and Singer [28]. It is for
example well known that the theory of differentially closed fields of characteristic 0
is decidable.

4. Computable Power Series and Partial Differential Equations
The fact that a power series Y a,x", a, € @ satisfies a nontrivial ADE implies strict

n
conditions on the growth of the a,’s and denominators of the a,’s [15, 16, 20]. It
seems natural to ask whether any analogous results hold for power series in several
variables satisfying systems of partial differential equations. Since every power

series f in x, satisfies % =0, and since whenever a power series, g, in one variable
1

satisfies an ADE there is a system of ADE’s which has g as part of its unique power
series solution, one is led to ask what power series (in several variables) can occur in
the unique solutions in C[[x,, ..., x,]] of systems of algebraic partial differential
equations (see below). This question is answered in Theorems 4.1 and 4.2 below.
Analogous results do not hold for R in place of € (Cor. 4.8). In this section we also
establish some undecidability results for linear PDE’s (Theorem 4.11) and som¢
definability results for systems of linear PDE’s (Theorem 4.13).
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Let x=(xy,...,%,), y=(Jq, ..., V) be several variables. A system of algebraic
partial differential equations (SPDE) is a system of equations of the form

6il+i2+'“y~ >
F<x9y’---ﬁ—1,... =0, l=1,...,r,
: Oxiox2...

where the F; are polynomials over @.

Theorem 4.1. If a SPDE has a unique solution y in C[[x]], then y e Q[[x]] and the
y;are computable power series [i.e. the map i—i™ coefficient of y; (i a multi index) is
computable as a map between the recursive structures N and Q].

Proof. Let S be a SPDE and let a € €. We know from Remark 2.11 that if for all n
€N S has a solution mod(x)” with the i** coefficient of y; equal to a then § has a
solution with the i*" coefficient of y; equal to a. Now let y e C[[x]] be the unique
solution of the SPDE §. If y; ¢ Q[[x]], then there is an automorphism of € which
moves y;, contradicting the uniqueness. Fix multi-index i and j e N. We shall show
how to compute a;;, the i coefficient of y;. Let

S,={aeC:3yeC[[x]] such that y is a solution
of Smod(x)" and a is the i coefficient of y;}.

By elimination theory over € it follows that each S, is finite or cofinite, From the
above we know that () S,={a,;}. Now, since € is uncountable, the intersection of

neN

countably many cofinite sets is infinite. Thus there exists an n,e N with S, a
singleton. By elimination theory over € we can decide for a given n whether S, is a
singleton. Thus we can compute n, and we can find an element of S,,,. This element
is equal to g;;.

Remark. We call a power series computable if its coefficients belong to @ and form
a computable sequence of rationals. (This is different from a computable sequence
of computable reals [21].)

Theorem 4.2. If y, = ¥ axi e Q[[x,]1] is a computable power series, then there
ieN

exist 5, ..., Yy €QL[X4, .., x,1] (n, m large enough) such that y=(y,, ..., y,,) is the

unique solution in C{[x]] of some SPDE.

Definition. Let R(fy, ..., f;) be a relation between f}, ..., f; € k[[x]]. We say that R
18 strongly existentially definable (s.e. definable) over k if there exists
X'=(x},...,x;) and a SPDE S(y,, ..., yi, Vit 1s -+ V) Such that in k[[x, x7]

R(fl’ -",fl)¢>3yl+1”~ym6k[[xa x,]]:S(fla ""ﬁ’yl+1’ ”"ym)
<Ny Y RIS XTS5 s S Vik1s s V) -

Lemma 4.3 (Definability of Composition). Let p(x)eQ[x] be fixed, with no
constant term. The relation between f,gek[[x,z,]] given by

g=f(x,p(x))

is s.e. definable.
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Proof. Indeed g=f(x, p(x)) <= (:79 =0 and g¢g=f mod(p(x)—zl)>. If

g=f(x,p(x)) then g=f(x,z,+(p(x)—z;))=f(x,z;) modp(x)~z,, and if the
righthand side is satisfied, just put z, =p(x).

Lemma 4.4. The relation between f(z,x), g(z, x), h(z, x) e k[[z, x]] given by
i f@x)=3 f@)x

g(z, x)= 2 g(2)x’
then l
hz,x)=% f(2)g:(2)x (i multi-index)

is s.e. definable.

Proof. Let x=(x,, ..., X,) be new variables. We use the following notation:
XX =X1X{, X3X5, «ory XXy
(xX) = (x,% ) (%) 2. (x, %), for i=(i,...,i,) a multi-index.
We have
f(z,x)9(z, %)= ¥ f(2)gz)x'%’  i,j multi indices
ij

=2 fi2)g(2) (x%)' + by Uglhy... Uy Zl gD (x%)’

u={uy,...,ur}C(x,X)

I multi index

where we sum over all u={u, ..., U} C(X1, X35 .00y Xy X1, -5 ), (K< 1), satisfying

(I) %0 and not both x;, X; belong to u (j=1,...,n). This representation is
unique for the following reason: the muiti degrees of the terms in the serics
belonging to one u are all different from these belonging to another u. Indeed, if u
+u/, then e.g. x,€u and x,¢u’. Suppose now that x...xk...xi»xi. . .x/e... X/ has
nonzero coefficient in both the series belonging to u and to «'. Since x, € u we have
i,>j., and since x,¢u’ we have also i, <j,, but this is a contradiction.

Let wy, ..., w, be new variables. Thus there exist unigue q,(z, u, w) € k[[z, u, w]]
(u ranging over all uC(x, X) satisfying (I)) such that

f(z,x)g(z, )=h(z,xX)+ X uyu,...uq,(z,u,xX).

uC(x,Xx)

The condition g,(z, u, w) € k[[z,u, w]] can be expressed by putting some partial
derivatives equal to zero. The proof follows now from Lemma 4.3.

Definition. Let f € k[[x]]. We say that f is s.e. definable (over k) if the set { f} is s.c.
definable.

Lemma 4.5. Let p(x) € Q[x] be a fixed polynomial. Then the power series Z p()x’
(i multi index) is s.e. definable (over any k).

Proof. It is sufficient to prove Lemma 3 for p(x) = x{'x2...x/* a monomial. We have

xl(l—xl)‘2=2i1xi1‘, (1‘x1)_1=2xi11-
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Thus from Lemma 4.4 it follows that
SHx, L, Y i
i1 in

are s.e. definable. Moreover

> it xin = (Zl"x’ ‘) (Z i’fx’}) (2 i{;"x{,")
iz in

i1,...,i,. iy

Lemma 4.6. If 3 ax'ek[[x]] is s.e. definable, and if

bi = 1 ?f a,- =0 (I)
b;=0 if a;#0, (imultiindex)
then 3 bx' is s.e. definable (over k).
Proof. We have
Vi[b; satisfies (1)] if and only if
Vi[(h;=0 or b;=1)] and 2
Viac,, dlek[(l —bl):alc, and a"=(1 —bl)di] . (3)
Condition (2) can be s.e. defined by
Y bix'= Y bx',

which is definable by Lemma 4.4.
Condition (3) can be s.e. defined by

I eaxHICAXN [T X~ 3 bx'=Yacx and Y ax'=Ydx'— Y bdx']

which can be s.e. defined by Lemma 4.4.
The only remalmng problem is that ¢; and d; are not unique when a,=0 and
b;=1. The uniqueness is restored if we add

Vil{bic;=b; and bd;=b,)] 4)

Theorem 4.2". Let «: ACN"-N be a partial recursive function®. Then, the set
= {Zaix‘ek[[x]]: a;=ai) if ie A} (i a multi index)

is s.e. definable over k.

Proof. From MatijaseviS's theorem, [ 18], it follows that there exists a polynomial
PCx,t,u) e Z[x, t,u] (x=(Xy, ..., x,), t one variable, and u several variables) such
that
(ieA and j=oa(i)) < IeN:p@i,j)=0
(I a multi-index, j one index)
\\

I Apartial recursive function is a computable function from a recursive enumerable subset A of

1 "toN. A recursively enumerable subset is a subset whose members can be enumerated by an
algorithm
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From Lemma 4.5 it follows that

¥ p(i,j, Du'tx'

i, j,1
is s.e. definable.

From Lemma 4.6 it follows that the power series
def

g= Y utx
i,j,1
P, 5,)=0

1s s.e. deftnable. Since « i1s a function on 4, we have

9= (g,
with g,(u) € N[[«]], and

g(u)*0 <= icA.
We have now, Y a;x'eS if and only if

i

0 o
1= = Talow) ).

But the right side of the last equation is s.e. definable by Lemma 4.4.
Proof of Theorem 4.2. Trivially from Theorem 4.2".

Corollary 4.7. There exists a SPDE having a solution in C[[x]], but no solution in
Q[[x]]. (Q is the algebraic closure of Q.)

Proof. Let i—Py(x,, x;) be a computable enumeration of all homogeneous non-
zero polynomials over Z. For ae € we have

a¢Q < ViP(x,,ax,)+0
< AT bixi e C[x,]]):
ZbP(xz,axz)x, Zx“gp‘x )

From Theorem 4.2’ it follows that Z Py(x,, x3)x} and Z x5°eix! are s.e. definable.
From the proof of Lemma 4.3 we obtain that ZP (xz, ax,)x’ is s.e. definable.

From Lemma 4.4 it now follows that the right s1de of (1) is s.c. definable.

Corollary 4.8. There exists a SPDE which has a unique solution y in R[[x]], and
such that y, €e Q[[x]] and y, is not computable.

Proof. Let ACN be a recursively enumerable non-recursive set, enumerated by
Turing machine M.
For i,je N, let
ofi,)=1 if j has already appeared at time i in the output of M
=0 otherwise.
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Thus a(i,j) is a computable function, and

de !

f 12
X afk,j)107*
k=1

a;

is a computable sequence of rational numbers.
However the sequence of rational numbers

def 2
b;= X ak,j)107*
k=1
is not computable, because
b;=0 if j¢A
(b;#0 and b;eQ) if jeA.

(Notice that 0,11111...=1/9))
We have

1
bj_ I(); §aij§bj,

and these relations completely determine the b;.
Moreover, from Theorem 4.2 it follows that ¥ a;xix} is s.e. definable.
Considering the power series i

(?bjxfé) (;#1) = %bjxilxé, and %%xﬁx’z,

and using Lemma 4.9 below, we obtain that 3 b;x} is a s.e. definable power series
over R. J

Lemma 4.9. The set

S= {Z cx' e R[[x]]: ¢; 20, Vi}, (i multi-index )
is s.e. definable over R.

Proof. We have
20,¥i < 3c;eRi(e;=c}y and ¢;;=c?;,,) joneindex
< 1Y ¢; x't] eR[[x,1,]]:
ij
Sexitt Yo it =3 Xt 6}
i ij i
The right hand side of (1) is s.e. definable by Lemma 4.4.

Remark. The sequence b; in the proof of Corollary 4.9 is still a computable
S€quence of computable reals. However, by applying Lemma 4.6 we obtain a s.e.
definable sequence of rationals (over R) which is not a computable sequence of
Computable reals.
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Corollary 4.10. There is a SPDE which has a solution in R[[x,...,x,]]
mod(xy, ..., x,)* for all xe N, but has no solution in R[[x,, ..., x,]].

Proof. The condition on ceR and y= Y axx' that 3 (c—i)x'= Y a?x’ is s.e.
definable by a SPDE. This SPDE satisfies the Corollary.

Remark. A result equivalent to Cor. 4.10 appears in [5].
We shall now establish some results for linear PDE’s and systems of linear
PDE’s. Let P(m,,...,m,)eZ[m,,...,m,] and let

— m ma m,
y= X Cmy oo XT X532 X", Cpy . m €C.

my,...,m,

Then

0 i,
P(xl—, ...,x,—)yz > Cmy...mP(my, . om)xT X
0x4 ox,

miy,....,m,

Hence P(m,,...,m,)=0 has no nonnegative integer solutions if and only if the
linear PDE

i v 2 oo () (o) - ()
xlaxl,..-,xraxr y——ml,“”m’.xl ...x, - 1_x1 l_xz e l_xr

has a power series solution (which if it exists is convergent) in €[{x,, ..., x,]]. Thus
from the undecidability of Hilbert’s Tenth Problem [18] we have

Theorem 4.11. There does not exist an algorithm to decide whether a linear PDE has
a power series solution in C[[x, ...,x,]] (for r large enough, say =9).

Next consider the equation

il 0 1 1 o
P<x‘é}7""’x'53c',>y= (1—x1>"'(1—x,_1><n§ol"x'>

= 3 ApXTLox. )]

We see that (1) has a power series solution y if and only if

def .
neV={meN:am,,...m_, P(m,,..,m)=0} = 1,=0. 2
Notice that V can be any recursively enumerable set [18].

Theorem 4.12. There exists a system of linear PDE’s, having a power series solution
over Q, but no computable power series solution.

Proof. Let V, V, SN be two recursively enumerable, recursively inseparable sets.
Let P;, i=1,2 be polynomials such that

Vi={m eN:Im,...m,_; (P(my,...,m)=0)}.

Consider the following system Y (in the unknowns y,, y,, u)

P (i) (20) - ()
Xy =y ey Xp— )y =
"\ ox, xax, 1 1—x, l—x,_, "
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Pl )= (122) (o) o 125)
NP PR Y EC I UI Al DRV A G gy

02 o o
0x4 0x, 0%,

IfY has a power series solution y,, y,, uthenu= 3 Ax!withneV; = 4,=0and
n=0

neV, = 4,=1. Conversely for every such u there exist power series y, and y,

satisfying >". (Hence 3" has uncountably many solutions over ®.) 3" can have no

computable power series solution u= Y 4,x} because then {ne N: 1,=0} would

be a recursive separation of V; and V,.

Now let VEN be a recursive set. Applying the above construction to
V,=N—V, V, =V, we see that there is a system Y of linear PDFE’s in the unknowns
V1, Y2, t such that if y,, 7,, @ is a power series solution of 3 then a= Y yy(n)x",
where xy is the characteristic function of V. Conversely if 1= 3 y,,(n) x! then there
exist ; and j, such that ,, y,, i satisfy 3. Repeating the above argument for two
variables x,, x, instead of x,, we see that for every computable function f: N—-N
there is a system Y. of linear PDE’s in the unknowns y,, y,, u such that > has a
power series solution y,, y, if and only if u= 3 x"x4®.

n

Theorem 4.13. Let f: IN->N be a computable function. Then there exists a system Y,
of linear partial differential equations over Q[x,, ..., x,] inthe unknownsu, y,, y,, ...
such that " has a power series solution yi,y,, ... if and only if u= Y f(n)x}.

Proof. If there is such a system for u= ¢, . xT'..x" we shall say that u is
definable by LPDE’s. We have already observed that 3 x7x{® is definable by

0
LPDE. By applying x, 5y Wesee that 3 f(n)x}x4™ is definable by LPDE’s. Let
2 n

% 0 1
u=3 a,x} (i.e. i =0,..., a =0>. Then < >u= Y a,x}x%. Consider
n 6x2 6X,. l_xz m,n
1
( >u— T fm)xixs®. 3
I_XZ

Iffor all n, the coefficient of x" x4™ in (3) is zero then u= ¥ f(n)x", and conversely.
Now this last condition can be imposed by an equation similar to (1) above.

Question. Does Proposition 4.13 remain valid if we ask that 3" have a unique
solution y,, y,,...?
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