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q
Abstract. HUa and CHEN gave estimates of sums Z e (§ (x)) where e (z) = &27*

and & is a polynomial of the type f(x)/q where f(x) = a,i ¥ + -+ + a, x with integer
coefficients having ged (¢, 4z, - . ., 4;) == 1. But no good estimates hold for these sums
when ¢ is small in comparison to k. We therefore consider here a related but different
class of polynomials. Special emphasis is given to the cubic case.

In subsequent papers of this series we shall deal with cubic exponential sums in
many variables and with p-adic and rational zeros of systems of cubic forms.

1. Introduction. Let 4, (q) be the set of polynomials § (x) = f(x)/g
where f(x) = a, x* + - - + a; x has integer coefficients. Let A () be
the subset where ged (g, @y, . . ., a;) = 1. For a polynomial § € 4} (g),
put

S@ =473 0. (1)

Hua [2] proved that
IS@ <ctk)yg™, (1.2)

and CHEN [1] gave upper bounds for c(k), e.g., ¢(3) < e and
c(k) < &' when k > 10. It is not our intention here to improve
upon the subtle estimates of HUA and of CHEN.

The trivial upper bound for | S (§)]is 1, and (1.2) is better than this
trivial bound onlyif ¢ > ¢ (k). It lies in the nature of the sums that for
certain small values of ¢ only the trivial bound holds. For example,
if k=¢g=p, a prime, then & (x)= (¥’ — x)/p lies in 4} (g), and
S@ =1L
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We believe that for certain applications the classes A4;{(¢) and
A¥ (q) are not the right ones, and we proceed to define new classes
By (q) and Bf (g).

Only the values of §(x) modulo 1 are of interest for the
exponential sums. Let H be the factor group O/Z of the rationals
modulo the integers. A polynomial of degree < k for us will mean an
expression

T =x o+ 4 xa

with coefficients oy, . . ., «; in H. Such a polynomial defines a map from
Z into H. We shall say that § has period g if § (x + q) = & (x) for each
x€Z. The smallest positive period of § will be called its order. The
periods of & are then precisely the multiples of its order.

Write By (g) for the class of polynomials of degree < k with period
q,and B (g) for the subclass of polynomials of order q. For § € B, (9)
define S(¥) by (1.1), and put '

Mi(g) = max |S(&).
8eBt (@
Theorem 1. M, (q) is multiplicative in q, i.e. Mi(q,q;)=
= M, (9:) M\ (92) if 41,9, are coprime.
Theorem 2. M, (q) < ¢ (k) g~ ", with the same constant c(k) as
in (1.2).
It follows that M, (q) < ¢ V®® if g > c(k)**. A function § in
B (g9), where g > 1isnot a constant, hence has|S(§)| < 1. There are
only finitely many g < ¢ (k)**, and it follows from (2.3) below that

each set Bj (¢) contains only finitely many essentially different
functions. It follows that there is a constant 6, > 0 such that

M (@ <qg"™ (1.3)
for all g. We will give a very crude estimate for 6.
Theorem 3. We have (1.3) with 6, = k™ '?*.

The polynomials in Bf (g) are linear and the corresponding
exponential sums are character sums on the additive group Z/gZ.
Hence A (g) =0 if ¢ > 1. On the other hand, the sums estimated by
M,(g) are Gaussian sums. By the theory of these sums, or by
Theorem 5 of [3], we have ‘

M;(q) < th/z-
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Hence we may take 6, = 1/2. For subsequent application to p-adic
cubic equations it will be important to estimate M;(q).

Theorem 4. M;(q) < q~* where 6; =0.1142. .. is given by
27% = cos (7/8). (1.4

The value 65 ist best possible, for § = (3 x*/4) + (x*/8) + (x/4) has
period ¢ = 2 and |S(§)| = cos (/8). Therefore M;(2) =2"%.

The estimates for small values of g are cumbersome to get. I had
thought that it could never happen to me, but Inow have to admit that
a few minutes on an Apple Il computer were used to estimate 5 (g)
for certain small values of g.

2. The Multiplicativity of M, (q). Given polynomials §, ® in By (g),
write F~ G if Fx) =G (x) for each xeZ. For example, the
polynomials § = (1/4) x> 4 (1/4) x (where the bar denotes the class
in H=Q/7) and ® = (3/4) x* + (3/4) x in B, (4) are equivalent. Let
C, (g) and C§ (g) respectively be the sets of equivalence classes in
B, (g) and in B (g). '

Lemma 1. C, (q) has cardinality |C,. (q)] = q~.

Proof. When k = 1, our polynomials are x «, and period g means
that ga = 01in H. 50a=mwherea=0, l,...,g— 1. This gives g
distinct polynomials.

Now if & (x) is of degree < k where k > 1, then

GX)=F@x)-Fx~-1

is of degree <k — 1 and lies in B,_;(g), or does it? Well, B;,_;(g)
contains only polynomials with constant term zero. So

® (x) = Gy (x) + a,

where ®,e B,_;(q) and « is a constant. There are g*~' possible
equivalence classes for ®,. For x > 0 we have

J

FO=206M0= 2 G()+xo. @0
j=1 =1
The condition & (x + ¢) = & (x) means that
x+q

Y () +qu=0.

Jj=x+1
5 Monatshefte fiir Mathematik, Bd. 93/1
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Since ®, has period ¢, this condition simply says that

g

Y 6,() +ga=0. 2.2)

j=1

This gives g possibilities for « € H = Q/Z. For each ;€ B,_,(q) and

each « with (2.2), the polynomial of degree < k defined by (2.1) has

& (x + 9) = & (x) for x > 0. Since the polynomial, having coefficients

in H, must have some period, it does in fact have the period gq.
Hence |C (9)| = ¢* ' g = ¢*, and the lemma is established.
We remark that in view of

2 ICE@]=|Ce(@l=g",

dlgq
Moebius’ inversion formula yields
ICE@= Y p@@d=4" T]A—-p7H. (2.3)
digq rlg
Thus [Cy (9)| = |4 (9)] and |CF¥ (9)| = | 4% (9)].

Lemma 2. The values of polynomials & in C;(q) are of the type
(a/q").

Proof. One may essentially repeat the argument of Lemma 1. In
the induction step, we note that each value ®,(j) is of the form

(b/g*" 1), and (2.2) shows that « = (c/¢¥). Thus by (2.1) the values of &

are of the type (a/qki.
If g = g, g, with coprime ¢q,, ¢, and if §;eC,(g) (i=1,2), then
(with an obvious addition of polynomial classes)

) =8+ () (2.4)

liesin C; (¢), and may uniquely be written as such a sum of polynomial
classes. Since ¢* = ¢ ¢f, it follows that each polynomial class & of
C, (¢) may uniquely be written in this way. Similarly, & in C¥ (¢) may
uniquely be written as a sum (2.4) where ;e C¥ (¢) (i=1,2).

Now

q q1 q2
SE=q""'Y e@Fx) =9q7"q;" Zl ZI e(§(ax;+ bxy))
x=1 xi=1 x2=
where
a= {1 (mOd ql)’ — {0 (mOd ql)a
~ 10 (mod gy), ~ {1 (mod gy).
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We obtain
q1 q2
S@E =q7"'q;' Y. Y e@(ax;+bx))+ Faolax; + bxy)) =
x1=1 x=1
— (g Z']e(waxo) @7y e@abx) =
x|= x2=1
= S(&1) S @) -

Theorem 1 follows.

3. The Sets By (p'). In view of multiplicativity, we will restrict
ourselves to the case when g = p/, a prime power. Let By (p’) consist of
the polynomials of B, (p') whose coefficients have denominators
which are powers of p, i. e. which are of the form (a/p”). In particular,
B, (p") consists of the polynomials & whose coefficients are
of this form, and which have ¥ (x) =0 for xeZ. For example,
(1/2) 2+ (1/2) x lies™ in B, (2%).

_ Lemma 3. Every element of By (") is equivalent to an element of
B (). _

Proof. Write € B, (p') in the form & (x) = f(x)/m where f has
integer coefficients. Say m = p"r where p does not divide r. Then

By Lemma 2, the values of §& are of the form a/p™*. Hence f(x) = 0
(modr) for x e Z. Since p does not divide r, there is a polynomial g (x)
such that in f(x) — rg (x) each coefficient is divisible by p”, so that
f(x)=rg(x) (modp"r=m) for xeZ. Thus § is equivalent to
g (x)/p"e B, (p).

Lemmad. If p > k, then By (p") consists precisely of the polynomials
f(x)/p" where f has integer coefficients.

Therefore when p > k, the set B, (p) is the same as the set of
polynomials 4, (p') considered by HuA and CHEN.

Proof. Since p > k, it is easily seen that if f(x)/p" ~ 0, then each
coefficient of fis = 0 (mod p”), so that f(x)/p” = 0. Therefore different

** For convenience we will omit bars such as in (1/2).
5*
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polynomials (they are different if their coefficients in H = (IZ.D/Z are
different) f (x)/p lie in different equivalence classes. The p'* poly-
nomials f(x)/p’ lie in By (p'), and they represent all the p ¥ classes in
C, (p). Hence they constitute all the polynomials in B, (p").

Lemma 5. Suppose p = k. Then
() B (°) consists of the p polynomials

(a/p) (x* = x). 3.
(i) B, (p') where 1> 1 consists of the p'**' polynomials
(@/p"™ ) x? + (@, [p) X"+ 4 (@fp)x. (3.2)

Proof. The polynomials (3.1) certainly lie in B, (p°), but are they
all? If f(x)/p" lies in B, (p°) and if fx)=a,x" + ...+ a,x, then
f(x) =0 (modp") for xeZ, which implies a, + a; = 0 (mod p) and
a_1=...=a=0 (modp). When n=1, this glves exactly the
polynomlals (3.1). When # > 1, then f(p) = 0 (mod p?) yields a,p =
= 0 (mod p?), so that @, =0 (modp) and hence each coefficient
a; = 0 (modp). Therefore n may be replaced by n — 1, etc. Thus (i)
is established.

As for (i), it follows from Lemma 3 and from (i) that
| Be (p )| =p|Cr(p)| = p'**'. But the polynomials (3.2) clearly do lie

in B (p").
Finally we deal with the special case k = 3, p = 2:

Lemma 6. () B, (2°) consists of the 2* polynomials
@2) X+ B2 2+ (¢/2) x (3.3)
with a+ b + ¢ = 0 (mod 2).
(i) B;(2) consists of the 2° polynomials
(@/4) x> + /8 x* + (c/4) x (34
with a = b = ¢ (mod 2).
(i) B;(2") where 1> 2 consists of the 2*'*? polynomials
| @2 % + (B/24) % + (¢/2) x 3.5
with a = b (mod 2). '
Proof. If (ax® + bx* 4 ¢ x)/2" lies in B;(2°), then
ax*+ bx*+ cx =0 (mod 2" for xeZ,
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whence a+b+c¢=0 (mod2). When »n>1, then the values
x=123 yield a+b+c=2c=—a+b—-c (mod4), which
gives a = b = ¢ = 0 (mod 2), and n may be replaced by n — 1. Hence
the polynomials (3.3) are indeed all the polynomials belonging
to B;(2%.

Itis clear that | B; (2)] = | B; (2%)|| C5(2)| = 2°*3 = 2°. On the other
hand it is easy to check that the polynomials (3.4) do belong to B; (2):
If & is a polynomial (3.4), then for x € Z the values in H = Q/Z satisfy

FE+)=@Hx+2+ G+ +(/Hx+2)=

=FO) +1@x"+b0)+ 510G +)=Fx).

The argument for (iii) is similar.

4. Proof of Theorems 2 and 3. A polynomial § may be written as
& (x) = f(x)/m @.1)

where f(x) = ay x* + -+ + a, x has ged (m, a, . . .,a;) = 1. The func-
tion (4.1) has period m. Hence if § has order ¢, then g|m. Thus for
& € B (q) we have g|m and

9

S@®=q"'Y e@F)=m""' Ze(f(X)/m)-

x=1

Hua’s estimate (1.2) yields
IS@)| <clym™ " < ck)g™,

1.e. Theorem 2.

For the proof of Theorem 3 we may suppose that k£ > 3. We may
restrict ourselves to prime powers. By the argument just given in the
proof of Theorem 2, the estimates of CHEN and of Hua apply. CHEN
[1, Theorem 1] gives

M () <p~'if p > (k — 1462,
M (p) < k*p~" for any p.
The first inequality is certainly true if p > k*. The second inequality
yields M, (') < p~'*
if p' > k**. We therefore are left with the cases when

p < k*and p' < &%, 4.2)
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By Lemma 2, the values of & (x) where § € By (p) are of the form
a/p*. We have § (0) = 0, and for e B¥(p) some value is # 0, i. e. is
a/p* with a # 0 (mod p%). Therefore

My@)<p~'(p—2+1]e©) +e(@/p)) < 1— Q/p) + (2/p)cos (z/p")
=1 — (4/p)sin®(n/2p") < 1 — (4/p) (4/2) (Y4 p*) =1 — @4/p***Y).

Now if § e B (p’), then

1 2212
S® = % <Z» Y e )

where §;(x) = & (i + p' ' x). Each &; has period p, and there must be
some &; of order p. For this §;, the estimate |.S(F)| < 1 — @/p***")
holds. It follows that

IS@ < W' H @' = @p*h) =1-@/p**.
The conditions (4.2) yield
M (@) <1 @p*+) <1 - @K+ <

— k — —
<e l/k“ <(k3k) 1/k12k<p I/klzk.

5. My(p') for p>3. Define 6'=06(s) and 6" =6"(p) by
M;(p)=p " and by 6" = 27" (1 ~ (log 2/logp)), and put

6=6(p)=min(,6,0"). 5.1)
Lemma 7. M;(p") > p~%.

Proof. The case I = 1 follows from the definition of §". For / > 2,
a polynomial § e B} (p') is of the form

Fx)=p~'fx)

with f(x) = ax® + bx* + ¢ x. Here when p > 3, the coefficients a, b, ¢
are integers with (p, a, b, ¢) = 1 by Lemma 4. On the other hand when
p = 3, then 34, b, ¢ are integers with (3,3a,b,¢) = 1 by Lemma 5. In
either case, the derivative f' (x) = 3 ax> + 2bx + ¢ has integer coef-
ficients with (p,3a,2b,c) = 1.

We observe that
Pmtop

SE=p"Y 3 @) (.2)

j=1 x=1

where §;(x) = §( +p" ' x). Taylor expansion yields
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f(l)

800 = +4P R+ 4P R

The coefficients of x* and of x* are integers, and therefore the inner
sum in (5.2) vanishes unless /' () = 0 (mod p).
So let J be the set of solutions of this congruence; clearly [J] < 2

Now
SE=p") Sy
jed
where ®;(x) = & (j + p x). The expansion is

1 11
@()—MH“’) + p,fz(’) x4

6—1f/// (]) ;
i—3 X",
p

In the case when |J| = 2, each]e\s has f” () = 0 but "' () $_ 0
(modp), and ®; has order > p'~% An induction argument gives
1S(G)| <p~ ' 5 and

IS@I<@pp' P =p L™

In the case when |J|= 1, the only situation which might be
different is when f’(j) Ef”(]‘) =0 (modp). But then f""(j)£0
(mod p). When p > 3, then ®; is of order > p'7? by Lemma 4. In the
case when p = 3, the coefﬁ01ent of x*in ®;is 27 LF (7)/32, and the
orderis > p'~* by Lemma 5. So the 1nduct10n gives [S(®)] < p_e(l 3
and

IS@I<p~'p~ I <p7
The proof of Lemma 7 is complete.

Lemma 8.

i) M;(3) <3O where §(3)=0.1543.. .,

@) My <p™" when p=5,

(i) M3(p)<p™ when p>64.

Proof. By Lemma 5 the elements of B(3) are of the form
(@/9) x> + (b/3) x* + (¢/3) x. The 3° polynomials (a/9) x> + (b/3) x*
with 0 <a <9, 0 <b <3 are a complete set of inequivalent poly-
nomials. Either a # 0 (mod 3). Then

IS@I<37'A+e@F D) +e@F (- D)=
=37"(1+ 2|cos (2an/9)) < 37" (1 + 2cos (27/9)).
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Equality holds for § (x) = x3é9. Or a = 0 (mod 3) and the values of §
are multiples of 1/3. For & € B¥ (3) there is some value d/3 withd # 0
(mod 3). Therefore

ISQ)I<3'A+e@+e@3)]) <37 '(1+2cos(x/3)) <
<3711 + 2cos(27/9)).
Hence M;(3) =3""(1 + 2cos (2/9)) and 6’ (3) = 0.1543 ... . It fol-

lows that 6 (3) = 6’ (3), and assertion (i) holds.
Similarly, one sees directly, or with short computer time, that

6’ (5) = 0.201006. .. (assumed for (x° — x)/5),
6’ (7) = 0.200253. .. (assumed for x/7).

Hence 6(5)=16'(5)> 1/5 and 6(7) =6'(7) > 1/5. For p > 11, the
formula (5.1) reduces to 6= min (8, 1/3). Since M,(p) < 2p?
according to Weil, we have

6" > (1/2) — (log 2/logp) = (1/2) — (log2/log 11) > 1/5.

This proves the second assertion of the lemma.
Finally, for p > 64, 6" > (1/2) — (log2/log 64) = 1/3, and 6 (p) =
= 1/3.

6. M;(2).

Lemma 9. M;(2) < 2%, where 6 =6(2)=0.1142... is given
by 2% = cos (=/8).

Proof. We commence by showing that
M;(2) = cos (#/8). 6.1

By Lemma 6, the polynomials in B;(2) are of the form (a/4) x* +
+ (b/8) x> + (c/4)x with a = b = ¢ (mod 2). For §e B¥ (2) we have
F(#0, hence F(1)=4d/8 with d£0 (mod8). So {SE&)|=
=2""1 + e(d/8)| = |cos (x d/8)| < cos (/8). Equality holds when
a=3,b=c=1, and (6.1) is established.

By Lemma 6 again, B;(2%) consists of the 2!' polynomials
(@/16) x> + (b/32) x* + (¢/8) x with a = b(mod2). These are the

1 ial
R d; —d(x3 + x2)+ W T 6
g(uavaws ,X)— Tg 32 8 16 8 .

with 0<d <2, 0<u<8, 0<v<16, 0<w<8. Modulo the 2?
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polynomials in B; (2°) we get 2° = |C; (2°)] inequivalent polynomials
with

0<d<2 0<su<4, 0<v<s 0<w<38. (6.3)
The polynomial (6.2) lies in B; (3) precisely if

d=0and u=0 (mod2) and u=v =w (mod4). (6.4)

The 2° — 2° inequivalent polynomials in B¥ (2%) and B¥ (2°) are the
polynomials (6.2) with (6.3) but not (6.4). My son Hannes computed
the maximum of |S(&)| for these polynomials on a computer.
The maximum is 0.6932... <2 Y% and is assumed e.g. for
F(3,5,2,0; x) € B¥ (3). Thus M; (2%, M;(2*) < 272, and the lemma
is true for /=2, 3.

Suppose now that />4, By Lemma 6, the polynomials of
B, (2)) are

F (x) =27 'f(x) with f(x) = x +ix +cx,

where a, b, ¢ are integers with a = b (mod 2). We note that
f'x) =3@ax’+bx)+c,
f'(x) =3ax+1b,
S (x)=3a.

2712

S@=2""Y ¥ @) (6.5)

j=1 x=1

We have

where &;(x) =& ( + 2='x). Taylor expansion gives
f’(l) =3 pir 2{~4 1 prer
T =FGO+=—7x+ 271 )P+ 227437 X
Since / > 4, the coefficients of x* and x> are integers. Thus the inner
sum in (6.5) is zero unless /' (j) = 0 (mod 2), i. e.
3a°+bj+2c=0 (mod4). 6.6)

Nowifa = b = 0(mod 2),sayifa = 2a*, b = 2 b*, the congruence
becomes a* j2 + b*j + ¢ = 0 (mod 2), or

(@ +b*)j+c =0 (mod?2).
For & € B (2') it cannot happen that a* + b* = ¢ = 0 (mod 2). Hence
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there is at most one j (mod 2) with f” (j) = 0 (mod 2). If thereis such aj,
then
21
S@E=2""12"""Y e (x)=2""S(6)
x=1
where

G ()= +2 )—mz)+’;,f’7 +f2,_(’? 2{':(’) x.

Now a* = b* = 0 (mod 2) together with /' (f) = 0 (mod 2) would yield
¢ = 0 (mod 2), which cannot happen. Hence not both ¢* and b* are
=0 (mod?2), and we cannot have both f"(j)=0 (mod2) and
f ""(j) = 0 (mod 4) Comparing this fact with Lemma 6 we see that ®
is of order > 2/~*. By induction,

IS((OS')‘ < 2—12—9(1-—4) < 2—01.

In the case when @ = b = 1 (mod 2), not both j and j + 2 can be
solutions of (6.6). So if J is the set of numbers j (mod 4) with (6.6),
then |J| < 2. We have

x2+

9i-2

S@®) = 2"’.2 ; e(®;(x) =277 Z S(®)
where e = =
2 1 —1 p£res
6,0=5G+40 =50+ L 0x 42D e 3 0o

The assumption b = 1 (mod 2) yields 2"’ (j) = 1 (mod 2), so that ®;
has order > 2'~* by Lemma 6. By induction,

IS(F)| <272.2.27009 < 278,
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