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Abstract. HUA and CHEN gave estimates of sums ~ e (~ (x)) where e (z) = e 2~ iz 
X = I  

and ~ is a polynomial of the typef(x)/q wheref(x) = a k x k +- . .  + a t x with integer 
coefficients having gcd (q, ak,..., at) = 1. But no good estimates hold for these sums 
when q is small in comparison to k. We therefore consider here a related but different 
class of polynomials. Special emphasis is given to the cubic case. 

In subsequent papers of this series we shall deal with cubic exponential sums in 
many variables and with p-adic and rational zeros of systems of cubic forms. 

1. Introduction. Let Ak (q) be the set of  po lynomia ls  ~ (x) = f ( x ) / q  
w h e r e f ( x )  = a~x k + . . .  + al x has  integer coefficients. Let  A~' (q) be 
the subset where  gcd (q, ak,.  �9 al) = 1. F o r  a po lynomia l  ~ ~ A~ (q), 
put  

q 

S ( ~ )  = q-~ E e (~ (x ) ) .  (1.I) 
x = l  

HuA [2] proved tha t  

]S(~)I  ~< c (k )q  -l/k, (1.2) 

and  CHEN [1] gave upper  bounds  for  c(k),  e .g. ,  c(3)~< e 183 and  
c (k)<~ e 4k when k >I 10. It is no t  our  in tent ion here to improve 
upon  the subtle est imates of  HUA and of  CHEN. 

The  trivial upper  bound  for I S (5) 1 is 1, and  (1.2) is bet ter  than  this 
trivial bound  only i fq  > c (k) k. It lies in the na tu re  o f  the sums tha t  for 
certain small values o f  q only  the trivial bound  holds. Fo r  example,  
if  k = q = p ,  a prime,  then  ~: ( x ) =  (x p - x ) / p  lies in A~ (q), and  

= i .  

* Partially supported by NSF contract NSF-MCS-8015356. 

0026--9255/82/0093/0063/$02.40  



64 W.M. SCHMIDT 

We believe that for certain applications the classes Ak (q) and 
A~' (q) are not the right ones, and we proceed to define new classes 
Bk (q) and B~' (q). 

Only the values of ~(x)  modulo 1 are of interest for the 
exponential sums. Let H be the factor group Q/Z of the rationals 
modulo the integers. Apolynomial of  degree <. k for us will mean an 
expression 

(x) = xk~k + " "  + x~l  

with coefficients ~k, �9 �9 el in H. Such a polynomial defines a map from 
into H. We shall say that ~ hasperiod q if ~ (x + q) = ~ (x) for each 

x e Z. The smallest positive period of ~ will be called its order. The 
periods of ~ are then precisely the multiples of its order. 

Write Bk (q) for the class of polynomials of degree K k with period 
q, and B~ (q) for the subclass of polynomials of order q. For ~ e Bk (q) 
define S(~)  by (1.1), and put 

Mk(q) = max I S(~)[.  
~ea~ (q) 

Theorem 1, Mk(q) is muhiplicative in q, i.e. Mk(qlq2)= 
= Mk (q0 Mk (q2) i f  ql, q2 are coprime. 

Theorem 2. Mk (q) <, c (k)q-l/k, with the same constant c (k) as 
in (1.2). 

It follows that Mk(q) <<. q-1/(2k) if q >1 c(k) 2k. A function ~ in 
B~' (q), where q > 1 is not a constant, hence has I S (~) I < 1. There are 
only finitely many q < c (k) 2k, and it follows from (2.3) below that 
each set B~" (q) contains only finitely many essentially different 
functions. It follows that there is a constant Ok > 0 such that 

Mk(q) <~ q-6~ (1.3) 

for all q. We will give a very crude estimate for 0k. 

Theorem 3. We have (1.3) with Ok = k-12x. 

The polynomials in B~' (q) are linear and the corresponding 
exponential sums are character sums on the additive group 7//q 2. 
Hence M~ (q) = 0 if q > 1. On the other hand, the sums estimated by 
M2(q) are Gaussian sums. By the theory of these sums, or by 
Theorem 5 of [31, we have 

M2 (q) ~< q- 1/2 
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Hence we may take 0 2 = 1/2. For subsequent application to p-adic 
cubic equations it will be important  to estimate/143 (q). 

Theorem 4. M3 (q) <~ q-S3 where 03 = 0.1142. . .  is given by 

2 -~ = cos (zr/8). (1.4) 

The value 03 ist best possible, for a = (3 x3/4) + (x2/8) + (x/4) has 
period q = 2 and JS({})I = cos (:r/8). Therefore M 3 ( 2 ) =  2 -~ 

The estimates for small values of  q are cumbersome to get. I had 
thought  that it could never happen to me, but I now have to admit that 
a few minutes on an Apple II computer  were used to estimate M3 (q) 
for certain small values of  q. 

2. The Multiplicativity ofMk (q). Given polynomials 5, if) in Bk (q), 
write ~ ,-~ (~ if ~ ( x ) =  (fi (x) for each x eZ.  For  example, the 

polynomials {} = (1/4) x 2 + (1/4) x (where the bar denotes the class 

in H = Q/Z) and (~ = (3/4) x 2 + (3/4) x in B~ (4) are equivalent. Let 
Ck (q) and C~' (q) respectively be the sets o f  equivalence classes in 
Bk (q) and in By (q). 

l_emma 1. Ck (q) has cardinality ] Ck (q) t = qk. 

Proof When k = 1, our polynomials are x ~, and period q means 

that q ~ = 0 in H. So ~ = (a/q) where a = 0, 1 . . . . .  q - 1. This gives q 
distinct polynomials. 

Now if ~ (x) is o f  degree ~< k where k > 1, then 

~ (x) = ~ (x )  - ~ ( x -  1) 

is of  degree 4 k - 1 and lies in Bk-l(q), or does it? Well, Bk_l(q) 
contains only polynomials with constant  term zero. So 

(5 (x) = (50 (x) + ~, 

where ffi0eBk_l (q) and ~ is a constant. There are qk-! possible 
equivalence classes for ffi0. For  x > 0 we have 

= = + x , . .  ( 2 . 1 )  
j = l  j = t  

The condition ~ (x + q) = ~ (x) means that 

x+q 

ffioq) + q : ' =  O. 
j = x + l  

5 Monatshefte ffir Mathernatik, Bd. 93/1 
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Since C0 has period q, this condition simply says that 
q 

Co(j) + q = = 0 .  (2.2) 
j = l  

This gives q possibilities for 0~ e H = Q/Z. For each ffi0 e Bk- 1 (q) and 
each 0~ with (2.2), the polynomial of degree ~< k defined by (2.1) has 
3 (x + q) = 3 (x) for x >-0. Since the polynomial, having coefficients 
in H, must have some period, it does in fact have the period q. 

Hence I Cg (q)[ = qg- 1. q = qg, and the lemma is established. 
We remark that in view of 

IC~" (d)l = ICg (q)l = qg, 
d[q 

Moebius' inversion formula yields 

IC~'(q)l = ~ #(cO(q/d) g= qk ~i(1 _ p - k ) .  (2.3) 
dlq Plq 

Thus ]Ck (q)[ --- lAg (q) l and I C~' (q) l = I A~ (q) l. 

l_emma 2. The values of polynomials 3 in Cg (q) are of the type 

Proof One may essentially repeat the argument of Lemma 1. In 
the induction step, we note that each value ffi0 GO is of the form 
~ ,  and (2.2) shows that ~ = (c-c-~). Thus by (2.1) the values of 3 
are of the type (a/q-~. 

If q = ql q2 with coprime ql, q2 and if 3 ;e  Ck (q;) (i = 1, 2), then 
(with an obvious addition of polynomial classes) 

3 (x) = 31 (x) + 32 (x) (2.4) 

lies in Cg (q), and may uniquely be written as such a sum of polynomial 
classes. Since qk = q~ q~, it follows that each polynomial class 3 of 
Cg (q) may uniquely be written in this way. Similarly, 3 in C~' (q) may 
uniquely be written as a sum (2.4) where 3ie  C~" (q) (i = 1, 2). 

Now 
q qi q2 

S ( 3 ) = q - l Z e ( 3 ( x ) )  = q~l qy~ Z ~ e(3(aXl+bX2)) 
x = l  x t = l  x 2 = I  

where 
{~ (modql), b = {01 (modql), 

a - (mod q2), (mod q2)- 
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We obtain 
ql q2 

S(~) = q{I q21 ~ ~ e(~l(axl  + bx2) + ~2(axl 4- bx2)) = 
x l = l  X2~1 

q~ q2 

=(q~- l  ~ e(~(ax~)) (q2~ ~ e(q~2(bx2)))= 
Xl=l  x2~ l  

= 

Theorem 1 follows. 

3. The Sets B~ (p~). In view of  multiplicativity, we will restrict 
ourselves to the case when q = pi, a pr ime power. Let/~k (pt) consist of  
the polynomials  of  Bk(p l) whose coefficients have denomina tors  

which are powers of  p,  i. e. which are of  the form (a/p=). In particular,  
/~k(p ~ consists of  the polynomials  ~ whose coefficients are 
of  this form, and which have ~ ( x ) =  0 for x~7/o For example, 
(1/2) x ~- + (1/2) x lies** in/~2 (2o)- 

Lemma 3. Every element of Bk (pt) is equivalent to an element of  
B, (p'). 

Proof Write ~ie Bk (pt) in the form ~i ( x ) = f ( x ) / m  where f has 
integer coefficients. Say m = p= r where p does not  divide r. Then  

f(x)tr 
~(x) = - - - .  p= 

By Lemma  2, the values of  ~ are of  the form a/p tg. Hence f (x)  =- 0 
(mod r) for x e 7/. Since p does not  divide r, there is a polynomial  g (x) 
such that  in f (x )  - rg (x) each coefficient is divisible by p=, so that  
f (x)  =-rg(x) (modp=r=m) for x e Z .  Thus  ~ is equivalent to 
g (x)/P = ~ Bk (pl). 

Lemma 4. I f  p > k, then Bk (pt) consists precisely of  the polynomials 
f(x)/p I where f has integer coefficients. 

Therefore  when p > k, the set /~k (PZ) is the same as the set of  
polynomials  Ak (pl) considered by HUA and CHEN. 

Proof Since p > k, it is easily seen that  iff(x)/p = ,,, O, then each 
coefficient o f f  is ___ 0 (modp=), so thatf(x)/p ~ = 0. Therefore  different 

** For convenience we will omit bars such as in (I/2). 

5* 
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polynomials (they are different if their coefficients in H = Q/Z are 
different) f ( x ) / p  n lie in different equivalence classes. The ptk poly- 
nomials f ( x ) / p  ~ lie in/)k (pl), and they represent all the plk classes in 
Ck (pt). Hence they constitute all the polynomials in/)k (pl). 

Lemma 5. Suppose p = k. Then 

(i) /)k (p0) consists o f  the p polynomials  

(alp) (x p - x ) .  (3.1) 

(ii) /)k (pt) where l >>, 1 consists o f  the plk + 1 polynomials  

(ap/pl+ 1) x p -k (ap_ lip ~) x p-  1 + . . .  + (al/pt) x .  (3.2) 

P r o o f  The polynomials (3.1) certainly lie in/)k (p0), but are they 
all? If f ( x ) / p  ~ lies in /)k(p ~ and if f ( x ) =  a p x P + . . .  + a l x ,  then 
f ( x )  - 0 (modp ") for x e 7 / w h i c h  implies ap + al - 0 (modp) and 
a p - 1 - . . . -  a2 =-0 (modp). When n = 1, this gives exactly the 
polynomials  (3.1). When n > 1, then f (p)  - 0 (modp 2) yields asp - 
- 0  (modp2), so that a s -  0 (modp) and hence each coefficient 
aj - 0 (modp). Therefore n may be replaced by n - 1, etc. Thus (i) 
is established. 

As for (ii), it follows from Lemma 3 and from (i) that 
]/)k (pt)[ = p [Ck (pt)[ = ptk+ 5. But the polynomials (3.2) clearly do lie 
in/)g (p'). 

Finally we deal with the special case k = 3, p = 2: 

Lemma 6. (i) t)3 (2~ consists o f  the 22 polynomials  

(a/Z) x 3 + (b/Z) x z + (c/2) x (3.3) 

with a + b + c - 0 (mod 2). 

(ii) /)3 (2) consists o f  the 25 polynomials  

(a/4) x 3 + (b/8) x 2 + (c/4) x (3.4) 

with a =- b =- c (mod 2). 

(iii) /)3 (2l) where l >~ 2 consists o f  the 23t+2 polynomials  

(a/2t+ 1) x 3 + (b/f+2) x z + (e/2 t) x (3.5) 

with a =- b (mod 2). 

P r o o f  If ( a x  3 + b x  2 + c x ) / 2  ~ lies in/)3 (20), then 

a x 3 + b x 2 + c x = 0 (rood 2 n) for x ~ Z,  
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whence a + b + c  = 0  (rood2). When n > 1, then the values 
x = 1 , 2 , 3  yield a + b + c = - 2 c - = - a + b - c  (mod4),  which 
gives a = b = c = 0 (mod 2), and n may be replaced by n - 1. Hence 
the polynomials (3.3) are indeed all the polynomials belonging 
to/~3 (20). 

It is clear that [/~3 (2) 1 = ]/~3 (2~ C3 (2) 1 = 22+3 = 25. On the other 
hand it is easy to check that the polynomials (3.4) do belong to/~3 (2): 
I f ~  is a polynomial (3.4), then for x ~ Z the values in H = Q/Z satisfy 

(x + 2) = (a/4) (x + 2) 3 + (b/S) (x + 2) 2 + (c/4) (x + 2) = 

= ~ (x) + �89 (ax ~ + b x) + ~ (b + c) = ~ (x). 

The argument for (iii) is similar. 

4. Proo f  o f  Theorems 2 and 3. A polynomial ~ may be written as 

(x) = f ( x ) / m  (4.1) 

where f ( x )  = ak x k + " "  + al x has gcd (m, ak,. . ., al) = 1. The func- 
tion (4.1) has period m. Hence if ~ has order q, then q lm. Thus for 
~eB~(q )  we have q lm  and 

q m 

s ( 5 )  = q -~ Y~ e 06 (x)) = m -~ Y~ e ( f ( x ) / m ) .  
x = [  x : l  

HUA'S estimate (1.2) yields 

IS(~)l 4 c ( k ) m  -1/k <~ c (k )q  -l/k, 

i. e. Theorem 2. 
For the proof  of Theorem 3 we may suppose that k ~> 3. We may 

restrict ourselves to prime powers. By the argument just  given in the 
proof  of  Theorem 2, the estimates of  CHEN and of  HUA apply. CHEN 
[1, Theorem 1] gives 

Mk(pl) <~p-l/k i fp  >~ (k - 1) 2k/(k-2) , 

Mk (J)  < k2p -Ilk for any p.  

The first inequality is certainly true i fp  >~ k 4. The second inequality 

yields MK (pt) < p-l/3k 

i fp  t ~> k 3k. We therefore are left with the cases when 

p < k 4 and pl < k3k. (4.2) 
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By L e m m a  2, the values of  ~ (x) where ~ r Bk (p) are o f  the form 
alp k. We have ~ (0) = 0, and for ~ ~ B~ (p) some value is # 0, i. e. is 
alp k with a ~ 0 (modp~). Therefore  

Mk (P) <~ p -  1 (p _ 2 + l e (0) + e (alp k) 1) ~< 1 -- (2/p) -4- (2/p) cos (z@ k) 

= 1 - (4/p)sinZ(n/2p k) <~ 1 -- (4/p) (4/n 2) @2/4p2k) = 1 -- (4/p2k+l). 

Now if ~ ~ B~ (pt), then 

1 S'-' 1 ~ e (~j (x) )  S(~)  
F x=l 

where ~j (x) = ~ (j + pZ- 1 x). Each ~j. has period p,  and there mus t  be 
some ~j of  o rde rp .  For  this ~j, the estimate [S(~j)[ ~< 1 - (4/p 2k+1) 
holds. It follows that  

tS (~)1 <~ (lip l- 1) (pl- 1 _ (4/p2k+ 1)) = 1 - (4/p2k+l). 

The condi t ions (4.2) yield 

Mk (pt) ~< 1 - (4/p 2k+t) ~< 1 - (4/k sk+3k) < 

< e-  1/k,k < (k3k)- 1/k ,zk < p-t/lc,2k. 

5. M3(P t) for p >~ 3. Define 0 ' =  0(p) and 0" = 0 " ( p )  by 
M3(p) =p-O' and by 0 " =  2 -1 (1 - (log2/logp)), and put  

0 = 0 (p) = min (�89 0"). (5.1) 

Lemma 7. M3 (pl) >~ p-Or. 

Proof. The  case l = 1 follows f rom the definit ion of  0'. For  l >~ 2, 
a polynomial  ~ e/~* (t7 l) is of  the form 

(x) = p - ' f ( x )  

wi th f (x )  = ax  3 + b x 2 +  cx. Here w h e n p  > 3, the coefficients a, b, c 
are integers with (p, a, b, c) = 1 by L e m m a  4. On the other hand  when 
p = 3, then 3 a, b, c are integers with (3, 3 a, b, c) = 1 by Lemma  5. In 
either case, the derivative f '  (x) = 3 a x 2 -4- 2 b x + c has integer coef- 
ficients with (p, 3a, 2b, c) = 1. 

We observe that  
pl-~ p 

S(~)  = p - t  ~ ~ e(~j(x))  (5.2) 
j = l  x = l  

where ~j (x) = ~ (] + p t -  l x). Taylor  expansion yields 



On Cubic Polynomials I. Hua's Estimate of Exponential Sums 71 

f '  (J) pl-2f,, p2t-3f,,, i~j (x) = ~ q) + - -  x + ~ q) x 2 + ~ (y) x 3 
P 

The coefficients of x 2 and of x 3 are integers, and therefore the inner 
sum in (5.2) vanishes u n l e s s f '  (]) - 0 (modp). 

So let .3 be the set of solutions of  this congruence; clearly 1.3[ ~< 2. 
Now 

S(~)  = p - 1  Z S(~j )  
je3 

where 6ij (x) = ~ (] + p x). The expansion is 

f '  (/) 2 - i f , ,  (/) x 2 6-  l f , , ,  (j) x 3 . 
ffJj(x) ----- ~ q) q- -fiT-2-f-x+ pl-2 "+" pl-3 

In the case when 131 = 2, each j ~ 3 has f '  (j) = 0 but f "  (j) ~ 0 
(modp),  and (Sj has order >~pt-2. An induction argument gives 
IS(~j)l ~< p-O(t-2) and 

t5(5)1 ~< (2/p)p-O(t-2~ = p-20"-0(l-2) ~ p-Ol. 

In the case when 1.31 = 1, the only situation which might be 
different is when f '  (j) - f "  (]) _= 0 (modp). But then f ' "  (j) ~ 0 
(modp). When p > 3, then (Sj is of  order ~> pl-3 by Lemma 4. In the 
case when p = 3, the coefficient of x 3 in tSj is 2 - i f , , ,  (])/31-2, and the 
order is ~> pl-  3 by Lemma 5. So the induction gives [ S (~j)[ ~< p -  0 (l- 3~, 
and 

IS(~)l <~ p-lp-O(l-3) <~ p-Ol. 

The proof  of Lemma 7 is complete. 

Lemma 8. 

(i) M3(3 l) ~< 3 -~ where 0 ( 3 ) =  0.1543. . . ,  

(ii) M3 (pl) ~< p-t/5 when p >~ 5, 
(iii) M 3 (19l) <~ p-l~3 when p > 64. 

Proof By Lemma 5 the elements of /~(3) are of  the form 
(a/9) x 3 + (b/3) x 2 + (e/3) x. The 33 polynomials (a/9) x 3 + (b/3) x 2 
with 0 ~< a < 9, 0 ~< b < 3 are a complete set of  inequivalent poly- 
nomials. Either a ~ 0 (mod 3). Then 

tS(~)I ~< 3-~(1 + le (~(1)) + e ( ~ ( -  1))J) = 

= 3-1(1 + 2 ]cos (2a:r/9)J) ~< 3- t (1  + 2cos (2~/9)). 
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Equali ty holds for ~ (x) = x3/9. Or a - 0 (mod 3) and the values of,~ 
are multiples of  1/3. For  ~ ~/~* (3) there is some value d/3 with d ~ 0 
(mod 3). Therefore  

IS (3)1 ~< 3 -1 (1 + [e(0) + e(d/3)D ~< 3 -2 (1 + 2COS (:r/3)) < 

< 3 -~ (1 + 2cos (2~r/9)). 

Hence M3 (3) = 3 -1 (1 if- 2cos  (2zr/9)) and 0' ( 3 ) =  0.1543 . . . .  It fol- 
lows that  0 (3) = 0' (3), and assert ion (i) holds. 

Similarly, one sees directly, or with short  compute r  time, that  

0' (5) = 0 .201006. . .  (assumed for (x 3 - x)/5), 

0' (7) = 0 .200253. . .  (assumed for x3/7). 

Hence 0 (5) = 0' (5) > 1/5 and 0 (7) = 0' (7) > 1/5. For  p / >  I I, the 
formula  (5.1) reduces to 0 = min(0 ' ,  1/3). Since M3(p)<~ 2p -~/2 
according to Weil, we have 

0' ~> (1/2) - (log 2/logp) t> (1/2) - (log 2/log 11) > 1/5. 

This  proves the second assertion of  the lemma. 
Finally, for p > 64, 0' > (1/2) - (log 2/log 64) = 1/3, and 0 (p) = 

= 1/3. 

6. M3 (2z). 

l_emma 9. M3 (2 t) ~< 2 -~ where 0 = 0 (2) = 0 .1142. . .  is g&en 
by 2 -o = cos (zr/8). 

Proof We commence  by showing that  

M3 (2) = cos (~r/8). (6.1) 

By L e m m a  6, the polynomials  in/~3 (2) are of  the form ( a /4 )x3+  
+ (b/8) x 2 + (c/4) x with a = b = c (mod 2). For  ~ e / ~ '  (2) we have 
~ ( 1 ) ~ 0 ,  hence ~(1)----d/8 with d ~ 0  (rood8). So I S ( ~ ) l =  
= 2-1 [ 1 + e (d/8)[ = I cos (z~ d/8)[ ~< cos (z~/8). Equali ty holds when 
a = 3, b = c = 1, and (6.1) is established. 

By L e m m a  6 again, /~3(2 3) consists of  the 211 polynomials  
(a/16) x 3 + (b/32) x 2 + (c/8) x with a = b (mod 2). These are the 
polynomials  (X 3 X 2) UX 3 1J X 2 W X (6.2) 

= d + + + - f f f  + -if- 

with 0 ~ < d < 2 ,  0 ~ < u < 8 ,  0 ~ < v < 1 6 ,  0 ~ < w < 8 .  Modu lo  the 22 
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polynomials in/)3 (2 ~ we get 29 ~- ] C  3 (23)[ inequivalent polynomials 
with 

0 ~ < d < 2 ,  0 ~ < u < 4 ,  0 ~ < v < 8 ,  0 ~ < w < 8 .  (6.3) 

The polynomial (6.2) lies in/)3 (3) precisely if 

d = 0 and u - 0 (rood 2) and u -= v -= w (rood 4). (6.4) 

The 29 - 23 inequivalent polynomials i n / ) f  (22) a n d / ) *  (23) are the 
polynomials (6.2) with (6.3) but not (6.4). My son Hannes computed 
the maximum of I S(~)I  for these polynomials on a computer. 
The maximum is 0.6932. . .  < 2 -~/2 and is assumed e.g. for 

(3, 5, 2, 0; x) e/)~' (32). Thus M3 (22), M3 (23) < 2-1/2, and the lemma 
is true for l = 2, 3. 

Suppose now that l ~> 4. By Lemma 6, the polynomials of  
/)3 (2 l ) are 

(x) = 2 - ' f ( x ) w i t h  f ( x ) =  2 x3 + 4 x 2 +  c x ,  

where a, b, c are integers with a -= b (mod 2). We note that 

f '  (x) ----- ~ (3 a x 2 -[- b x)  -[- C, 

f " ( X )  = 3 a x  + �89 

f ' "  (x) = 3 a. 

We have 
2 l-t 2 

S (5) ----- 2 - '  ~ y, e ( g  (x)) (6.5) 
j=l  x=l 

where ~j (x) = ~ q + 2 t- ~ x). Taylor expansion gives 

~j  (X) --~ ~ (]') 4- ~ - ~  X 4- 2 l-  3 f , ,  (j) X 2 _{_ 2 2 l-  4 3- if , , ,  (/) X 3" 

Since l ~> 4, the coefficients of x 2 and x 3 are integers. Thus the inner 
sum in (6.5) is zero unless f '  (/) ---- 0 (mod 2), i. e. 

3 aj  2 4- bj  + 2 c = 0 (mod 4). (6.6) 

Now ifa  - b - 0 (mod 2), say i fa  ----- 2 a*, b -- 2 b*, the congruence 
becomes a*j 2 4- b*j 4- c =- 0 (rood 2), or 

(a* 4- b*)j 4- c =- 0 (mod 2). 

For ~ e / )*  (2 l) it cannot happen that a* + b* -= c - 0 (rood 2). Hence 
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there is at mos t  o n e j  (mod 2) w i t h f '  (j) _~ 0 (rood 2). I f  there is such a j ,  
then 

2l-1 

S(~)  = 2 - ' . 2  l - '  ~ e f f f i ( x ) )=  2-1S({~) 
x = l  

where 
3 -1f , , ,  f '  (j) . f "  q) x 2 q) x 3. ~ i ( x ) = ~ q + 2 x ) = ~ ( j ) + ~ i - x + - ~ z T  + 2t_2 

N o w  a* = b* = 0 (mod 2) together  w i t h f '  (/) = 0 (rood 2) would  yield 
c - 0 (mod 2), which cannot  happen.  Hence  not  both  a* and b* are 
= 0 (mod2) ,  and we cannot  have both  f " ( j ) =  0 (rood2) and 

f ' "  (j) =- 0 (mod 4). Compar ing  this fact with L e m m a  6 we see that  tB 
is of  order  >~ 2 l-4. By induction,  

IS(~)I  ~< 2-12  -~ < 2 -~ 

In the case when a - b = 1 (mod 2), not  both  j and j + 2 can be 
solutions of  (6.6). So if ,~ is the set of  numbers  j (rood 4) with (6.6), 
then 1,~1 ~ 2. We have 

2t-2 

S ( ~ ) = 2 - ' Z  E e ( 6 } J ( x ) ) = 2 - 2 E S ( ~ J )  
je• x = l  J~3 

where 
f '  q) 2 f "  q) 3-  ' f ' "  (]) 

ffij (x) = ~ (j + 4 x) = ~ (j) + ~TZT x 4 2l_ 2 x2 + 2 t- 5 x3" 

The assumpt ion  b = 1 (mod 2) yields 2 f "  (j) = 1 (mod 2), so that  tfj 
has order >t 2 l-4 by L e m m a  6 .  By induction,  

IS( )l ~< 2 -2. 2, 2 -~ < 2 -~ 
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