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1. Introduction 

In this paper we investigate how far M. Artin's Approximation Theorems [2, 3] 
can be extended to the case of differential equations. We also obtain related 
decidability and undecidability results. Artin [3] proved 

Theorem 1.1. Let K be any field, and let K [[x 1 . . . . .  Xn]] be the ring of formal power 
series over K in the variables xl  . . . .  , xn. Let ~, be a system of polynomial equations 
over K[x l ,  ..., xn] in the unknowns Y=(Yl  . . . . .  Ym). 

(i) (Approximation Theorem.) I f  ~, has a solution ~e  K[[x  1 . . . . .  xn] ] then it 
also has a solution y e  K[[x l  . . . . .  x.]] which is algebraic over K[x  1 . . . . .  x~] and 
which agrees with the original solution ~ to any specified order. 

(ii) (Strong Approximation.) I f  for every i ~ N ,  ~ has a solution in 
K[[xl . . . . .  x.]] modulo the ideal (xl . . . .  ,x . )  i, then ~ has a solution in 
K[[x, . . . .  , x . 1 1 .  

(iii) (Existence of an approximation function.) For every ~ ~ N there exists fl(~) 
~N with the following property. I f  ~, has a solution p in K [ [ x l , . . . , x . l  1 
rnod(xl . . . . .  xn) ate), then Z has a solution y in K[[x l  . . . . .  x,] l  with y 
- y rood (x, . . . . .  x~y. 

In the special case n = 1, this theorem was first obtained by Greenberg [111 (see 
also Birch and McCann [71). For more about strong approximation theorems see 
[6] and [10]. 

In Sect. 2 we consider algebraic ordinary differential equations (ADE's) (i.e. 
differential equations which are polynomial equations in x, Yl, ...,Ym and the 
derivatives ylJ) of the y's) and we obtain analogues of Theorem 1.1 (for n = 1): If K 
has characteristic zero, then Theorem 1. l(i) (for n = 1) remains valid for systems of 
ADE's, if we replace "algebraic" by "differentially algebraic" (see Theorem 2.1). A 
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power series (in one variable) is called differentially algebraic if it satisfies some 
nontrivial ADE in one unknown. Much is known about differentially algebraic 
power series, e.g. Maillet [16] and Popken [20] (see also Mahler [15]) gave 
bounds on the rate of growth of the coefficients a, of such a power series, viz 
la,l<cl(n!) c2. (See also the recent results of Sibuya and Sperber [27]). 

If K is an algebraically closed field, a real closed field, or a field which is 
henselian with respect to a discrete valuation (e. g. the field of p-adic numbers Qp), 
and if K has characteristic zero, then the Strong Approximation Theorem 1.1(ii) 
(for n = 1) remains valid for systems of ADE's (see Theorem 2.10). In 2.10 we prove 
this Strong Approximation Theorem by a method (ultraproducts) which is not 
effective, but in Sect. 3 we give an effective proof, which is however longer and 
much more tedious. In 2.12 we show that the Strong Approximation Theorem for 
ADE's is not true when K = ~t(t). (We expect it is not true for K =Q,  but have not 
been able to prove this). Theorem 1.1(iii) (for n = l) is false for ADE's, but a weaker 
version (Theorem 2.14) remains true for ADE's, if K = R,  I~ or ~p. 

In Sect. 3 we use the results of Sect. 2 to give an algorithm (Theorem 3.1) for 
deciding when a system ~ of ADE's over ll~[x] has a solution in (E[[x]], or 
R[ [x ] ] ,  or ll~p[[x]]. For  this, we show how to compute afl  s N such that Z has a 
solution if and only if it has a solution mod x a. Note that the existence of a solution 
of 52 in l t [ [ x ] ]  is equivalent with the existence of a solution which is a C ~~ function 
in a neighborhood of 0. (This follows easily from Theorem 10.1 of Malgrange 
[17].) Hence there is an algorithm for deciding when a system of ADE's has a C a 
solution near x = 0. However (Proposition 3.3), there do not exist algorithms for 
deciding when a system of ADE's has a nonzero solution, or a convergent 
solution in ~ [ [ x ] ]  (or R[[x]]) .  

In Sect. 4 we present some results about algebraic partial differential equations 
which show, inter alia, that most of the above results do not extend to this case. 
From the above mentioned Theorem 2.1 it follows that if a system of ADE's has a 
unique power series solution y = (y~ . . . . .  y,,) then the Yl are differentially algebraic. 
However, in the case of partial differential equations we obtain the following result 
(Theorem 4.2): For every computable function f : N ~ t l )  the power series 
y~ = ~ f(n)X"l occurs as part of the unique solution (Yl . . . . .  Ym) e IE [Ix1, ... , xr]] of 

n 

some system of algebraic partial differential equations. (The converse is also true - 
see Theorem 4.1.) We also show (Theorem 4.11) that there does not exist an 
algorithm to decide if a linear partial differential equation (in one dependent 
variable) has a solution in 112 [[xl . . . . .  x,]]. We also show (Theorem 4.12) that there 
is a system of linear partial differential equations which has infinitely many power 
series solutions over II) but no computable solutions. (For other results on 
differential equations with no computable solutions see [1, 21, 22].) For algebraic 
partial differential equations the Strong Approximation Theorem 1. l(ii) holds over 
t~ but not over N or I~ (the algebraic closure of ti)) - see 4.10 and 4.7 below. 

In this paper we only consider power series over a field of characteristic zero. If 
K is a perfect field of characteristic p ~e 0 then the solvability in K[ [x] ]  of a system 
of ADE's can be reduced to the solvability of a system of polynomial equations, by 
writing the unknowns y as y = z ~ + x z ~ + . . . + x  p-lz~, where the zi are new 
unknowns. 
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2. Approximation Theorems for Differential Equations 

In this section K is a field of characteristic zero, K ( x )  is the field of rational 
functions over K, and K[[x] ]  is the ring of formal power series over K, in one 
variable x. Thus K[[x] ]  is a differential ring with derivation trivial on K, and 
x' = 1. Let F be a differential f~-ld, R a differential subring of F, and 29 an element of 
F. We say that 37 is differentially algebraic over R if there exists a non-zero 
differential polynomial over R in one variable y, which vanishes on 29 (see 
Kaplansky [13].) (If R =• [x ] ,  then )7 is called differentially algebraic.) We will 
prove 

Theorem 2.1 (Approximation Theorem). Let  R be a differential subring o f  K[[x]] ,  
and let Y'. be a set o f  differential polynomials in Yl . . . . .  y"  over R. Suppose 291,..., 29,, 
~K[[x]]  is a solution o f  Z = 0 .  Let  c t ~ N .  Then there exist  ~1 . . . .  , ~ ' ~ K [ [ x ] ]  
which are differentially algebraic over R,  such that 

(~1 . . . . .  ~ is a solution o f  Z = 0 

291 -- Yl . . . . .  29,,- ~" modx" �9 

Remark. From Ritt [23] and Seidenberg [26] it follows that if a system of algebraic 
differential equations has a solution in some differential field extension then it has a 
differentially algebraic solution (but not necessarily a power series solution). 

The key lemma in proving the algebraic analogue of Theorem 2.1 (i.e. 
Greenberg's theorem [1 1]) is the Hensel-Rychlik lemma: If p(x,  y) e K[[x] ]  [y] 

and 37 ~ K[[x] ]  satisfies p(x, 2f) = 0 modx  2t~ + 1 and ~ (x, 15) ~ 0 modx •+ 1, then 

there exists y ~ K [[x]] such that p(x, y=)= 0 and y--j7 rood x k + 1. Lemma 2.3 below 
gives a generalization of the Hensel-Rychlik lemma to the differential case. The 
proof of Lemma 2.3 is based on a result of Hurwitz [12], that if 29 = 5-'. aix i is a 

O P )7(,)) solution to P(x,  y, y ' , . . . ,  y("))= 0 with ~ (x, 29, 29', ..., + 0 then the ai, for i 

large enough, are determined by a recursion formula. Hurwitz used this recursion 
formula to prove that x" 

Z (n")! 
is not differentially algebraic. The key lemma in Hurwitz [12] is the following 

Lemma 2.2. Let  P(x ,  y, y', .... y(")) be a differential polynomial over K[[x] ]  in the 
differential indeterminate y, o f  order n. Le t  k ~ N be f i xed .  Then 

p(2k + 2) = y(n + 2k + 2) fn + y(n + 2k + l) f .  + 1 + y(" + 2k) fn + 2 

+ ... +y~"+~+2)f.+k+f.+~+ 1 , (1) 

where the f j  are differential polynomials in y o f  order at most j ,  for  j = n ,  
n+ l  .. . .  , n + k + l ,  and 

0P 
f . -  dye, ) . (2) 

(Notice that L+I,L+2 . . . .  depend upon k.)  
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Let  q ~ 1'4, then 

P~Ek+ 2+q)= y("+ zk+ 2+q)L + y("+ zk+ x +q)[L+ l +of, ']  

+ ... +y(n+2k+2+q-k) Ifn+k+qfn+k_ 1 

where hn+k+q+ 1 is a differential polynomial in y o f  order at most n + k  + q +  1. 

Proof. We have 

p,  = y(, + 1)f. + 9. ,  

where 9. is a differential polynomial  in y of order at most  n. Formula  (1) is easily 
proved by induct ion on k. Formula  (3) is obtained by differentiating (i) q times, 
and using Leibniz's rule. Q.E.D. 

Lemma 2.3. Let  P(x ,  y, y', .... y(")) be a differential polynomial over K [ [ x ] ]  in the 
differential indeterminate y, o f  order n. Let  )7 ~ K [ [ x ] ] ,  and suppose 

OP 
0y(, ) (x, y, 7 ,  .... y~,)) = CoXk + clx~+ 1 x . . . .  (1) 

with c o + O. 
There exists  a least r ~ lq, 0 < r < k, such that, with the notation of  Lemma 2.2, 

is a nonzero polynomial in q. 
Let  y ~ 1'4 be bioger than any root q ~ N o f  polynomial (2). Suppose 

P(x ,  )7, )7',..., )7~")) - 0 mod  x 2k + 2 + ~ +r, (3) 

then there e x i s t s ~  K [ [ x ] ] ,  such that 

~ ) 7  m o d x  "+2k+2+~' ' (4) 

and 

P(x ,  ~, ~', ..., ~")) = 0.  (5) 

Proof. F r o m  (1) and formula (2) in L e m m a  2.2, it follows that  

f,(k'(o, )7(0), )7'(0) . . . .  ) = Co + O . 

Thus polynomial  (2) is non-zero for r = k, from this follows the existence of r. We 
will write )7oU) for )7o)(0) and yo u) for ~)(0). F r o m  (2) and formula (3) in Lemma 2~2, it 
follows for all ~ e  K [ [ x ] ] ,  with .~o ~(/)-- yo '~) for j < n + r, that  

p( 2k + 2 + q)( O, ~o, ~o , . . .)  = ~(o" + 2k + 2 + q -r) A ( O, ~o, ~'o, ..., q) 

+H,+2k+ x +q_,(0, ~o, ~0 ' . . .), (6) 
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where 

and H,+zk+l+q- r  is a differential polynomial  in y of 
n + 2 k +  1 + q - r .  We determine ~ e K [ [ x ] ]  by 

Yo = Yo 

Yo = Yo 

and, 

~(on + 2k + 1 +~)= fi(On+ 2k+ 1 +)') 

order 

~o. + 2k+ 2 +q-r)__ --H,+zR+ 1 +q_,(0, YO, Y~O . . . .  ) 
A(0, Yo, Y~0, "",  q) ' 

for q > 7 + r .  
Notice that  (8) implies (4), and that  (9) and (6) imply 

p(2k+2+q)(0, Y0,~' o . . . .  ) = 0 ,  for q > ~ + r .  

From (3) and (4) it follows that  

P ( x , y , ~ '  . . . . .  ~"))--0 m o d x  2k+2+~ , 

hence 

P(J)(0,~o,Y--o,...)=0, for j = 0 , 1 , 2  . . . . .  2 k + l + y .  

From (6) and (8) it follows for q = 7, 7 + 1 . . . . .  ~ + r -  1 that  

p(Zk+ 2 + q)(O, Yo, ~o . . . .  ) 

= ~ +  2,+ 2 + q-')A(0, ~o, ~'o . . . . .  q) + H,+ 2k+, +q_,(O, Y=o, Y=~ . . . .  ) 
_ _ G ( n + 2 k + 2 + q - r ) A ( ~  ~, Gt - - t  
- -  yo ~ " ,  yo, y o ,  . . . ,  q )  + H ,  + 2k + 1 + q - r(  O, YO, YO . . . .  ) 

(because n +  2k + 2 + q - r < n +  2k + 1 + ~,) 

= p ( 2 k + 2 + O (  O, YO, Y~) . . . .  )" 

Thus from (3) it now follows that  

v ( 2 k + 2 + q ) ( O , ~ o , ~ o  . . . .  ) = 0 ,  for q = ~ , y + l , . . . , y + r - 1 .  

Thus from (11), (12) and (10), (5) follows. 

Lemma 2.4. Let  n ~ N,  and 

P(Yo, Y, . . . . .  Y.)~ K[Ex]]  [Yo . . . . .  Y.]. 

Let ~ ~ K [ [ x ] ]  be a solution o f  the differential equation 

P(; ,  ; ' ,  .... y(")) = O . 

(7) 

at most  

(8) 

(9) 

(1o) 

(11) 

(12) 

( i)  
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Suppose 

aP 
- - ( Y , 7 ,  . . . .  y ~ " ) ) # 0 .  
aY. 

Let  ~ ~ lq. Then there exists fl ~ N, such that for  all 

P(Yo, Y,, ..., Y,) ~ K [ [ x ] ]  [Vo, ..., Yn], 

with 

P -  P m o d x  ~ , 

there exists ~ K [ [ x ] ]  such that 

P(y,  y'  . . . . .  ; ( " ) ) = o ,  

y - y m o d x  = . 

Proof. From (2) it follows that there exists k e IN! such that 

aP 
- -  (x, y, 7 ,  .... ~(")) = cx ~ + q x *  + 1 + . . . .  
aY.  

with c 4= 0. 
If fl > k + 1, then 

(2) 

~P 
- -  (x ,  y ,  7 ,  . . . .  Y(")) = cx~ + . . . .  
0Y. 

Let f, ,  f .  + 1,..., f.+k +1 be obtained from P, in the same way that f ,  . . . .  , f ,  +k+l are 
obtained from P in Lemma 2.2. 

If f l > 3 k + 3 ,  then 

f(z) '0 ~7(0), 3Y(0), ...) = f,(a+)u(0 , ~7(0), y'(0), .) (3) +lz  ~, ~ - .  

f o r / , = 0 ,  1, ...,k, and 2=0 ,  1 .. . . .  k. 
Let r and ?=>~ be as in Lemma 2.3. From (3) it follows that this r and 7 als0 

satisfy the data of Lemma 2.3 if we replace P by/~. 
If f l > 2 k + 2 + y + r ,  then (1) implies 

P ( x ,  )7, )7' ,  . . . .  ~ ( n ) ) ~ O m o d x  2k+2+~'+r . 

Now apply Lemma 2.3 with P replaced by P. Q.E.D. 

The following lemma follows immediately from Ritt [23, p. 6], but we give a self 
contained proof. (A different elimination result is given in Rubel [25].) First we 
need some notation. Let Z be a set of differential polynomials in Yl . . . . .  y,, over a 
differential field L of characteristic 0. Let f i l  . . . . .  tim be a solution of ~ =0. (By a 
solution we mean any solution in any differential field extension of L.) Let S be the 
differential ring generated by ~ . . . .  , )~m- * over L, and suppose y,, is differentially 
algebraic over S. Let 

P(y,,, y',., ..., y~)) 

be a non-zero differential polynomial over S in y,. of lowest rank vanishing on ~, 
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(i.e. lowest possible order n, and lowest degree in y~)). Let n be the order of P, and d 
the degree of P in y~). Let 

F(yl,  Y~, ..., Ym, ..., Y~)) 

be a differential polynomial over L in Yl . . . . .  y~ of order n in ym and of degree d in 
),~) such that 

F07,, )Y,,..., )7.,_,, )7~, - 1 ,  " ' ' ,  Ym, Y',. . . . . .  Y~)) = P(Y  . . . . . .  Y~)) . 

Write 
F(y  , ,  Yl  . . . . .  y(~)) = Ao(y  ' . . . . .  y~ - ,)) (y~))d 

+ A l ( y  1 . . . . .  y ~ -  ,)) (y(,,))a-, + . . .  (1) 

with Ao, A 1 . . . .  differential polynomials of order less than n in y,.. Then from the 
minimality of P we have 

0F 
0y~)()71,...,)7(m'))~=0 and A0(~91 . . . . .  )7~-1))~:0. (2) 

Let ~ '  be the set of all differential polynomials in Yl . . . .  , Ym- ~ o v e r  L vanishing on 
;1 . . . .  , ~9m-1" L e t  ~ 1 , . . . ,  ~,, be any solution of 

Z ' = 0 ,  (3) 

F = 0 ,  (4) 

OF 
Oy~ + o, (5) 

A ~ # 0. (6) 

Lemma 2.5. With the above notat ion yx . . . . .  ;m is also a solut ion o f  ~,. 

Proof. [We write )7 for (Yl, Y] . . . . .  Y2, Y~ . . . . .  ~9,,, Y~, . . . .  ), and similarly for y.] Let 
! 6 ( y ,  y~ . . . .  ,ym, . . . ,y~)  

be a differential polynomial over L in Yl . . . . .  Ym, of order I in y,,. Suppose that G 
e~ .  

The following arguments apply to every (~1 . . . . .  ~m) satisfying (3), (4), (5), and (6). 
Differentiating (4) we obtain 

OF 
~ + 1) 0Y~ ) (y-) = H( ; ,  . . . . .  y=~ . . . . .  ~ ) ) ,  (7) 

where H is a differential polynomial in y~ . . . . .  y,, over L of order at most n in y,.. 
[And the same H works for all ~ satisfying (3)-(6)]. 

By substituting (7) several times in G, we obtain 

O ~ ,  ) (~  G(~,, . . . . .  ~))  = M(~,, ~'1 . . . .  , y--~, ..., ~(m ")) (8) 

for Some 2 ~ N and some differential polynomial M over L in Ya . . . . .  Ym of order at 
most n in Ym. [And the same M works for all ~ satisfying (3)-(6).] 
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From (1) and (4) it follows that 

a o ( ~  1 . . . . .  ~ -  x)) (y~))a  = _ A1(~1  . . . . .  ~ -  i)) ( ~ ) ) a -  1 - . . . .  (9) 

By substituting (9) several times into M we get 

(ao(Yl, ..., Y~- 1)))r M(;1, ... ' ~ ) )  = W(;1 . . . . .  ~ ) ) ,  (10) 

for some 7 e lq and some differential polynomial W over L in Yl . . . .  , Ym of order in 
y,, at most n and of degree in y~) less than d. (And the same W works for all 
satisfying (3)-(6)). From (8) and (10) it now follows that 

r \a  
(y-)) (Ao(Y-WG(~ = W ( ~ .  (l 1) 

Now 37 satisfies (3)-(6), hence 

0V (37) (Ao()7))'G()7)= W()7). (119 

Since G ~ Z  and Z()7)=0, we obtain G()7)=0, and by (11') 

W()7) = 0 .  (12) 

Since W071, .-.,)7~)-1,Y . . . . .  , y~)) is a differential polynomial in y,, over S, 
vanishing on )7,, of smaller rank than P, we obtain (by the minimality of P) that 

w ( ~ l  . . . .  , ~ -  l ,  Ym . . . . .  Y ~ )  

is identically zero as a polynomial in y,,, y~, . . . . .  y~). Thus we can write 

W(ya,  ..., y~)) = Z Vii(y1,... ,  y~)- i) (Y~))J 
ij 

with V~j e ~ ' .  
Thus, (3) implies now that 

W ( D = 0 .  

Hence, from (5),(6), and (11) it follows that 

G(y=) = 0. 

Lemma 2.6. Let  K C L be differential f ields.  Suppose z 1 . . . .  , z,, ~ L are differentially 
algebraic over K.  Let  F be the differential f ie ld  generated by z I . . . . .  z m over K. If 
z,,+ 1 ~ L is differentially algebraic over F, then Zm+ X is also differentially algebraic 
over K.  

Proof. 'It is easy to verify that z ~ L is differentially algebraic over K if and only if 

Tr degKK(Z, z', z ' ,  z " , . . . )  < oo. 

Thus we obtain 

Hence 

Tr degK F < o% Tr deg vF(z,. + 1, z~,+ 1,---) < oo. 

Tr degKK(Z,,+ 1, z ' +  1 . . . .  ) < oo. 
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Proof of Theorem 2.1. We prove  Theorem 2.1 by induct ion on m. The  case m = 0 is 
trivial. We may  suppose that  Y. contains a non-zero  polynomial ,  otherwise the 
theorem is trivial. Then,  by renumber ing the Yl, -.., Y,~, we may  suppose that  37,, is 
differentially algebraic over  S (S defined as in Lemma  2.5). We now use the result 
and the no ta t ion  of L e m m a  2.5, with L the fraction field of  R. Wi thou t  loss of 
generality we may  suppose that  e �9 N is big enough so that  we have for all 
~= (~1 . . . . .  ~m) �9 K[ [X] ]  tha t  

aF  
~ = ) S m o d x  ~implies 0 y ~ ( ~ : t : 0  and Ao(Y=):t:0 ).  

Let fl be as in Lemm a  2.4 (for)7 replaced by 15,,). Choose  fl' > ~ big enough such that  
we have for all y,,  . - . , f m - i  e K [ [ x ] ]  

~1 - 371 . . . . .  ~,, - 1 - )7,,- 1 mod  x ~' 

implies 

P(Yo, Y1, ..-, Y,) = F(~I . . . . .  Y. -1 , - . . ,  Yo, I11 . . . . .  Y.) m o d x  ~, in K [ [ x ] ]  [Yo,--., Y,]. 

By the induct ion hypothesis  there exist ~1 . . . . .  ~, ,-  1 �9 K [ Ix ] I ,  which are differenti- 
ally algebraic over  R, and such that  

~1 . . . . .  Ym- 1 is a solut ion of ~ '  

~1 -)71, ..., ~m- 1 - 17,,- 1 mod  x~' �9 

From L e m m a  2.4, it now follows that  there exist ~,, �9 K [ [ x ] ]  such that  

F(Yl, -.-, Y=-m-1 . . . . .  Y----m, ~'m, "" ", Y~)) = 0 

y,. = ~,, m o d x  ~ . 

From the result of Lemma  2.5 it follows now that  ~1 . . . .  , ~,, is a solut ion of  Z .  F r o m  
Lemma 2.6 it follows that  y,, is differentially algebraic over  R. 

Theorem 2.7. Let K C L be fields of characteristic zero satisfying one of the three 
following conditions. 

(1) K and L are algebraically closed fields 
(2) K and L are real closed fields 
(3) K is Henselian with respect to a discrete valuation, (i. e. K is the fraction 

field of a Henselian discrete valuation ring) and every finite system of polynomial 
equations over K, which has a solution in L, also has a solution in K. 

Let ~ be a set of differential polynomials in Yl . . . .  , y,, over K [ [x ] ] .  I f  Z = O, has 
a solution Yl . . . . .  Y,, ~ L[[x]],  then ~ = 0  also has a solution ~1 . . . .  , ~,, �9 K [ [ x ] ] .  

Remark. Case (3) applies when L is the field of  p-adic numbers,  Qp, and K is the 
algebraic closure of  Q in Qp [1 1]. 

Proof. F r o m  Theorem 2.1 it follows that  we may suppose that  :91 . . . . .  :9,. are 
differentially algebraic over  K [ [ x ] ] .  Let  P(x,y ,y ' ,  .... y~")) be a differential 

aP  
polynomial over  K [ [ x ] ]  of  lowest rank vanishing on Yl. Hence ~ (x, j71, 27] . . . .  ) 
~:0. Let 

= ~ . x ,  with a i � 9  
i = O  �9 
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From formula (6) in Lemma 2.3 it follows that 

Hi-l(ao,  al, a2 . . . . .  ai- 1) 
a i -- , (4) n(i) 

for all i bigger than some q E N,  where R(i) is a polynomial in i with coefficients in 
L, and the H i -  1 are polynomials in ao, al . . . . .  ai-  ~ with coefficients in K. (We have 
R(i) +- O, for i > q). 

Thus we obtain that there exists a subfield L1 of L which is finitely generated 
over K, such that 

Yl, -.., Ym ~ L,  f i x ] ] .  

However, we have even more: from the special form of the denominator of (4) it 
follows that there exist a finite number of elements c1, ..., c r e L  such that the 
coefficients of ~ . . . . .  )~,, lie in 

[ 1 1  1 ] 
g c 1 , . . . , c r , - , - , . . . , - , . . .  , 

W 1 W 2 Wj  

where the wj are polynomials over Q of bounded degree in the c~ . . . .  , c,. 
Our system of differential equations ~ =0,  reduces in the obvious way to a 

system of equations and inequations in the c~ . . . . .  e,. Thus the theorem follows at 
once from the following lemma. 

Lemma 2.8. Let K and L be as in Theorem 2.7, satisfyin9 condition (1), (2) or (3). Let 
Fi(xl . . . . .  x , ) ~ K [ x l  . . . .  ,X~], for i r  and let Wj(x 1 . . . .  , x , ) e@[Xl  . . . .  ,xr] , for 
j ~ N .  Suppose there exists D ~ N ,  such that degW/(xl, . . . ,x~)<D for all j~2q. 

Let c 1 . . . . .  c, e L, be such that Fi(c 1 . . . . .  Cr) = 0, Wj(ci, ..., G) 4: 0, for all i,j ~ N. 
Then there exist bl, ..., b, e K such that Fi(b ~ . . . . .  br) = 0, Wj(b x . . . . .  br) + 0 for all i,j 

Proof. Since K[x~ . . . . .  xr] is a Noetherian ring, we may suppose that the set of the 
Fi is finite. When the set of the Wj is also finite, then the Lemma is true, because 
every finite system of polynomial equations over K which has a solution in L als0 
has a solution in K (see e.g. Lang [14, Theorem 5, p. 278]), and because every 
inequality a ~ 0 is equivalent with 3b: ab = 1. By taking more polynomials F ,  we 
may suppose that the Fi generate the prime ideal I of all polynomials over K 
vanishing on c~ . . . . .  cr. Since the singular locus of a variety, has codimension at 
least one, we have that (c~, ..., c,) is a nonsingular point of the K-variety V defined 
by I. Thus we may suppose that 

det kaxkJ i=1 ..... h 
(c, C r ) + O ,  

k=d+ 1 . . . .  ,r 

where d is the Krull dimension of V and h = r - d .  Thus there exist a~,.. . ,  ar ~ ](, 

/OFi'X 
such that Fi(al , . . . ,  a~) = 0 for all i, and det [ ~ y . )  (a 1 . . . . .  ar) 4: 0. Hence (al, . . . ,  ~Ir)is 

\ 

a nonsingular K-rational point on V. The lemma now follows from the following 
Lemma 2.9, which we will also need in Sect. 3. 
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Lemma 2.9. Let  K be as in Theorem 2.7 and let K o be a f in i te ly  9enerated subfield o f  
K. Let I be a prime ideal o f  K o [ x  l, . . . ,  xr], and let l/V~(x 1 . . . . .  x , ) , j  e N be a collection 
of polynomials over Ko, of  bounded deyree. Let  

V= {(xl . . . . .  x,) ~ K:  I vanishes on (x x . . . . .  xr)}, 

where ff~ is the algebraic closure o f  K.  Suppose that for  every j there exists  
(Xl . . . . .  x,) ~ V such that Wj(xl  . . . . .  x,) 4= O. Suppose that there exists a nonsinoular 
point (al . . . . .  ar on V which is rational over K.  Then there exists a K-rational point 
(bl . . . .  ,br) on V such that Wj(bl, ...,b~)4=O for  all j ~ N .  

Proof. To simplify the argument we will suppose in case (1) that K ~C  and in case 
(2) that K ~ N .  This hypothesis can be eliminated by using the elementary 
equivalence of all algebraically closed fields of characteristic 0, and all real closed 
fields. We may suppose that 

\ O X k / ]  i = 1  . . . . .  h 
k=d+ 1 . . . . .  r 

where F i e I, for i = 1, ..., h and where d is the Krull dimension of V and h = r -  d. 
We claim that there exists e e N ,  e>0 ,  such that for all b l , . . . , b a E K ,  with 

lak-- bk[ < ~ for k = 1 . . . .  , d, there exist b a + 1,. . . ,  b,. ~ K with Fi(bx . . . .  , b,) = 0, for 
i= 1 . . . .  , h. [The absolute value I I is the usual one in case (1) or (2) and the one 
associated to the valuation in case (3)]. Indeed, in case (1) or (2), the implicit 
function theorem implies that there exists bd+ ~ . . . .  , b,. ~ ~ ,  respectively E N, with 
the required property. But this implies that we can find bd+l . . . . .  b,. ~ K with the 
required property. In case (3) we use the Hensel-Rychlik Lemma [10, Sect. 3] 
instead of the implicit function theorem. This finishes the proof of the claim. It is 
well known (see e.g. [19, p. 342]) that (1) implies F1 . . . . .  Fh generate the ideal I 
localised at (xl - a l  . . . . .  x , -a~) .  Hence, we conclude that if (b 1, . . . ,  ba) e K is close 
enough to (a~ . . . .  , aa), then there exist ba+ ~ . . . .  , b, E K such that (b~ . . . .  , b~) e E We 
have that 

d e f  
S j  = { ( x  1 . . . . .  X d ) ~  K d" 3Xd+ 1 . . . .  ,X r  E ~-~ 

(xl . . . .  , xr) ~ V and Wj(xl . . . .  , xr) = 0} 

is a constructible set (in the sense of algebraic geometry). By looking at the explicit 
elimination procedure, and by the fact that the Wj have bounded degree, we see 
that there exists Do ~ N,  such that all the S t can be defined by polynomials of degree 
at most Do, and with coefficients in Ko. Moreover, no Sj contains a non-empty 
Zariski-open subset of /~a,  because (since Wjr 1) the Krull-dimension of the 
Intersection of V with the zero set of W~ is at most d -  1. 

Thus if (bl . . . . .  b , ) ~ E  and if W~(bl . . . .  , b , )=0 ,  for some j, then there is a 
nontrivial polynomial over Ko, in d variables, of degree at most Do, which vanishes 
on (b~ . . . .  , ba). Since K satisfies (1), (2) or (3), it is easy to see that for every finitely 
generated subfield K1 of K, there exists an element of K which is arbitrarily close to 
zero and which has degree larger than Do over K1. 
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Let K~ be the field generated by al, ..., ad over Ko. Then there exist bl . . . .  , bd 
e K which are arbitrary close to al . . . . .  aa, and such that every field extension in the 
tower 

K1 E Ka(bO E Kl(b l ,  b2) C.. .  C Kl(bl  . . . . .  ba) (2) 

has degree larger than Do. 
There exist bd+l . . . . .  b r e K  such that (bl . . . . .  br) �9 E If Wj(bl . . . . .  br)=0,  for 

some j, then there is a nontrivial polynomial over K 1 of degree at most D O which 
vanishes on (bl . . . .  , ha). But this would contradict (2). 

Theorem 2.10 (Strong Approximation). Let K be an algebraically closed or a real 
closed field, or a field which is Henselian with respect to a discrete valuation (e. g. 
K = ff~v)" Suppose that K has characteristic zero. 

Let 
P~(Yl, Yl, Y'~, ..., Ym, Y',,, Y~, " "), l= 1,2, 3 . . . .  

be differential polynomials in Yl . . . . .  Ym over K[[x ] ] .  Suppose that for every n �9 N 
there exist )71,..., fi,. �9 K [ [ x ] ]  such that 

Pt071, 3~] . . . . .  ~9 . . . . .  ) - 0 mod x  n , 

then there exist ~1 . . . . .  ~m �9 K[[X]]  such that 

P,( ; , ,  ;'1 . . . . .  ;r, . . . .  ) =0,  l =  1, 2, . . . .  

Proof. We use the ultraproduct construction, see [6, Sect. 1]. A (longer) proof 
without using the ultraproduct construction is implicit in the proof of Theorem 
3.1. Let K* be the ultraproduct (1--[ K]/D with respect to a nonprincipal ultrafilter 

k i l n  / 

D on N. As in [6], there exist )71 . . . . .  )?,,�9 K * [ [ x ] ]  such that 

P,(Yl,Y],...,Ym, Y;, . . . .  )=0 ,  l = 1 , 2 , . . . .  

We now apply Theorem 2.7. 

Remark 2.11. Theorem 2.10 for the case K = ~  is trivial, because C* ---~ over any 
countably generated subfield [6]. Thus when K = ~ ,  Theorem 2.10 remains true 
for partial differential equations. However, when K = R,  Theorem 2.10 is not true 
for partial differential equations (see [5] or 4.10, below). 

Remark 2.12. Theorem 2.10 is not true for all fields K. Indeed let K = R(t). In [9] it 
is shown that there exists a polynomial P �9 K [u, z~, ..., zr] such that for all ~ �9 K we 
have 

a �9 N+-~3z 1 . . . . .  z ~ � 9  . . . , z r )=0 .  (1) 

Consider the system of differential equations 

x y ' - ( a +  x ) y -  1 =0 ,  ~ ' = 0 ,  (2) 

in the differential unknowns y and ~. 
The solutions of (2) in K [ [ x ] ]  are 

.=o ( - a ) ( 1 - a ) . . . ( n - a )  o t e K - N .  
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Moreover, i fa  ~ N then (2) has no solution in K[ [x ] ] ,  but  it has a solution m o d x  ". 
Thus the system 

P(~, z a . . . . .  zr) = 0,  

~ '=0,  z~ = 0  . . . .  , z~=0 ,  

x y ' - ( c t + x ) y -  1 =0  

in the differential indeterminates y, ct, Zl . . . . .  zr has no solution in K [[x]] ,  although 
it has for every n, a solution modx". Q.E.D. 

Recently Sibuya and Sperber [27] have shown that if y =  ~ a.x", with a , ~  
(the algebraic closure of ~ )  is differentially algebraic then y has a positive v-adic 
radius of convergence for every non-archimedean valuation v of Q. Putting this 
together with our results we get 

Theorem 2.13. Let  Y', be a set of  differential polynomials in Yl . . . . .  y,, over II~(x). I f  
Y, = 0 has a solution in ~p[ [x ] ] ,  then it also has a solution in ~p [ [x ] ]  which has a 
nonzero radius of  convergence (with respect to the p-adic metric). 

Proof. Let K be the algebraic closure of ~ in ~p. From Theorem 2.7 (and the 
remark following 2.7) it follows that ~ = 0  also has a solution in K [ [x ] ] .  From 
Theorem 2.1 it follows that Z = 0 has a solution in K [ [ x ] ]  which is differentially 
algebraic over K(x), and this solution is convergent by the result of [27]. 

Theorem 2.14 (Existence of an Approximation Function). Let K be ~ ,  R or ff~p and 
let ~ be a set of  differential polynomials in y = (Yl, ..., Y,,) over K [[x]] .  For every o~ 

N there exists fl(ct) E N with the followin9 property: Let  e ~ N ,  e > O. I f  ~ = 52 Ct,x" 

is a solution of  ~ - 0 modx  #t') then there exists a solution y = 52 a,x" of  Y'. = ~) such 
that 

[a , - ,~,[<~ for  n = 0 , 1 , . . . , a .  (1) 

Proof. Suppose that the theorem is not true. Then there exists ~ e N with the 
following property: For  every f l ~ N  there exists s 0 ~R ,  e#>0 and a solution 
)7/3 = ~. ci.~x" of52 - 0 modx  ~ such that there is no solution y = 5Z a.x" ofY'. = 0 with 

n 

[a,-~i,#l <e# for n = 0 ,  1 . . . . .  ~. Let K* be the ultraproduct (1-]"K)/D with respect 
\ ~ E t N  / /  

to a nonprincipal ultrafilter D on N (see [6, Sect. 1]). The sequence (37#)#~ N 
determines a solution p = 52 ~i.x" e K* [ [x] ]  of 52 = 0, with ~i. the equivalence class 

n 

in K* of the sequence (~i.#)#~N. From Theorem 2.7, with L = K*, it follows that there 
exists a solution y =  52a, x " e K [ [ x ] ]  of 52=0. However even more is true: We 

n 

claim that there exists a f le  N such that for every ~ e R,  e > 0 there exists a solution 
Y = ~, a,x" ~ K [ [ x ] ]  of 52 = 0 such that l a , -  ~i,#l < e for n = 0, 1 . . . .  , ~. Notice that 

n 

this contradicts our hypothesis. The proof  of the claim is identical with the proof of 
Theorem 2.7 - we need only adapt Lemma 2.8 as follows: If in Lemma 2.8, L = K* 
and c I = (c1#)~  . . . .  , c~ = (c,#)#~ then there exists f le  N such that b~ . . . . .  b, can be 
taken arbitrarily close to e~# . . . . .  era. Indeed, in the proof  of Lemma 2.8 we can take 
a~-__ c~# . . . . .  a, = era for a suitable fl ~ N, and in Lemma 2.9 we can take b~ . . . . .  br 
arbitrarily close to a~ . . . . .  a,. 
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Remark  2.15. In Theorem 2.14 we cannot replace (i) by a, = ft, for n = 0, 1 . . . .  , ~. A 
counterexample follows from (2) in Remark 2.12. 

3. Some Decision Problems 

Theorem 3.1. Let  K be IE, • or Qp. There exists  an algorithm for  deciding whether a 
f in i te  system o f  algebraic ordinary differential equations over ~ [x] has a solution in 
K[[x]] .  (An  algebraic ordinary differential equation (ADE) over Q[x]  is an 
equation P = O, where P is a differential polynomial in several variables over Q[x].) 

Proof. We give an algorithm such that given such a system Z,  we can compute a/~ 
N such that )Z has a solution in K[ [x] ]  if and only if it has a solution modx p. We 

can consider this as a constructive proof of the Strong Approximation Theorem 
2.10. 

We first give an algorithm for systems ~ of the following form (1)+ (2)+ (3) 

Ph(Yx,  Y2 . . . . .  Yh, Y'I, ..., Yth"")) = 0 

' "1,( . . . .  ) ) = 0  (l) Ph+ 1(Yl, Yz . . . . .  Yh+ 1, Yl . . . .  , Yh+ 1 

Pm(Y, ,Y2, . . . ,  Ym, Yl . . . .  , y ~ ) )  =0  

and 

and 

{ordHl(Yl~ Y,,, Yl . . . .  ) =< kl ~ ~ 

ordHs(Yl, ..., Ym, Yl . . . .  ) < ks 
(2) 

a finite number of polynomial equations and inequations (3) 
over Q in the Taylor coefficients of Yl . . . . .  Y,,. 

Here, the Pi are differential polynomials over Q[x]  in yl . . . . .  Yi of order ni in y~ 
(thus they form a triangular system), the Hi are differential polynomials over Q Ix] 

0Pi 
including among others all t h e - - ,  and the kl, .., ks are natural numbers. By ord ~yl.,~ 
we mean the discrete valuation on K[[x] ] .  By a solution of Z modxO we mean a 
solution in K[-[x]] of (2)+ (3) which satisfies (1)modx #. 

We will apply Lemma 2.3 to every Pi, with the y of Lemma 2.3 replaced by y, 
By running over a finite number of cases (i.e. by replacing Z by a disjunction of 
bigger Z's), we may suppose that for any P~ the numbers k and r in Lemma 2.3 are 
the same for every solution in K[-[x]] of (2)+(3). Let t be the vector whose 
components are the Taylor coefficients of 371,...,)Tm~K[[x]]. Let Ii(q,t) 

Q[q, t] be the polynomial (2) of Lemma 2.3, for P = Pi. 
(i) From Lemma 2.3 it follows that for every ? ~ N we can compute fl ~ N such 

that if )71,...,)Tm~K[[x]] satisfy (1) modx # and (2)+(3) and 7>max{q 
N : li(q, t) = 0 for some i} then (1) + (2) + (3) has a solution in K [[x]]. Start with 

7=0.  
(ii) Compute fl for this value of 7 as in (i). By running over a finite number of 

cases, we may suppose that Y. modx # is equivalent to a finite system of polynomial 
equations ~ and inequations Y2 over Q in the Taylor coefficients t. (Only a finite 
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number of components of t are involved.) We calculate the prime ideals of (l~[t] 
belonging to the ideal generated by the equations of ~1. By running over a finite 
number of cases we may suppose that Z l  is irreducible over I1~. L e t / (  be the 
algebraic closure of K, and let 

V= {t ~ / (  : t satisfies ~1}" 

If V has no K-rational point, then 5~ has no solution modx ~, and/3 satisfies the 
requirement of the theorem. 

Suppose that V has a K-rational point. We may suppose that there exists a 
nonsingular point on V which is rational over K. Indeed, otherwise we add the 
equations of the singular locus to Zx, and decompose the new system into 
irreducible components over ~ ,  and keep repeating this process, which has to 
eventually stop because the Krull dimension of V decreases at each stage. We may 
suppose that there is a K-rational point on V which satisfies all the inequations of 
~2, because otherwise Z modxP has no solution and this/3 works. Compute (by 
elimination theory over an algebraically closed field) 

clef 

E = {q ~ N :  3iVt ~ V(Ii(q, t)=O)}. 

Notice that the number of elements of E is not larger than 

~i  (degree of I i in q). (4) 

If7 < MaxE, then choose a new value for ~ which is bigger than MaxE, and start all 
over again at step (ii). Thus we calculate a new/3 and get a new set E, which 
contains the previous E. Since the cardinality of E is bounded by (4) the process has 
to stop eventually, and we may suppose that 

> MaxE.  (5) 

We now claim that the /3 which is calculated from this ~ by (i), satisfies the 
requirement of the Theorem. Indeed we will prove that, in this case, ~ has a 
solution in K[[x]] .  We know that V is irreducible over Q, and that V has a 
K-rational nonsingular point. Moreover from (5) it follows that no inequality in 
the list Y-2, I~(q, t) 4 = 0 for q = ~, ~ + 1, 7 + 2 . . . .  is violated for every t ~ V. From 
Lemma 2.9 it now follows that there exists t e K such that ~1 and ~2 are satisfied 
and such that 

Ii(q, t) #: 0, for q = 7 , 7 + 1  . . . . .  

Thus (i) implies that Z has a solution in K[[x]] .  This proves the Theorem for 
systems of the form (1)+(2)+(3). We shall now deal with the general case. (The 
remaining part of the proof can be considerably shortened by using the notion of 
characteristic set in Ritt [23, pp. 3-7]). We shall prove that given a system of ADE's 
~, in indeterminates Yl . . . .  ,y,,, and a system H of conditions of the form 
~ i=  1 . . . . .  s where the H~ are differential polynomials in y~, ..., y,, one 
can compute a/3 ~ N such that the system 5% H has a solution if and only if it has a 
solution modxa. We shall prove this by induction on the rank o f ~  defined below. 

First we introduce some notation. Let Z i be the set of polynomials in ~ which 
involve only the indeterminates Yl, .-.,Y~ and which do not involve only 
Yl .... , Y~- 1. We define the rank of a differential polynomial P in Z ~ as rk(P) = (m, n) 
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where m is the order of P in Y~ and n is the degree of P in yl "). We order the ranks 
lexicographically. This is a well ordering. (We shall use 0 to denote the rank (0, 0).) 
We define the rank of ~i  = {P1, .-., Pk} with rk(P~) > rk(P~+ 1) for j  = 1 . . . . .  k -  1 to 
be the sequence (rk(P0, rk(P2) . . . . .  rk(Pk), 0,0 . . . .  ) and we order these sequences 
lexicographically. Finally we define the rank of 5~, l-I to be rk(Z)=(rk(YY), 
rk(Z"-1)  . . . . .  rk(~]l)). (We take the rank of an empty system to be (0, 0 . . . .  )). We 
order these sequences of length m lexicographically. It is not hard to see that the set 
of ranks is well ordered - we leave this to the reader. Now let ~2, H be given and 
assume that we can compute fl for all systems of lower rank. Let j be the largest 
value of / for  which the following conditions do not hold: ~i  consists of at most one 

0Pi 
polynomial Pi (of rank (m, n) say) and ord - -  < k occurs in /7  for some k e N. If Oylm~ = 

there is no such f, after a relabelling of the indeterminates we are in the special case 
treated above. Let Pj be a polynomial of lowest rank (m, n) in Y.J and consider 2 
cases 

(i) o rdP}<k does not occur in /7  where P j -  Oy}m)j 

(ii) ordP} < k does occur in / - /and  there is at least one other polynomial Q in 
Z j. 

1 m , Case (i). Obtain ~1 from ~ by replacing P~=0 by P j -  ny  ~ )Pj=0 and adjoining 

P} = 0. Here rk(Pj)= (m, n). Notice that rk(~21)< rk(Z) and so we can compute ~1 
for ~2~,/7. Let HE =IIu{ordP~<fl l} .  Notice from the definition of fl~ that ~2,// 
has a solution iff either Y'.I, H or ~2,/72 has a solution. And for any y>f l l ,  if Z , / /  
has a solution modx ~, then either ~2~, H or ~ , /72  has a solution modxE Hence if 
we could compute fiE for ~ ,  II2 we could take fl = max(ill, f12) and so it is sufficient 
to treat case (ii). 

Case (ii). Let P j =  ~ _,~a.~, <.~)' and Pj' = ~ ._.,:jia.v ~.m)'-'. Again we consider 2 cases: (a) 
i = 0  i = 1  

ord (a.)____ k occurs i n / / f o r  some k ~ N or (b) it does not. 

Case (ii) (a). Let rk(Q)=(m',n'). Then m'>m or m'=m and n'>n. Let 
d i l l "  - m 

Q = ~. biy~ "')'. Recall that if m '>  m then ~ P i =  Pjy~"" + S where S has order 
i = 0  

< m' in Yr" In this case let T =  (p~y~m')+ S)y~,,')-'-~b.,. If m'= m let T = b,,Pjy~ ")~ ". 
Now obtain ~3 by replacing Q = 0 in ~ by PjQ - T= 0 if rn'> m, or by a.Q - T=0 
if re'= m. Notice that Y.,/7 has a solution iff 5~s, / /  does, and for each 7 ifY~,/7 has a 
solution modx r, then ~ 3 , / 7  has a solution modx ~-"~'+m. Also rk(~s)<rk(Z),  
and so we are done by induction. 

Case (ii) (b). Thus ofd(a . )<k does not occur in/7 .  Let ~4  be ~ with pj=0 
replaced by P~-  a,y~ m) = 0 and with a, = 0 adjoined. Notice that Z4 has lower rank 
and so we can compute f14 for ~4, H. Let H 5 = / 7 u  {ord(a,) <//4}- Then as above ~, 
17 has a solution iff either ~4 , /7  or ~ , /7~  does. And for any ~ > f14, if ~ , / 7  has a 
solution modx r so does either ~4, /7 or ~ ,  /-/s- This completes the proof of 
Theorem 3.1. 
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Remark 3.2. (i) We have used the facts that we can decide whether a finite system of 
polynomial equations has a solution in IE, R or I1~. The first two are well known. 
The third follows from [4]. 

(ii) Theorem 3.1 remains true for differential equations over Ko[x] if Ko C K is 
a computable field (i.e. a field in which + and �9 are computable), for which there is 
an algorithm to test whether a polynomial in one variable over Ko is irreducible 
(this implies that we can compute the prime ideals belonging to our ideal), and for 
which N is a computable subset of Ko. 

(iii) If we replace K in Theorem 3.1 by any Henselian discrete valuation field of 
characteristic zero then it remains true that we can compute ft. 

(iv) If one were just interested in the existence of an algorithm to decide if 
systems of ADE's have power series solutions one could proceed as follows. Use 
Lemma 2.3 and some elimination theory to put a recursive structure on the ring of 
differentially algebraic power series over k[x], where k is the algebraic closure ofll~ 
in K. We know from Theorems 2.1 and 2.7 that ifa system ~ = 0  has a solution in 
K[[x]] then it has a differentially algebraic solution in k[[x]].  On the other hand 
if Z = 0  has no solution in K[[x] ] ,  then, by Theorem 2.10, ][2=0 m o d C  has no 
solution for some n. Hence to check i f Z  = 0 has a solution or not, one could search 
for a differentially algebraic solution in k[[x]]  (using the above mentioned 
recursive structure) and at the same time check whether Y'. =0  has a solution 
modx" for n = 1,2 . . . . .  

(v) Identity problems. Let Ko be a field satisfying the conditions of Remark 
3.200 above (e.g. I1) or ~)  and let f~, . . . ,  f .  e Ko[[X]] be differentially algebraic. We 
consider terms T(z~ . . . . .  z,) built up from elements of Ko, variables z~, z2 . . . . .  + ,  
- ,  and ]'1 . . . . .  f ,  where compositions f (g)  are only allowed when g 
e (zl, z2 . . . .  )Ko[[Zt, z2,. . .]] ,  (identifying a term with its Taylor series. Notice that 
the Taylor series of any such term is computable.) There is an algorithm for 
deciding if T-=-0 (as an element of K0[[z 1, z2 . . . .  ]1.) 

This can be proved as follows. First reduce to the one variable case by replacing 
z i by tix where the ti are algebraically independent over Ko (so K o is replaced by 
K=Ko(t~, t 2 . . . .  )). With each term T=f~eK[[x]]  associate a system of ADE's 
~r(Y~ .. . .  ,y,~) which has a unique solution ]71 . . . . .  15, e K [ [ x ] ]  and ~f,, =~f. To 
test if T = 0  apply the above algorithm to the system ~2rw{y,~.=0}. We shall 
publish a more detailed account of this application elsewhere. 

Corollary to Theorem 3.1. There exists an algorithm for deciding whether a system 
of ADE's over (i)[x] has a C ~ solution near x = 0 .  

Proof. This follows easily from Theorems 3.1 and 10.1 of [17]. 

Part (i) of the following theorem appears in Singer [28]. We include it for 
completeness. 

Proposition 3.3. (i) There is no algorithm to decide whether a finite system of ADE's 
over tl~[x] has a solution in l~[[x]] with Yx ~ 

(ii) There is no algorithm to decide whether a finite system of ADE's over ~ [ x ]  
has a convergent solution in r (or N[[x ] j .  The corresponding problem for 
II~[[x]] is decidable - ef. Theorems 2.13 and 3.1). 
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Proof. (i) Consider the system 

xy '=~y,  ~'=0, y=~0 

in the differential indeterminates y and ~. Notice that the solutions of this system 
are y = ax ~, a 4:0 and hence this system has a solution y ~ (E [l-x]] if and only if 

N. Hence the question of the solubility of any diophantine equation in N can be 
reduced to a question of the solubility of a system of ADE's, together with some 
inequalities Yi �9 O, in IE[[x]]. 

(ii) Consider the system 

x 2 y ' - { x ( ~  - 1)+ 1}y+ 1 =0, ~ '=0 

in the differential indeterminates y and ~. In I/~[-[x]] it has the solutions ~ ,  

y =  ~ ( l - c t ) ( 2 - ~ ) . . . ( n - , ) x "  which converges iff ~ q ,  in which case y is a 
n = 0  

polynomial. Hence again any diophantine problem can be reduced to the question 
of whether a system of ADE's has a convergent solution. 

Remarks 3.4. (1) Theorem 3.3(i) shows that there is no algorithm for deciding 
whether systems of ADE's have solutions in C((x)). 

(2) If in the proof of Theorem 3.3(ii) we use an ADE whose solutions are 

Y = ~ (1 - ~ ) ( 2 -  ct)...(n- ~) x" we can conclude that the problem of determining 
n! 

whether systems of ADE's have entire solutions, given that they have convergent 
solutions, is also undecidable. 

(3) The model theory of differentially closed fields has been extensively studied, 
see for example Robinson [24], Blum [8], Wood [29], and Singer [28]. It is for 
example well known that the theory of differentially closed fields of characteristic 0 
is decidable. 

4. Computable Power Series and Partial Differential Equations 

The fact that a power series ~ a,x", a, ~ ~ satisfies a nontrivial ADE implies strict 
n 

conditions on the growth of the a,'s and denominators of the a,'s [15, 16, 20]. It 
seems natural to ask whether any analogous results hold for power series in several 
variables satisfying systems of partial differential equations. Since every power 

series f in x2 satisfies ~ = 0, and since whenever a power series, g, in one variable 

satisfies an ADE there is a system of ADE's which has g as part of its unique power 
series solution, one is led to ask what power series (in several variables) can occur in 
the unique solutions in C[[x l  .....  x,]] of systems of algebraic partial differential 
equations (see below). This question is answered in Theorems 4.1 and 4.2 below. 
Analogous results do not hold for ~ in place ofC (Cor. 4.8). In this section we also 
establish some undecidability results for linear PDE's (Theorem 4.11) and some 
definability results for systems of linear PDE's (Theorem 4.13). 
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Let x = (x l  . . . . .  x .) ,  y = (y~ . . . . .  Ym) be several variables. A system of algebraic 
partial differential equations (SPDE) is a system of equations of the form 

( 8h+i~+"'YJ ) = 0 ,  I=1 r, . . . . .  F l x , y ,  . . .  i ,  i 2  , " ' "  

Oxl Ox2...  

where the Fi are polynomials over Q. 

Theorem 4.1. I f  a SPDE has a unique solution y in �9 [ [x]] ,  then y ~ ll~[[x]] and the 
y j are computable power series [i. e. the map i ~ i th coefficient o f  y j ( i a multi index) is 
computable as a map between the recursive structures N and if)]. 

Proof. Let S be a SPDE and let a~IE. We know from Remark 2.11 that if for all n 
N S has a solution rood(x)" with the i th coefficient of yj equal to a then S has a 

solution with the i th coefficient of yj  equal to a. Now let y ~ II~ [ [x] ]  be the unique 
solution of the SPDE S. If yj ~ II~ [[x]] ,  then there is an automorphism of �9 which 
moves y j, contradicting the uniqueness. Fix multi-index i and j  e N. We shall show 
how to compute aij, the i th coefficient of yj. Let 

S, = {a ~ �9 : 3y ~ ll~[[x]] such that y is a solution 
of Smod(x)" and a is the i th coefficient of yj}. 

By elimination theory over II; it follows that each S, is finite or cofinite. From the 
above we know that ~ S, = {aij}. Now, since II~ is uncountable, the intersection of 

rlEN 

countably many cofinite sets is infinite. Thus there exists an n o ~ N with S,o a 
singleton. By elimination theory over II; we can decide for a given n whether S. is a 
singleton. Thus we can compute n o and we can find an element of S,o. This element 
is equal to aij. 

Remark. We call a power series computable if its coefficients belong to II) and form 
a computable sequence of rationals. (This is different from a computable sequence 
of computable reals [21].) 

Theorem 4.2. I f  Yl = ~ aixl E(I~[[x1]] is a computable power series, then there 

exist Y2 . . . . .  Ym E ~ [ [ x  1 . . . .  , x , ] ]  (n, m large enough) such that y = (Yl . . . .  , y,,) is the 
unique solution in ~ [ [ x ] ]  of  some SPDE. 

D~finition. Let R ( f  l . . . . .  fl) be a relation between f l ,  .-., ft ~ k[ [x]] .  We say that R 
is strongly existentially definable (s.e. definable) over k if there exists 
x'=(x'~ . . . . .  x',,) and a SPDE S(yl ,  .. . ,Yl, Yl+ 1 . . . . .  Ym) such that in k[[x ,  x ']] 

R ( f  l . . . . .  fl)'c~3Yt +1. . " Ym E k [[x, x ' ]]  : S ( f  l, .. ., fz, Yt + 1 . . . . .  Y,n) 

r ! Yl + , . . .Y,,  e k [[x ,  x ']] : S ( f ,  . . . .  , ft,  Y, +, . . . . .  Y,,). 

Lemma 4.3 (Definability of Composition). Let  p(x)~l l~[x]  be f i xed ,  with no 
constant term. The  relation between f ,  g ~ k [ [x ,  zl]  ] given by 

g = f ( x ,  p(x)) 

is s.e. definable. 
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) Proof. Indeed 9 = f ( x , p ( x ) )  r = 0  and 9 - f m o d ( p ( x ) - z l )  . If 

9=f (x ,p (x ) )  then 9=f (X ,  Z x + ( p ( x ) - z O ) = f ( x ,  z l ) m o d p ( x ) - z l ,  and if the 
righthand side is satisfied, just put z t =p(x) .  

Lemma 4.4. The relation between f (z, x), O(z, x), h(z, x) e k[[z, x]]  oiven by 

if f ( z , x ) =  Z f i ( z ) x  i 
i 

g(z, x) = E oi(z)x i 
then i 

h(z, x) = Y~ fi(z)gi(z)x i (i multi-index) 
i 

is s.c. definable. 

Proof. Let ~ = ( x l  . . . . .  ~,) be new variables. We use the following notation: 

X)~ = XIX1 ,  X2X 2 . . . . .  X n X  n 

- i - i l  - i 2 - i ,~ (XX) --(XlX 0 (X2X 0 ...(XnX.) , 

We have 

f ( z ,  x)g(z, 2) = Y'fi(z)gj(z)xi'2 j 
i , j  

= Z f~(z)a , (z)  (xx)'+ 
i 

for i=(i  1 . . . . .  i,) a multi-index. 

i,j multi indices 

Y~ u i u2... Uk ~, qi1(Z) U I ( X X )  i 
u={u, . . . . .  uk}C (x,-g) i,I 

l multi index 

where we sum over all u = {u 1 . . . . .  Uk} C (X 1, X 2 . . . . .  Xn,  xl , . . . ,  Y~,), (k N n), satisfying 
(I) u 4= 0 and not both x j, ,Yj belong to u (j = 1 . . . .  , n). This representation is 

unique for the following reason: the multi degrees of the terms in the series 
belonging to one u are all different from these belonging to another  u. Indeed, if u 
# u', then e.g. xe e u and Xe ~ U'. Suppose now that  x~'...x eie...wn~'in~jl~l . . . . .  ~Jee . . . . .  fJnn has 
nonzero coefficient in both the series belonging to u and to u'. Since Xe e U we have 
ie >jr and since Xe r U' we have also i~ <j~, but this is a contradiction. 

Let wl . . . . .  w, be new variables. Thus there exist unique q,(z, u, w) ~ k[[z, u, w]] 
(u ranging over all u C (x, 2) satisfying (I)) such that 

f ( z , x )o ( z , x )=h(z ,  xx )+ 2 UlU2".Ukqu(z,u,x:~)" 
uC(x,~) 

The condition q,(z, u, w)e k[[z, u, w]] can be expressed by putting some partial 
derivatives equal to zero. The proof  follows now from Lemma 4.3. 

Definition. Let f e  k[ [x]] .  We say that f is s.c. definable (over k) if the set {f} is s.c. 
definable. 

Lemma 4.5. Let p(x) ~ ll~[x] be a f ixed polynomial. Then the power series Y'. p(i)x i 
(i multi index) is s.e. definable (over any k). i 

Proof. It  is sufficient to prove Lemma  3 for p(x) = #l'X�89 a monomial .  We have 

X l ( 1  _ _ X l ) - 2  = " i l  3-'. q x ,  , (1 - x O  - 1 -  Z x ] ' .  
i l  i l  
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Thus from Lemma 4.4 it follows that 

~ ,  i j l~v.i l "jn in *'1 "~1, "",  ~-~ In Xn 
ix in 

are s.e. definable. Moreover  

z x~ (z  3 (z �9 . . .  ( . :  o.. v 
i !  . . . . .  in \ i l  / \ i 2  / 

Lemma 4.6. I f  ~, aixi ~ k[ [x ] ]  is s.e. definable, and if  
i 

bi= l i f  a i = O  

bi = 0 if ai ~- O, (i multi index) 

then Z bi xi is s.e. definable (over k). 
i 

Proof. We have 
ViEbi satisfies (1)] if and only if 

Vi[(bi=O or b i = l ) ]  and 

Vi3ci, d i ~ k [(1 - -  hi) = aic i and ai = ( 1 - -  bi)  d i ] .  

Condition (2) can be s.e. defined by 

y b{xi= y b~x i, 

which is definable by Lemma 4.4. 
Condition (3) can be s.e. defined by 

3(~ . . c ix i )3 (~dix i )E~,  x i -  ~.. bi x i =  ~,  aici Xi and 
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(1) 

~ , a i x i = ~ d i x i - ~ , b f l i x  i] 

(2) 

(3) 

which can be s.e. defined by Lemma 4.4. 
The only remaining problem is that ci and d i are not unique when a i = 0 and 

b i -  1. The uniqueness is restored if we add 

ViE(bici=b i and bidi=bi) ] (4) 

Theorem 4.2'. Let a : A C N ' ~ N  be a partial recursive function 1. Then, the set 

S=t~aixi~k[Ex]]:~ i ai=~ if  t e A }  (i a multi index) 

is s.e. definable over k. 

Proof. From Matijasevi~'s theorem, [18], it follows that there exists a polynomial  
p(x, t, u) e ]E[x, t, u] (x = (xl . . . . .  x,), t one variable, and u several variables) such 
that 

( i ~ A  and j=ct(i)) ,~  3 1 e N : p ( i , j , l ) = O  

(l a multi-index, j one index) 

1 A partial recursive function is a computable function from a recursive enumerable subset A of 
N" to N. A recursively enumerable subset is a subset whose members can be enumerated by an 
algorithm 
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From Lemma 4.5 it follows that 

Z p(i,j, l)ultJx i 
i , j , l  

is s.e. definable. 
From Lemma 4.6 it follows that the power series 

def 
g = ~ ul tJx  i 

i , j , l  
p ( i , j , l ) = O  

is s.e. definable. Since c~ is a function on A, we have 

g = y" (gi(u) t~ti))x i , 
i 

with el(U) e N [ [ u ] ] ,  and 

gi(u) # 0 ~ i ~ A . 

We have now, Y. aix i ~ S if and only if 
i 

Og 
t ~ = Z ai(~i(u) e ~ ) x  ' �9 

i 

But the right side of the last equation is s.e. definable by Lemma 4.4. 

Proof of Theorem 4.2. Trivially from Theorem 4.2'. 

Corollary 4.7. There exists a SPDE having a solution in'IE[[x]], but no solution in 
(I)[[x]]. (tl) is the algebraic closure of I1~.) 

Proof  Let i-~Pi(x2, x3) be a computable enumeration of all homogeneous non- 
zero polynomials over Z. For  a e II; we have 

ar ~ ViPi(x2, ax2)#O 

r 3 ( Z  bix] elEEEx,]]): 

2 biPi(x2, ax2)xil = w , rdegPi~ -i z _ , ~ 2  ~ - 1 .  (1) 
i i 

From Theorem 4.2' it follows that ~2 Pi(xz, x3)x] and ~ x~~ are s. e. definable. 
i i 

From the proof  of Lemma 4.3 we obtain that ~2 Pi(xz, axz)x] is s.c. definable. 
i 

From Lemma 4.4 it now follows that the right side of (1) is s.e. definable. 

Corollary 4.8. There exists a SPDE which has a unique solution y in N [ [ x ] ] ,  and 
such that Yl e tl~[[x]] and Yl is not computable. 

Proof  Let A C N be a recursively enumerable non-recursive set, enumerated by a 
Turing machine M. 

For  i ,j  e N,  let 

e(i,j) = 1 i f j  has already appeared at time i in the output of M 

= 0  otherwise. 
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Thus a(i,j) is a computable function, and 

d e f  i 
aij = Y', a(k,j) lO-k 

k = l  

is a computable sequence of rational numbers. 
However the sequence of rational numbers 

d e f  Qo 

bj = Z a(k,J) lO-k 
k = l  

is not computable, because 

(b j ,  0 

(Notice that 0,11111 . . . .  1/9.) 
We have 

bj=O if jCA 
and bje(D) if j e A .  

1 
bj 1(~ <=aij<=bJ' 

and these relations completely determine the bj. 
Moreover, from Theorem 4.2 it follows that ~aox'~x ~ is s.e. definable. 

Considering the power series i~ 

1 
(Z bjxJz i (~i x]) = ~ bjx]xJ2, and ~Tx~x]x�89 

j j . . . . .  10 

and using Lemma 4.9 below, we obtain that 52 bjx{ is a s.e. definable power series 
over I1. J 

Lemma 4.9. The set 

S= {~cixiER[[x]]" ci>=O, Vi}, 

is s.e. definable over l(. 

( i multi-index) 

Proof We have 

ci>O, r ~ei] eR:  (ci -c2- i,o and ei,j=e~,~+l) j one index 

~ Z ei,jxiti E R[[X ,  t l - ] ' ]  " 

Z CiX'-}- t, E ci,jxit{ = E c2jxit{ �9 (1) 
i i,j i,j 

The right hand side of (1) is s.c. definable by Lemma 4.4. 

Remark. The sequence bj in the proof of Corollary 4.9 is still a computable 
sequence of computable reals. However, by applying Lemma 4.6 we obtain a s.c. 
definable sequence of rationals (over IR) which is not a computable sequence of 
COmputable reals. 
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Corollary 4.10. There is a SPDE which has a solution in R [ [ x  i . . . .  ,x,]] 
mod(xl  . . . .  , x . )  ~ for  all ~ N ,  but has no solution in R [ [ x l ,  . . . ,x , ] ] .  

Proof. The condition on c ~ R  and y =  Z a i x  i that Z ( c - i ) x i =  Z a ~ x  i is s.e. 
definable by a SPDE. This SPDE satisfies the Corollary. 

Remark.  A result equivalent to Cor. 4.10 appears in [5]. 

We shall now establish some results for linear PDE's  and systems of linear 
PDE's. Let P(m 1 . . . . .  mr) e Z[m 1 . . . . .  mr] and let 

Y= Z ,~1,,2 ,,r C m l , . . . , m r X 1  X 2  . . . X  r ~ Cm I . . . . .  mr ~ "  
m l , . . . , m r  

Then 

P ( X l ~ , . . . , x r z ~ s - ) y =  S~ c . . . . . . . . .  P(ml , . . . ,mr)x"] l . . . x~  r. 
\ t J - ~ l  u . - ~ r /  m l ,  . . . , m r  

Hence P(ml  . . . . .  mr)=0 has no nonnegative integer solutions if and only if the 
linear PDE 

P x 1 . . . . .  x r y =  Y~ x]" . . .x~"= ... 
? / 1 1 , . . . , m r  

has a power series solution (which if it exists is convergent) in ~ [[x l . . . . .  xr]]. Thus 
from the undecidability of Hilbert's Tenth Problem [18] we have 

Theorem 4.11. There does not exist an alyorithm to decide whether a linear PDE has 
a power series solution in ~ [ [ x  i . . . . .  Xr] ] (for r large enouyh, say >9).  

Next consider the equation 

= E ,~,,~x71...x7 ~. I1) 
? 7 1 1 , . . . , m  r 

We see that (1) has a power series solution y if and only if 

d e f  

n e V = { m r ~ l q : 3 m l  . . . .  ,mr_ l  P(m 1 . . . . .  mr)=0 } ~ 2 , = 0 .  (2) 

Notice that V can be any recursively enumerable set [18]. 

Theorem 4.12. There exists a system of  linear PDE's, havin9 a power series solution 
over ~ ,  but no computable power series solution. 

Proof. Let Vr, Vz ~ N be two recursively enumerable, recursively inseparable sets. 
Let Pi, i = 1, 2 be polynomials such that 

Vii = (m r ~ N :  3ml . . . . .  mr- 1 (Pi(ml . . . . .  mr) = 0)}. 

Consider the following system Z (in the unknowns y~, Y2, u) 

, . .  -- - U Pa Xl ox I . . . . .  xr Yl 1 - x r - 1  
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8u Ou Ou 
=0,. . . ,  =0.  

Oxl 

I f~  has a power series solution Yl, Y2, u then u = ~ 2,Xr" with n ~ 1"1 =~ 2. = 0 and 
n = 0  

n e V2 => 2, = 1. Conversely for every such u there exist power series y~ and Y2 
satisfying ~ .  (Hence Z has uncountably many solutions over Q.) Z can have no 
computable power series solution u = Z 2,x," because then {n ~ N : 2. = 0} would 
be a recursive separation of V1 and V2. 

Now let V ~ N  be a recursive set. Applying the above construction to 
V1 = N -  V, V2 = V, we see that there is a system Z of linear PDE's in the unknowns 
Yl, Y2, u such that if J:l, 372, ff is a power series solution of Z then ff = Z Zv(n)xT, 
where Zv is the characteristic function of V. Conversely ifff = ~ ;(v(n)x", then there 
exist )~ and )7 2 such that ;91,372, t7 satisfy E- Repeating the above argument lbr two 
variables x~, x2 instead of x,, we see that for every computable function f :  N ~ N  
there is a system ~ of linear PDE's in the unknowns Yl, Y2, u such that Y. has a 
power series solution Yl, Y2 if and only if u =  Y.x]xI2 r 

Theorem 4.13. Let f "  lq-~ N be a computable function. Then there exists a system Z 
of linear partial differential equations over ~ Ix 1 . . . . .  x,] in the unknowns u, yl,  Y2, .-. 
such that ~ has a power series solution Yl,Y2 . . . .  if and only if u= ~ , f (n)x] .  

Proof. If there is such a system for u = Z c,. ,  .... , . x  lm'...x~" we shall say that u is 
definable by LPDE's. We have already observed that ~x]xI2 (") is definable by 

LPDE. By applying XZ~x2, we see that ~, f(n)x"~xI2 ~") is definable by LPDE's. Let 

,~ ( ~ 2  0u Ox, Ou = 0 ) "  Then (1-~1x2) u= a,x"l  i.e. ~ -  = 0  . . . . .  u= Z a,x"xx"i. Consider 
m , .  

If for all n, the coefficient of x]x2 I(") in (3) is zero then u = Z f ( n ) x ] ,  and conversely. 

Now this last condition can be imposed by an equation similar to (1) above. 

Question. Does Proposition 4.13 remain valid if we ask that Z have a unique 
solution Yl, Y2 . . . .  ? 
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