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Abstract. In this article, some row-cyclic error-correcting codes are shown to be ideals in group rings in which 
the underlying group is metacyclic. For a given underlying group, several nonequivalent codes with this structure 
may be generated. Each is related to a cyclic code generated in response to the metrics associated with the under- 
lying metacyclic group. Such codes in the same group ring are isomorphic as vector spaces but may vary greatly 
in weight distributions and so are nonequivalent. If the associated cyclic code is irreducible, examining the struc- 
ture of its isomorphic finite field yields all nonequivalent codes with the desired structure. Several such codes 
have been found to have minimum distances equalling those of the best known linear codes of the same length 
and dimension. 

I.  Introduct ion 

1.1. Quasi-Cyclic Codes 

Let  C, a l inear  (mn, k)  b l o c k  code  over  f ie ld F, have the posi t ions  of  its symbols  numbered  
0, 1, . . . ,  mn - 1. Code  C is cons ide red  row-cyclic (and quasi-cyclic)  i f  it  is invariant  
under  permuta t ions  of  its posi t ions,  i, o f  the form 

"),j : i ~ ( ( i  - i ' )  + j )  m o d  m + i '  whe re  i '  = l_i/ml �9 m and 0 <_ j < m [7]. 

Cons ide r  a codeword  of  C to be  a sequence of  n e lements  of  F 77 m where  77 m = < x  > .  

I f  C has  a s ingle  genera tor  g, where  g = I Co(X) [ Cl(X) I c2(x) [ . - .  [ Cn-l(X) [ where  
ci(x) E FT/m for all  i and [ denotes  concatenat ion  (as in [7, p. 584]).  A generat ing array 
for  C may be  fo rmed  by concatenat ing  the n c i rculant  mat r ices  that  resul t  f rom taking cor-  
responding  cyclic shifts of  each m-tuple  of  the generator :  the unreduced  generat ing array 
g = [go g l  " ' "  g , - 1 ]  where ,  for all  i, 0 _< i < n, t h e j - t h  row of  g i  is x j �9 ci(x), 0 
_< j < m. Such codes  are  referred to as row-cyclic.  

Al ternat ively,  we may  cons ider  the codewords  of  C to be  e lements  of  the group r ing 
F(7/m x 7]n). Clea r ly  l inear  code  C wi th  genera tor  g is a vector  subspace  o f F ( Z  m • 
7/n). We wi l l  show that  cer ta in  of  these codes,  resul t ing f rom careful  select ion of  g,  ex- 
hibi t  a s t ronger  structure,  that  of  an ideal  in a g roup  ring. 

*This work was presented in part at the First International Conference on Finite Fields, Coding Theory, and 
Advances in Communications and Computing, Las Vegas, Nevada, August, 1991. 
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1.2. Metacyclic Codes 

A metacyclic group is an extension of a cyclic group by a cyclic group. We will denote 
such a group as G(m, n, r) where 

G(mn, n, r) = {xi)/ : x m = yn = 1, yx = xry} 

where gcd(m, r) = 1 and r n m 1 mod m. The r parameter may be informally viewed 
as the measure of non-abelian-ness Of the group. I f  r = 1, then G(m, n, r) is the abelian 
7/m x 7/n. We will consider metacyclic groups for which neither m nor n is 1. 

I f  field F = GF(pq), group ring FG(m, n, r) consists of polynomials of the form 

n - 1  m - 1  

f (x ,  y) = ~_j ~_a fijxiyj, A E F. 
j=O i=O 

(1) 

Define addition in the group ring in the obvious way. Multiplication is performed in the 
usual polynomial manner, but, like multiplication in the underlying group, may be non- 
commutative. We will assume thrughout the remainder of this article that god(p, m) = 1 
ensuring that F7Zm is semi-simple [3]. 

An element of FG(m, n, r) may be written as in (1) or alternatively as a sequence of 
n polynomials in FT/m: 

f ( x ,  y )  = I 3~(x) I fl(x) I I fn-l(X) [, f~(x) ~ F77 m. (2) 

We will reserve the term metacyclic code for ideals in FG(m, n, r) where G(m, n, r) is 
nonabelian, i.e., where r ;~ 1. 

2. Defining the Codes 

2.1. The Associated Cyclic Code 

Some quasi-cyclic codes are ideals in FG (m, n, r). Such codes are isomorphic to cyclic 
codes in F T/m. To show this, we begin by defining the isomorphic cyclic code. 

Let C/a represent a Q-cyclotomie coset (mod m) containing i, i.e., Ci a = {i, iQ, iQ 2, 
iQ 3 . . . .  } with all elements taken mod m. I f  F = GF(pq), cyclic code (~ C FT/m has 
its set of nonzeros 5 = {o~ i : i E S} where o0 is a primitive m-th root of unity and S is 
the union of one or more pq-cyclotomic cosets (rood m). We will use ~ to build a quasi- 
cyclic code only if the corresponding set S satisfies two conditions: first, 0 ~ S, i.e., o~ ~ 
is not a nonzero of ~ .  Additionally, S must be a union of r-cyclotomic cosets (mod m). 
For each qualifying (m, n, r),  at least one such S and consequently one such ~ exists. 
Let such an ~ have dimension k and idempotent generator e(x). For a given FG(m, n, r ), 
one or more such codes may be found. We define such a code. 
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DEFINITION. For a given FG(m, n, r),  if cyclic code (~ E F~-  m satisfies the conditions 
above, then ~ is an associated cyclic code for FG(m, n, r). 

The identification of appropriate generators requires the definition of an isomorphism 
on F 7/m. 

DEFINITION. Let isomorphism p : FT/m --~ F7/m where p : f ix  i ,-. fi Xir forf i  ~ F. 

Since gcd(m, r) = 1, p is an automorphism on the group ring FT/m. Choose {~ C F7/m 
as described above with corresponding S, a union o f p  q cyclotomic cosets that identifies 
the nonzeroes of (g, also a union of r-cyclotomic cosets. Then (~ is stable under p, i.e., 
p is an automorphism of ~,  and p(e(x)) = e(x) [2]. And since r" = 1 mod m, pn(c(x))  
= c(x) for any c(x) in 6L We define a product of successive images of c(x) under p. 

DEFINITION. Let Np(c(x)) = Hn~ l pi(c(x)) .  

Note that if 6g is irreducible and p generates the Galois group of C~ over GF(p), the 
product above is the norm of the Galois group [5]. 

2.2. Code Generators 

Having identified an associated cycle code t~, select c(x) ~ (~ such that Np(c(x)) = e(x). 
At least one such element exists, c(x) = e(x), but, in fact, many such elements may be 
found. Define a sequence of n elements of (L 

DEFINITION. Let C~ be an associated cyclic code for FG(m, n, r) with idempotent generator 
e (x). A p-generator in FG(m, n, r) is of the form 

g = I~(x)  l c C x ) l c ( x ) , p ( c ( x ) ) l c ( x ) ,  p ( c ( x ) ) ,  p2(c(x) ) l  . . .  I n p :  2 pi (c (x ) ) l  (3) 

where c(x) ~ ~ and Np(c(x)) = e(x). 

A p-generator (3) may be used to create a generating matrix g for a row-cyclic code 
as in 1.1. Such a code will have dimension k = dim(6~) and will be isomorphic (as a vec- 
tor space) to ~2. 

Note. If F = GF(2) and (~ is minimal, g belongs to a more general family of generators, 
studied by Piret [9], of the form 

g = I~(x)  l c l ( x ) l e = ( x ) l  . . .  ICn- , (X)  l (4) 

where for all i, ci(x) E (~, a minimal (m, k, d) binary cyclic code with idempotent 
generator E(x). For every i, ci(x ) = e(x) " f ( x )  b(i) wheref(x)  is a primitive polynomial 
of degree m - k, b(i)  an integer-valued function, and f ( x )  b(i) is taken mod f ( x ) .  He 
showed that, in some cases, such codes rival the best known linear block codes of like 
length and dimension. 
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We note that if r = 1, only one generator is possible since p = 1 and Np(c(x)) = e(x) 
only if c(x) = e(x). Then g = I e(x) ] e(x) I " '"  I e(x) I and the codewords generated 
are simply n-repetitions of a codeword of 6L Such a code is an ideal in F (77 m • 7/ ,) ,  
but, with dimension k and minimum distance equal to n times the minimum distance of 
(~, is uninteresting. 

We wish to show that the quasi-cycle code generated by a p-generator is an ideal in 
FG(m, n, r) .  To do so, we relate p to multiplication in FG(m, n, r) .  

LEMMA 1. L e t  p : FTZrn ~ F T ] m ,  p : f i x  i ~ f ix ir. If  d ( x ,  y) = I do(x) I d l (X)  I " ' "  I 
d,- l (x)  I E FG(m, n, r), then 

y" ([ do(x) l d,(x) l " I d ._ , (x)  l ) = I p (d . - i (x ) )  I p(do(x)) I " I p(d. -2(x))  I. 

Proof. As an element of  FG(m, n, r) 

d(x, y) = do(x) + dl(X) �9 y + . . .  + d,_l(X) �9 y , -1 .  

y " d(x, y)  = y "  do(x) + y "  dl(X) �9 y + . . .  + y "  dn_l(X) �9 yn-1. 

In G(m, n, r ) ,  y �9 x = x r �9 y. Therefore, y �9 x = p(x) �9 y. By the linearity of p 

y "  d(x,  y )  = I p(dn-1(x))  I p(do(x)) I " ' "  ] P(dn-2(x))  I. []  

Note. For the remainder of  this article, we simplify notation by omitting the use of  the 
indeterminate x in referring to elements of  FT/m, e.g.,  c(x) will be referred to as c. 

In Theorem 1, matrix g is derived from g as described in 1.1. 

THEOREM 1. A quasi-cyclic code Q generated by g, the generating matrix derived from 
p-generator g is a left ideal in FG(m, n, r) with generator g. 

Proof. Let C be the left ideal generated by g in FG(m, n, r). Let 0, be the quasi-cyclic 
code generated by ~. The row space of g includes all elements of the form x i �9 g. Clear- 
ly, Q c_ C. 

n -2  

Y"  g = Y "  ( I e ] c I c "  p (c )  I " I R pe(c) I ) 
i=0 

n--I 

= I I - [  p (c) I p(e) I p(c) 
/=1 

n - 2  

I I -[  p i (c) I by Lemma 1 
i=1 

n-1  n - 2  

= [ 1-I pi(c) l e  [ p ( c )  [ . . .  [ 1-I p i (c ) [  since p(e) = e 
i=1 i=1 
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c w a s  c h o s e n  so  tha t  I l i=  On-1 p i ( c  ) =. e. L e t f  = IIn=l 1 p i ( c )  E (YL. T h e n  e = f "  c a n d  

n - 2  

y "g  = I f l f ' c  I f"  c" p(c)I  . . .  I f "  1-I pi(c) l 
i=O 

n - 2  

= f (  I ~ I c I c .  p(c) I . . .  I I - [  p,(c) I ) 
i=0  

This element belongs to the row space of ~ and hence is in Q. It follows that any element 
of the form yi . g E ~ .  Since 0, is linear, C ~_ ~.  [] 

To simplify notation, we will refer to the quasi-cyclic code generated by g built from 
c (as above) as C (c). 

LEMMA 2. If F = GF(p q) and n - 1 mod p, then p-generators in FG(m, n, r) are 
idempotent. 

Proof  Let g be a p-generator in FG(m, n, r). Multiplying in FG(m, n, r): 

n - 1  

g ' g  = e " g  + c ' y ' g  + c ' p ( c ) . y 2 . g  + . . .  + Y I  P i (c)  . y n - 1  . g .  
i=0 

Distributing to each of the n m-tuples in g and using Lemma 1: 

n-2 

g"  g = ( I ~ I c I c .  , ( c ) )  I c .  p (c )  . p2(c) I . . .  l Y I  ,~(c))  J ) 
i=O 

n - 1  n - 2  

+ (I c . I ] p ~ ( c )  l c l c - o ( c ) l c . o ( c ) - o ~ ( c ) l  I I - [ p ~ ( c ) [ )  
i=l i=O 

n - 1  n n - 2  

+ (I c . o ( c ) ' l - [ o ' ( c ) l c . o ( c ) " I - I o ' ( c ) l c ' p ( c ) l  . . .  I 1-Io~(c) ! ) 
i=2 i=2 i=O 

+ �9  

n-2 n-2  

+ ( I 1-I o'(c) ,  on- l (c)  I C I c" O(c) I c" O(c)" O~(c) I I 1-I O'(c) I ) 
i=O i=O 

~" l ' I i=  0 p i ( c )  ~- ~, and n - 1 mod (char F) ,  adding Since c was chosen so that No(c ) .-1 
the n subproducts above yields 
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g "  g = I I c l c ,  p (c )  l c .  p (c )  , p (c) l 
n-2 

�9 "" I I I  p i ( c )  l = g. [ ]  
i=O 

Example. Consider codes in IF2G(ll ,  5, 3). Let S = C 2 = {1, 2 . . . . .  10} = C 3 O 
C23. Let code 12 C IF2 7711 have nonzeros o~ i, where i ( S and tz is a primitive l l- th root 
of one. Writing elements of IF 2 7711 as  sequences of elements of IF2, ~ has idempotent 
generator e = 01111111111. Let c = 00100000100. Then No(c ) = e. The p-generator 
built from c is g = 011111111111 00100000100 00011000101 10011110010 11011001100. 
C(c) is a (55, 10) 20 code and a left ideal in IF2G(ll,  5, 3). 

3. Algebraic Structure 

3.1. The Decomposition of FG(m, n, r) 

If F = GF(p q) and god(p, mn) = 1, FG(m, n, r) is semi-simple [3]. As in the semi- 
simple abelian case, such group rings (and semi-simple nonabelian group rings in general) 
decompose to unique direct sums of minimal two-sided ideals [6]. In the non-abelian case, 
however, one or more of the minimal two-sided ideals always decompose to one-sided ideals 
in numerous ways [11]. In FG(m, n, r),  certain of the minimal two-sided ideals decom- 
pose to n minimal left (or right) ideals. The codes described above have been shown to 
be such minimal one-sided ideals in FG(m, n, r) [10]. 

Alternate decompositions of decomposable two-sided ideals in FG(m, n, r) can be deter- 
mined by using absolutely irreducible representations of G(m, n, r) over a splitting field. 
The idempotent generators of those two-sided ideals can be determined by taking the traces 
of matrix representations that correspond to the absolutely irreducible representations of 
degree n. Bases for the multi-dimensional matrix representations can be varied resulting 
in different decompositions. If 12 is minimal in F 7/m, i.e., contains no nontrivial subcodes, 
we may use a simple, direct method (described below) to generate codes that are isomor- 
phic as vector spaces but may vary in their weight distributions. When 12 is minimal and 
FG(m, n, r) semi-simple, it can be shown that all minimal ideals in FG(m, n, r) which 
are not two-sided are produced by a o-generator [10]. 

3.2. When 12 Is Minimal 

Assume that FG(m, n, r) is semi-simple, F = GF(p q) and associated cyclic code 12 C 
F ~  m is minilTlal and of dimension k. We begin by observing that left ideals in FG(m, n, r) 
that are subcodes of the same minimal two-sided ideal have the same associated cyclic code 
[12]. Varying the choice of c for the p-generator will produce different codes. Since 12 
is minimal, 12 is isomorphic to a finite field [7, p. 255]. Let isomorphism ~b : GF(p k) 
--* 12, ~b : 8o ~ �9 where/9 is a primitive element of GF(p k) and e is the idempotent 
generator of ~.  Choose b E ~ such that < b > = 12" = 12 - 0. Then ~b is fully described 
by ~k : /~ ~ b. Use the arithmetic of GF(p k) to write b ~ = �9 
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Since 12 is invariant under p, there exists t, such that p (b) = b t. Seeking codewords 
c ~ 12 to form p-generators, then reduces to searching for c = b p such that 

n -1  n -1  

Np(c) = Y I  pi(c)  = I I  pi(bp) = b~ = e. 
i=o i=O 

Theorem 2, Hilbert's Satz 90 [4], [5], and a corollary simply the search. 

THEOREM 2. Let  minimal cyclic code 12 C F2Em have idempotent generator e with auto- 
morphism p as defined above. Np(c) = e if f  c = p(a)  �9 a - l  for  some a E 12. 

The following corollary tells where such elements c may be found. 

COROLLARY. Let 12 be a minimal associated cyclic code for FG(m, n, r) and let b be a 
cyclic generator of 12". I f  p(b)  = b t, then c may be used to form a p-generator iff c 
<bt - l  >. 

Proof. By Theorem 2, c = p(a)  �9 a -1 for some a E 12. Since b generates 12", 3 p such 
that a = b p. Then c = (bP) t . b -p = (bt-1) p. [] 

Given a minimal associated cyclic code, we first locate b, a cyclic generator of 12", and 
determine t where p(b)  = b t. All  elements of < b t - l >  may be used as c to form p-gen- 
erators. For 12 of large dimension, there may be a large number of such candidates. But 
all c do not form inequivalent codes. 

DEFINITION. Codes C, C'  c_ FG are said to be combinatorially equivalent if there exists 
a bijection 3~ : G ~ G which extends to "r : FG ~ FG such that 3' (C) = C'. 

Clearly combinatorially equivalent codes have identical weight distributions. 
The codewords of C (c) and C (d) may be considered to be sequences of field elements. 

The C (d) is combinatoriaUy equivalent to C (c) if every codeword of C (d) is the permu- 
tation of the field elements that constitute a distinct codeword of ~ (c). Theorem 3 states 
a sufficient condition for such a relationship. 

THEOREM 3. Let 12 C FG(m, n, r) with idempotent generator e such that p(e)  = e. Let 
c, d E 12. I fNp(c)  = Np(d) = e and d = xVpi(c) for  some positive integers i and v, then 
codes C (c) and e (d) are combinatorially equivalent. 

Proof  Let C (c) have generator 

gl 
n - 2  

= I c0 I c 0 . c l  I c 0 . c 1 . c 2  I I r I  cl I 
i=0 
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where ci = p i ( c )  v i, 0 <- i < n.  Without loss of  generality, assume that C(d)  has 
generator 

n - 2  

g2 = l e l d01do 'd l l d0"d l "d2 l  . . .  I I ' I d ,  I 
i=0 

whered i  = p i ( d )  V i, O <_ i <. n ,  and d = xV p ( c )  = x v " cl  for s o m e v _  1. Since 
p ( x )  = x r, dl = p(di-1) = x ~ '  " Ci+l. Therefore, 

n - 1  

g2 = I I xV . c, I : .  Cl . x W .  c21 I 1-1 c,) I 
i=1 

�9 ~ r. n-2 �9 r i f o r j  0, p 0 for We define 3' : G ~ G as 3" x l y  j x i+ey  j-1 w h e r e p  = i=0 v = = 
j = 1, and p = ~ / ~ 2  v "  r i for 1 < j < n. 3" is a bijective and is extended to FG(m, n, r)  
in the usual way; 3" is weight preserving. We need only show that for any u e C(c ) ,  3'(u) 
E ~ ( d ) .  Let u E C(c) .  Since 6~ and e ( c )  are of  equal dimension k, 3 a E ~ such that 

n - 2  

u = a ' ( l e  I c o ] C o ' C  11 " ' "  [ I X  cl l )  
i=0  

with a considered an element of  F G ( m ,  n,  r ) .  Then 

n-2 
u =  l a l a ' c o l a ' c o ' c l  l " "  l a "  i x  ci l .  

i=O 

3"(u) = I a " c o I x V "  a " c o �9 c 1 I xV+W" a " c o �9 c 1 �9 c 2 I "'" 
n-1 

I x(v+vr+'''+vrn-2 " a"  I ' I  Ci) I ) 
i=0 

n -1  

= a ' c o ( I  e [ x V ' c l  I x V ' c l  " xv r ' c2  I " "  I H (Xvri-I ~ Cl) I ) 

i~l 

with a �9 c o considered an element of  F G ( m ,  n,  r )  

= a �9 Co " g 2  E C ( d ) .  
[]  

We may simplify the search for nonequivalent C (c) by considering eosets of  t~* formed as 
follows. Let H0 be the set of  all distinct cyclic shifts of  e, i.e., Ho = {x i" ~ : 0 <- i < m }.  

Ho is a multiplicative cyclic subgroup of ~2" [13] with order that can be determined. Let 
S be the set of  exponents of  to (a primitive m-th root of  one) that correspond to the nonzeros 
of  ~ ,  S = ciPq (a cyclotomic coset mod m). Then In01 = m / gcd(m, i). Partition ~* 
: (~*/Ho = Ho,  H1, . . . ,  Hh-1 where (if b generates ~*  as above) b i E Hi and h = It *l 
/ In01. Each coset consists of all cyclic shifts of  a codeword of 6t*;/-// = {xJb i } .  
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I f s  = ged( I *1, t - 1), < b ' - l >  = and I < b ' - l > l  = i *1/s, fill/contains 
elements of  < b t -  1 > ,  it contains exactly w such elements where w = gcd ( [ < b t -  1 > l, 

Inol ). I f  we consider o acting on such a coset Hi, to : Hi ~ nitmodh since to(xJb i) = 
xJVb it. Thus to partitions cosets containing elements of  < b t - l >  into sequences. 

To determine the distinct sequences of  such cosets consider cyclotomic cosets Ci t mod 
p where p = I < bt-1 > [/w is the number of  cosets with elements in < b  t-a > .  With s 
as defined above, each distinct Ci t identifies a distinct coset sequence: {H~.j : j ~ C{}. 
For each Ci t let ci = (bi) s. The set {e  (ci)} consists of  all possible nonequivalent codes 
with the desired structure. 

Example. In IF2G(l l ,  5, 3) (as in Example in Section 2.2), (E has dimension 10, 6g 
GF(21~ [Hol = 11. There are h = (21~ - 1) / 11 = 93 cosets, rE* is generated by b = 
01010001111; p(b) = b 256. I<b2SS> I = I<b3>[ = 341; s = 3. w = gcd(341,11) = 
11, a n d p  = 341/11 = 31. There are 7 distinct 8-cyclotomic cosets mod 31 (8 --- 256 
mod 31): C/8 for i E {0, 1, 3, 5, 7, 11, 15}. The following codes result; each has dimen- 
sion 10. The p-sequence o f  codewords shown is Co, cl = 0 (Co), c2 = p (Cl), c3 = p (c2), 
c4 = p (ca). With the exception of  the first code, exhaustive search has shown that none 
is equivalent to any abelian code. (Note: The weight polynomial, r.m=%Aiz i, displays the 
weight distribution, i.e., there are A i codewords of  weight i.) 

p-sequence o f  codewords Generator g Weight Polynomial (in z) 

1. 
1 +55z1~ + 330z2~ +462z3~ + 165z4~ + 1 lz 5~ 

2. b3,b768,b192,b4S,b12 [e Ibalb7711b963[bl~ I 
1 + 88z 2~ +220z  24 + 440z 2s + 275z 32 

3. b9,b258,b576,b 144,b36 [e [b9[b2671b843[b9871 
1 + 110z 2~ + 55z 24 + 275z 26 + 220z 28 + 198z 3~ + 110z 32 + 55Z 34 

4. b15,b771,b96~176176 le [blSlb7861b7231b963[ 
1 + 22z 2~ + 385z 24 + 330z 28 +275z  32 + 11 z 4~ 

5. b21,b261,b321,b336,b84 lelb211b2821b6~ [ 
1 + 1 lz1~ + 55zig + 165z 24 + 330z 28 + 462z 3~ 

6. ba3,b264,b66,b52S,b132 [e [b33[b297[ba63[b8911 
1 + 66z 2~ + 220z 24 + 550z 28 + 165z 32 + 22z 4~ 

7. bn5,b267,b834,b72~ [E [b451b312[b1231b843 [ 
1 + 55z is + 165z 24 + 165z 26 + 330z 28 + 198z 3~ + 110z 34 

Example. In IFzG(25 , 5, 6), ~ has dimension 20, 6B ~ GF(22~ I/4ol = 25. There are 
h = (220 - 1) / 25 = 41943 cosets. ~*  is generated by b = 0000011638; p(b)  = b 256. 
t <b255> t = l < b 1 5 >  I = 69905. w = gcd(69905, 25) = 5, a n d p  = 69905/5 = 13981. 
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There are 2797 distinct 256-cyclotomic cosets mod 13981. Of  the possible 2797 codes 
so generated, exhaustive search yielded 162 codes with distinct weight distributions. 
Minimum weights ranged from 10 to 44. 

3.3. Relationship to Abelian Codes 

In some cases, a left code in FG(m, n, r) where r ~ 1 derived in the manner described 
above is equivalent to an abelian code. Specifically, g derived from c = e generates a code 
that is equivalent to the abelian (mn, k) code that is the n-repeti t ion of  t~. In most cases, 

however, codes so generated are no combinatorial ly equivalent to any abelian code. Con- 
ditions under which the codes formed are abelian have yet to be formulated. 

4. Conclusion 

This article has exhibited the heretofore undetected ideal structure of an attractive class 
of  quasi-cyclic codes. Table 1 displays some quasi-cyclic codes that are ideals in metacyclic 
group rings. Each has the structure descr ibed above or  is derived from one or  more codes 
with such a structure. Several of  these codes have a minimum distance that equals that 
of the best  known linear code of the same length and dimension.  

Table 1. Binary metacyclic codes (in F 2 G(M, N, R)). 

Best dmin 
n k (m, n, r) Generator (octal) dmin [1] 

14 6 (7, 2, 6) [16411131 4 5 
14 7 (7, 2, 6) previous code augmented 4 4 
21 3 (7, 3, 2) 1164116411641 12 12 
21 6 (7, 3, 2) 1072107210471 8 8 
27 6 (9, 3, 4) 1356105513651 12 12 
27 8 (9, 3, 4) 1275145616541 10 12 
27 19 (9, 3, 4) dual of the previous code 4 4 
55 10 (11, 5, 3) 10033120261122410305106031 20 23 
55 11 (11, 5, 3) previous code augmented 20 22 
55 20 (11, 5, 3) 1000013175125751351412651] 16 16 
55 45 (11, 5, 3) 12350130271273012334117441 4 4 
63 3 (21, 3, 4) 1316472312351647172351641 36 36 
63 12 (21, 3, 4) 1260766312143455135753161 24 24 
93 15 (31, 3, 5) 1134102376341107026464571173357713371 32 36 
93 16 (31, 3, 5) previous code augmented 32 34 
93 77 (31, 3, 5) dual of previous code 6 6 

110 10 (11, 10, 7) 1177710126104021227211205 48 49 
3342107761306310716115761 
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The well-defmed algebraic structure of these codes should allow the formulation of ef- 
ficient encoding and decoding algorithms and thus increase the practicality of these codes. 
It is also hoped that the examination of longer length codes of this type will yield new 
optimal linear codes. 
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