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Abstract. A Lagrangian formulation of the Nambu- 
Jona-Lasinio model with separable interaction is given. 
The electromagnetic interaction is introduced in a non- 
minimal way to the nonlocal quark current. Various choi- 
ces of the vertex form factors characterizing the composite 
structure of mesons and baryon are investigated. We find 
that the physical observables depend very weakly on form 
factor shapes. We calculate the n N N  form factor consider- 
ing nucleon as a three-quark system. 

I Introduction 

The Nambu-Jona-Lasinio (NJL) model [1], and other 
models motivated by it [2-103 are powerful instruments 
for the study of the composite structure of hadrons. Ac- 
tually, the first success of this model has been related to 
the explanation of the spontaneous breaking of chiral 
symmetry and the small pion mass [2]. 

To give a sense to various loop integrals arising in this 
approach, a momentum cutoff is usually introduced and 
the detailed momentum dependence of the hadronic 
vertices which characterize the composite structure of 
hadrons is neglected. In this rough approximation it was 
shown that the NJL-model reproduces the standard for- 
mulation of the a-model [2]. 

More realistic generalizations of the NJL-model use 
the nonlocal four-quark interactions, usually in a separ- 
able form. In this way hadron wave functions and global 
hadronic characteristics can be connected [3-5]. 

There exist more fundamental approaches [6] which 
realize the NJL mechanism starting from the QCD boson- 
ization, but this requires to introduce bilocal hadronic 
fields producing equations that are difficult to solve. Any 
simplifications of this approach yield a kind of NJL-model 
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with nonlocal interactions and/or modified quark propa- 
gators. 

A special formulation of quark confinement has been 
introduced in [9, 10]. It was assumed that the hadron- 
quark vertices are local but the quark propagators inside 
the quark loop are described by entire analytical functions 
providing both a quark confinement and ultraviolet con- 
vergence of all diagrams. 

The main goal of this paper is to give a Lagrangian 
formulation of the NJL-model with separable interaction 
both for mesons and for the first time for baryons. 
We check the Goldstone theorem in this approach 
which means that a zero-mass pion appears in the chiral 
limit. 

In fact, we do not pay much attention to the Schwin- 
ger-Dyson (SD) equation for constituent quark masses 
and the Bethe-Salpeter (BS) equation for hadron masses 
because they have too many free parameters to be predic- 
tive. Actually, these equations may be considered only as 
the self-consistent constraints which connect the quark 
and hadron masses with the NJL coupling strength. 

All important information about the composite struc- 
ture of hadrons is concentrated in the matrix elements of 
the physical processes, in particular in the electromagnetic 
form factors characterizing the response of a bound state 
to the interaction with a photon. Here, we introduce the 
electromagnetic interactions by means the time-ordering 
P-exponent in the nonlocal quark currents. This repro- 
duces automatically the Ward-Takahashi identities and 
electromagnetic gauge invariance in each step of calcu- 
lation. 

One of the principal goals of this paper is to investigate 
the dependence of the physical properties on the choice of 
the various form factors of the separable interaction. 
There are two adjustable parameters, a range parameter 
A appearing in the separable interaction and a constituent 
quark mass mq. As in the papers [4, 5], the weak decay 
constantf~, the two-photon decay width F~ o ~ ,  as well as 
the charge form factor F~ (q2) and the 7*n ~ --, 7 transition 
form factor F~ (q2) are calculated. Here we consider both 
monopole and dipole, Gaussian, and screened Coulomb 
form factors. 
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For the first time we calculate the ~zNN-constant with- 
in the NJL-model with separable interaction considering 
a nucleon as a three-quark system. It gives us a hope to 
construct an unified scheme for hadronic interactions 
which allows to take into account the quark structure of 
hadrons at low energies. 

The paper is organized in the following way. 
In Sect. I! we give the Lagrangian formulation of the 

NJL-model with separable interaction based on the so- 
called compositeness condition in quantum field theory. 
Such approach may be used not only for the simplest 
two-quark states (mesons) what is shown to be equivalent 
to the QCD-bosonization but for the arbitrary quark 
states, for example, baryons. As a result we get the non- 
local interaction Lagrangian with form factor characteriz- 
ing the distribution of quarks inside a hadron. We intro- 
duce the interaction with electromagnetic field into this 
Lagrangian using the time-ordering P-exponent that 
allows to control the gauge invariance of the matrix ele- 
ments on each step of calculation. 

In Sect. III we calculate the basic pion decay constants 
(f~ and g,~,~,) and define the model parameters (a parameter 
A characterizing the interaction range and a constituent 
quark mass) by fitting the experimental data for the four 
kinds of form factors: monopole, dipole, Gaussian, and 
screened Coulomb. 

In Sect. IV we calculate the charge pion form factor 
and the 7"~ ~ ~ ? transition form factor. Our results are in 
good agreement with available experimental data and 
depend very weakly on form factor shapes. 

In Sect. V we calculate the fundamental strong ~ N N  
constant using a Gaussian form factor both for ~zqq vertex 
and N q q q  one. We find that the value 2 g~NN/4~ = 14.4 
which is usually used in the literature is reproduced 
if a range parameter for nucleon is equal to AN ~ 2A~ 
= 2 GeV. 

In conclusion, we discuss the obtained results and give 
their perspective. 

II The NJL-model with separable interaction 

For the convenience of the reader we give the Lagrangian 
of the NJL-model with separable interaction (SI) 1-3] 

s~ G 
LNJL = (1i~ q + 2 { j~ + g2} (1) 

with J given by 

Js  = ~ dygl(X + y/2) f ( y  2) q(x  - y/2) 

j i  = 5 dy(t(x + y/2) f ( y  2) iy5~'q(x - y/2). (2) 

Here the form factor f ( y )  characterizes a region of 
a quark-antiquark interaction. In the original NJL-model 
the form factor was chosen to be a 6-function (or unity in 
momentum space). The Lagrangian (1) is invariant under 
the global axial (q ~ ei~ '~ and vector (q --+ e~'~ trans- 
formations. 

The standard way of the bosonization of the NJL- 
model may be found in many papers (see for instance 
[-2, 3] ) so that we just give a short sketch of some points 
which will be needed further. Let us consider the vacuum 

generating functional 

Z = ~q~5~texp{ i~dxL~jL}  (3) 

(an infinite renormalization constant is omitted). 
Using the Gaussian transformation for the quadratic 

interaction of quark currents and then integrating over 
quark fields one obtains 

Z = ~6~6~ exp {i Weff [o, ~] } (4) 

with the effective action Weff given by 

ITS2 r .  
W e ~ e D ,  rt] - -  5 3OXfs + ~(X)] 

- i N c t r l n [ i ~ -  6 - i?5ff]. (5) 

where Nc is a number of colors, mo z = 1/G is a bare meson 
mass, and the fields 6 and r~ are given by 

(~(Xl,  X2) = (7 2 f((Xl - -  X2) 2) 

= Trc 2 f ( (x~ - x2)2). (6) 

Assuming that the field a has a nonvanishing vacuum 
expectation ao 

a(x)  = s(x) + ao (7) 

and varying the action (5) 6Weff[a0, O]/fiao = 0, one ob- 
tains a gap equation 

d4k f2(k2) 
1 = 4 G N o N f  i~ ( ~ ) 4  k2 _ X2(k2) (8) 

with the quark mass operator defined by 

S(k 2) = o'0 f (k  2) (9) 

where f (k  2) is the Fourier-transform of the vertex form 
factor. 

In the calculation of physical values [-4, 5], the mo- 
mentum-dependent mass operator is approximated by an 
effective mass ( 2 ( k 2 ) ) =  mq (we neglect here the bare 
quark masses). The integral (8) is calculated by transition 
to the Euclidean region k ~ ~ ikr so that k 2 -+ - k 2. This 
procedure is well-defined for a wide class of form factors 
f (k  2) decreasing rapidly in the Euclidean region (see, for 
details [9]). 

Further we would like to show how to extract the 
kinetic terms from (5). To do this, consider the leading 
order in the series of (5) 

m 2 i 
"eftW (2) - -  2(~f dx (s: + ~2) + 2 No tr [S(g + i75~)]a, (10) 

where we have introduced the notation for the quark 
propagator 

S(x)  = [i~? - E(  -- 02)] - ~6(x). (11) 

After simple transformations, one obtains 

W~Z)= 1 eff 2- Z f d x ,  f d x z ( a ( x , ) { - m 2 6 ( x * - x 2 )  
@=s,~ 

+ II~(xl - x2)}0(x2) (12) 
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with Fifo(x) given by 

II<~(x) = iN~Nf ~ dyl ~ dy2 f  (y2) f (y2) t r I S ( x  

2 

where 

Yl + Y2 

(13) 

F~ = I(4) = s), or iTs(q5 = =). 

Further we represent the Fourier-transform of the 
two-point function of Eq. (13) in the form 

rI~(p 2) = ~ dxe ip,~ He(x ) = IIo(m 2) 

t 2 2 rrrene 2", + FIm(m~,)(p - m 2) + ,  ,m tP l 

where m~ is the physical meson mass. Using this expan- 
sion one obtains 

W(2) = 1 oef 5 E ( f d x O ( x ) [ ( - m ~ + n ~ ( m 2 ) )  
(p = s , Tr 

_}_ ( ~  2 t 2 

+ ~ dxl ~dx2 4b(x,) n;en(xl - -  X2) (~(X2)}. (14) 

It is readily seen that if we require fulfilment of the 
condition 

1 = GIlo(m~) = iGNoNI~ d~k (~)4 f 2( k2 ) 

1 
x t r { F ~ t ~ + 1 6 / 2 - S ( ( k + p / 2 ) 2 ) l  

x r,~ ~ _ t6/2 - Z((k - p/2) 2) p :  = m  z 

the physical pole appears in the meson Green function. 
Putting the pion mass in (15) to zero one has the gap 

equation (8), thereby reproducing the Goldstone theorem. 
Scaling the fields 4) (s or 72) in (5) by the factor 

2 1/~x/-H~(m 2) one obtains W~ff 

wo.[s, ,q ! ~ = 2 ~o --~. = ( ~ dxO (x) ([] - m~,) ~ (x) 

+ 2 (161 

One can see that the only connection of this expression 
with the original NJL-Lagrangian is via the quark mass 
operator S(k 2) in the gap equation (8). 

We would like to remark that the effective action (16) 
can be obtained from the quantum field theory defined by 
the following Lagrangian 

L = Lo + Lint (17) 

where 

1 1 
Lo = (t(ir -- mq)q + ~ s(D -- mZ)s + ~ rt([~ -- m2)rt (18) 

Lint = ~22 s(x) Js(x) + ~-22 rc(x)JP(x) (19) 

if the renormalization constants of the meson fields are set 
equal to zero 

~2 i 2 
Z~ = 1 - ~- H~(m~) = 0. (20) 

This condition reflects the composite nature of the had- 
rons (dressed states in quantum field theory). It is the 
so-called compositeness condition discussed in many pa- 
pers (see, for instance [9-12]). 

Our formulation of the NJL-model with separable 
interaction may be extended to describe the interactions 
of any physical states. For instance, we give here the 
Lagrangians describing octets of vector (axial), pseudosca- 
lar (scalar) mesons, and baryons. 

1 8 2iq5;. 1. Mesons M = ~ 2 0  

1 
L~ = + ~ t rM(x)(D - m2) M(x) 

( + for S, P - for V, A) (21) 

L~tt(x) = 9M ~ dyl ~dyef((y~ - 3'2) 2) 

x ~ (x  Y~+Y~)2 c](Yl)F~IM (x)q(y2) 

= #M~dyf(ye)~t(x + y/2)F~tM(x)q(x -- y/2). (22) 

1 
8 ~ i  i 2. Baryons B = ~ ~1 Z I[/. 

L~ = trB(x) (ir - m~) B(x), (23) 

L~'t(x) =/~k~(x) ~ dyl ~dy2 ~dy3 

• 6 ( x  Y~ + Y2 + Y3) F ( ~  }~' (y~ - yJ)2 
i < j  

�9 Ink  • {~gv J~ (y~, y~, y3) + gr  J~k(yl, y2, y3)} + h.c. 

= B~'(x)Sd~l ~d~2r(4~ + 4~) 

• {igvJ'~k(X -- 241, x -I- 41 - -  ~ 4 2 ,  X -}- 41 

-}- ~ 4 2 )  -I- g T J ~ k ( x  - -  241, X + 4 '  

- -  N ~ r  X -}- r -}- % ~ r  "-}- h.c. (24) 

where 

J~k(Yl, Y2-Y3) ,urn1 u~ 5 rn~ 
#7l z 

,~i ' ~  u~ (Y3))e . . . . . .  , (25) 

m~ ~ ,)~ CaU~q2;(y3))e . . . . . .  . (26) X ( q a 2  (Y2) ,k . . . . . . .  

The notation implied is as follows: k, m, n and a are flavor 
and color indices, a ~ =  ~[7 u, 7~], and C is the charge 
conjugation matrix, respectively. The choice of variables 
in the form factor of the separable interaction implies the 
use of the center of mass frame 
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so that III Model parameters and pion decay constants 

Y2 + Y3 -- 2yl Y3 -- Y2 
~1 = 6 ~ 2  - -  x/32 ~ 

The Fourier-transform of the vertex form factor is 
defined as 

. d8k 
F( r  2) = | , -~ ,~  e - i k ~ F ( k  z) 

where ~2= ~2 + r and k 2 =  k 2 + k 2. This means that 
there is an analogy between the meson form factorf(k 2) in 
the four-dimensional space and the baryon one F(k 2) in 
the eight-dimensional space. 

Now we introduce the electromagnetic interaction 
into this scheme. Note that this was done in [4] by 
using the minimal substitution ~30--+0"-ieqA ~ both 
in the free quark Lagrangian and in the interaction part 
which has a form factor. Restoring gauge invariance in 
this case requires a complicated procedure which is fairly 
arbitrary. 

Here we would like to suggest to introduce the electro- 
magnetic fields to the interaction Lagrangian using the 
time-ordering P-exponent. In this case the gauge invariant 
meson-quark vertex has the form 

2 f((Y~ - y2)2) 

pfi id x (t(YOP ex e zUA" z ~t x 
' . .  y l  d 

{ /} x P e x p  ie dz"AU( z q(Y2) (27) 

~ 2  8~ diag(2/3, 1/3, 1/3). w h e r e Q = � 8 9  3 + . / 7  j =  - - 

For neutral mesons one obtains 

L ~ ( x )  = gMydy 1 jdy2c~(x YI +2 Y2-) f((ya - y2)2)q(Yl)  

xPexp{ieQ!idz~'AU(z)}F~tM(~ ) . (28) 

For baryons this interaction is introduced in a similar 
way. 

We shall use the S-matrix defined by 

S = T exp {i jdxLi=t(x)} (29) 

to derive one-loop quark diagrams describing the physical 
processes. The T-product is defined in a standard manner 

d4k 1 
(Olr(q(x)q(y)) lO) = j ~ e  -~k~-y) 

m q  - -  
(30) 

The hadron-quark coupling constants gu in Eq. (22) 
and gR in Eq. (24) are defined from the compositeness 
condition (20). 

First we would like to discuss the model parameters. 
Of course, the form factor f ( k  2) characterizing the 
composite structure of hadron is an unknown function. In 
principal its shape could be related to a quark-antiquark 
potential but here we are going to test the sensitivity of 
physical observables on the choice of this form factor. 
With this in mind we consider four kinds of widely used 
form factors: 

�9 m o n o p o l e f ( k 2 ) _  a~ A 2 - k  2 

�9 d ipolef(k  2) = A ~ (A2~-k2) ~ 

�9 Gaussian f (k  2) = exp {~} 
�9 screened Cou lombf (k  2) = - ~ lk  ~ - exp {~})k~ 

All Feynman diagrams are calculated in the Euclidean 
region (k z = - k~:) where the form factors decrease rap- 
idly so that no ultraviolet divergences arise. For conveni- 
ence the form factors are chosen to be dimensionless. 

The three-dimensional Fourier-transforms of the form 
factors can be considered as nonrelativistic potentials (in 
Born approximation). Putting k ~ = 0 one can get 

o d3k eik~f( 
r e )  = j (GSx=) ~ - k ~) = A ~ ( r A ) .  (31) 

We obtain 

�9 monopole v(r) = wea , 

�9 dipole v(r) = M e - "  
�9 Oaussian v(r) - a L e  r~/4 

�9 screened Coulomb v(r) = ~1 (1 - ,~2-rr/z"t*~-tz/j0 uv~ } 

Thus there are two adjustable parameters, A charac- 
terizing the region of quark-antiquark interaction, and the 
constituent quark m a s s  mq. We shall define these para- 
meters by fitting the experimental pion decay constant 

= (1 (,/expt = 0.276 GeV-  1). f,(j,['expt 132 MeV) and ~ , ~ , ~ , ~  
We shall imply that all masses and momenta inside the 

Feynman integrals are expressed in the unit A. Also we 
shall neglect the pion mass when calculating the physical 
pion decay constants. 

1 Pion-quark coupling constants 

As mentioned above the pion-quark coupling constants 
are defined from the compositeness condition (20) with the 
pion mass operator given by 

d4k z k 2 II=(p 2) = 6 j ~ f  ( ) 

1 

Neglecting the pion mass one has 

r -1 1 ~ (3mq 2 + 2u) 
= - ~ duuf2(  - u) . (33) 

\ 4 ~ @  40 (mq 2 + u) 3 
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k- p/2 

Fig. 1. The diagrams describing the weak pion decay 

~(k21 ~ q2 
k- P/2 

Fig. 2. The diagrams describing the pion two-photon decay 

2 Pion weak decay 

The weak decay of the pion is defined by the diagram of 
Fig. 1. After simple transformations of the Feynman inte- 
gral, we have 

3g~ m ~ d4k f(k2) 
f~ = & q J ~  [m 2 - (k + p/2) 2] [m 2 - (k - p/2) 2] 

3g~ 1 (34) 
-~ 4~ 2 mq ~o duuf ( - u) (m 2 + u) 2 . 

3 Pion two-photon decay 

The two-photon decay of the pion is defined by the dia- 
gram of Fig. 2. After similar transformations we have 

= g ~  mq 
G~v~(p2, q21, q2) 2x/~rc2 A z 

x y d4k f(k2) 
~z2i [m 2 - (k + p/2) 2] [m 2 - (k - p/2) 2] 

1 
(35) x 

[mq 2 -- (k + (q~ - q2)/2)2]" 

The two-photon decay coupling constant is obtained from 
Eq. (35) where both photons are on the mass shell: 

2 g;z mq 
gw~ = G,~'l(m~, O, O) -- 2N/~2  A2 o duuf(  -- u) (m2 + uy" 

(36) 

The numerical results for the physical observables for 
the best fit are shown in Table 1 for different choices of 
form factors. Inserting the best values for A and mq into 
the gap equation (8), gives G = 3.039~r2A 2 for the mono- 
pole form factor. One can check also that the low-energy 
relation f~g~,/, = 1/(2x/-2~ 2) is reproduced with good ac- 
curacy ( _ 7%). 

Table 1. The best fit of the physical observables 
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Form f~(MeV) g~0r~ (GeV- ~) 

Factors A(MeV) mq(MeV) NJL SI EXP NJL SI EXP [14] 

monopole 400 267 132 0.251 
dipole 1000 245 132 132 0.263 
Gaussian 1000 237 132 0.261 
Coulomb 450 250 132 0.262 

0.276 

IV Pion electromagnetic form factors 

1 The 7"7r ~ ~ ? f o r m f a c t o r  

The form factor for the 7"~ ~ ~ 7 transition was measured 
for space-like momentum transfer Q2 > 0 of the virtual 
photon [13] by making use of the two-photon process 
77 --* 7r~ where the two photons are radiated virtually by 
colliding e+e - beams. 

In the extended NJL model this form factor is ex- 
pressed as 

FT~(Q2) = 2 2 e G~,(m~, - Q2, O) 

e 2 g~ mq R ( 0 2 / A  2~ 
2 ~ 7 r  z ~  ~,,~ , , (37) 

with the structure function R~  given in the Appendix. 

Our results for various form factors are shown in 
Fig. 3. The experimental data are described by the mono-  
pole fit with 

F(Q 2) -- eZg~7~ 1 + Q2/A2 A~ = 0.77 GeV. (38) 

The radius for 7*re ~ ~ 7 transition is defined by 

G,(o) 
,,o.(r-2,'~ = - 6 

F~,(0) 

where 

(39) 

f (  - u) 
F~,(O) = ~0 duu (m 2 + u)~ 3 

2 ~ f (  - u) 1 rnq duu (40) 
F'~(0) - 2 A 4 o ( m2 + u) s 

The numerical results for the radius r~v are given in 
Table 2. Excellent agreement with the available experi- 
mental data is reached. Our  results practically do not 
depend on the choice of vertex form factors f(k2). 

2 The pion charge form factor 

The pion charge form factor is defined by the diagrams of 
Fig. 4. These diagrams are not gauge invariant separately. 
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Fig. 3. The form factor of the 7"= ~ --+ 7 transition for spacelike photons 
0 _ Q2 < 10 GeV 2. The dashed line is the result of the monopole fit 
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with A = 770 MeV. The solid lines are our predictions for different 
choices of the form factors. The experimental data are from [13] 

The sum of the diagrams can be written as 

q" 
A"(p, p') = ~ En~(p 2) - n~(p'2)] 

392fd~k f{Uk+212)f([k+@] 2) 
+ 4~2 a 4~zz /J \k  

1 

+ ~ ~ 2  J 4 - ~ 3 9 ~  fd~k  !dtf(k2)f , ( (  k + qt/2)2 ) 

x k t l ' ( t r [ ? S S ( k + ~ ) 7 5 S ( k - ~ ) ]  

- t r [ 7 5 S ( k + 2 ) T S S ( k - 2 ) ? )  (41) 

where we use the following notat ion 

flu = pu _ q*, P" q p,. - ~ -  P = p +  

The Ward-Takahashi  identity directly follows from 
(41) 
quAU(p, p') =- gI~(p a) - -  I I n ( p ' 2 ) .  (42) 

Taking q = 0, one obtains on the one hand 

OZ~(p 2) OE~(p ~) 
AU(p, p) - cqP ~ - 2p u dp ~ (43) 

where S~(p 2 ) -  (392/492)II~(p 2) , and, on the other 
hand 

AU(p, p) = 2pUFf(0) (44) 



Table 2. The radius of the 7.~0 __. 7 form factor 

Vertex G~(fm) 
Function NJL SI EXP [14] 

monopole 0.655 
dipole 0.658 
Gaussian 0.654 
Coulomb 0.659 

0.65 _+ 0.03 

Table 3. The electromagnetic radius of pion 
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Form NJL SI EXP [14] 

F a c t o r  <r#} A <r#} ~ t o t a l  fro 2 

monopole 0.545 -- 0.012 0.533 
dipole 0.461 - 0.005 0.456 
Gaussian 0.409 - 0.002 0.407 
Coulomb 0.488 - 0.006 0.482 

0.430 

k 

k - p / 2  

Fig. 4. The diagrams describing the pion charge form factor 

where F~(0) is the pion charge form factor at the origin. It 
follows from the comparison of (43) and (44) on the pion 
mass shell that the compositeness condition Z'(m~) = 1 is 
equivalent to the normalization of the pion form factor at 
the origin Fd0 ) = 1. 

Note that the implementation of gauge invariance in 
the context of the minimal substitution [4] leads to 

' f((k + q/2) 2) - f ( k  2) 
dtf' ((k + at/2) 2 + q2t(1 - t)/4) = kq + qZ/4 

0 

in (41) while the gauge invariant vertex (27) leads to 

1 

dtf' ((k + qt/2)2). 
0 

For  practical purposes this difference is not important  in 
our ease. 

The numerical computat ion of the pion charge form 
factor is performed in the Breit frame 

q = (0, q), p = (E, q /2) ,  p' = (E, - q /2) ,  E = ~ + q2. 
(45) 

The analytical expressions for the form factor are given in 
the Appendix. 

The contributions to the pion charge radius coming 
from the triangle (A) and bubble (O) diagrams are written 
down 

<r#}~=  - 6  1 ~1(0) <r~)o= - 6  1 ~2(0) (46) 
A 2 (bo(0)' A 2 q~o(0) 

F.(Q 2) F o r m  Faet~or  ( M o n o p o l e )  

1.0 

~Y 

0 .0  
0 .0  

_ _ _  Fu l l  

_ __ i n t  
Pi 

| t  m q = 0 , 2 6 7  OeV 

! 

i \ 4  
2 .0  4 . 0  6 .0  g.O 10 .0  

Q= (Gev =) 

Fig. 5. The pion charge form factor F~(Q 2) for spacelike photons 
0_<Q2_< 10GeV 2. Separate contributions from the triangle 
and bubble diagrams are shown as dashed and dotted lines, respec- 
tively. The solid line is the total result. The experimental data are 
from [14] 

where 

3 3 q 

+ u (m 2 + u) 3 u + 

{ 1  f2(__U) 2 2 U-[ 
~2= ! duu 16(maq + u) smq[mq - 

1 [ f ' ( - u ) ]  = 2] 
- 4 8  (mq 2 +-u)  5 u ; 

~o= I duu f2 ( -u )  [3m2 
o (m 2 + u) 3 L 4 ~ + 

The numerical results for the radius are given 
in Table 3. One can see that our results are in good 
agreement with the available experimental data and 
depend very weakly on the choice of vertex form 
factors f(k2). 

The behavior of charge form factor for monopole  
vertex is shown in Fig. 5. 
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nucleon mass operator 

G~N N F ' o r m  F a c t o r  

I / ,\" \ " . . .  

<~ \'x \ -. _ 

) ] "" 0.5 "\ \ \  

\ \ 
\ \  \ - .  

0.0 
0.0 

(1) 

~..___ (2) 

-~  (3) 
0.5 I .r0 1.5 

Fig. 7. The strong nNN form factor. The solid line is our prediction 
(As = 1.95 GeV). The dashed lines are the result of [15, 20-21] for 
various shapes of the nNN-form factor. (1) - Hard Monopole 
(A~NN = 1.30 GeV), (2) - Soliton model, (our) - our result, (3) - soft 
Gaussian (A~NN = 0.64 GeV) 

V Strong ~rNN form factor 

The nNN form factor plays a crucial role in the analyses of 
low-energy nN, NN scattering and in the reaction of 
n-meson photo-production. Usually this form factor is 
introduced phenomenologically with a shape being 
chosen from the best description of the experimental data. 
Many attempts have been done to get the nNN form 
factor from more fundamental representations. For  
example, realisitic calculations of strong pion-nucleon 
vertex function have been done within the chiral soliton 
models [15]-[18]  and within the quark confinement 
model (QCM) [19]. 

Here, we will use the Lagrangian (24) which describes 
a nucleon as relativistic three-quark system to calculate 
the nNN form factor. For  simplicity, we will choose the 
Gaussian form factor 

with AN being an adjustable parameter  characterizing the 
distribution of quark inside a nucleon. Also, we will use 

the tensor three-quark current (26) since it provides more 
reliable description of the static baryon characteristics 
(see, [9]). 

The nNN form factor is defined by the vertex diagram 
of Fig.6a with the tensor coupling constant gr  being 
determined from the compositeness condition (20) where 
the nucleon mass operator  is defined by the diagram of 
Fig.6b. The matrix element is written as 

M~NN = (t(p') ziA~NN(p, p') u(p), 

A,~NN(P , p') = ?SG,~NN(q2 ) (47) 

where u(p) and u(p') are the spinors corresponding to 
initial and final nucleon states with momentum p and p', 
respectively, q = p - p'. 

The vertex function A~NN(p, P') is written as 

A,~sN(p, p') = g~ g~ ~ d~kn2 ~ ~ d4k' 

(12k2 +12kk' +12k'Z-6kq + 2q 2) 
x exp �9 9Ag 

+3675Sq(k+p'-2-ff)?SSq(k+3) 

xTSTr[Sq(k + k' -3)Sq(k'  + 3) 1 

-P- a~Sq k' xa~75Trlau~Sq(k+k' 3) ( +P)?I 

After cumbersome calculations, we have 

As #eu_,R~Nu(#, r; QZ/A~) G~NN(q2) = 16xf6n ~ RuN(#,r) R~(g) 

where we introduce the notation 

(48) 

mq A~ 
# =  , r AN 

The integrals RuN and R~NN are given in Appendix. The 
integral R ~  is defined by (33). We make calculations on 
the threshold, i.e. we assume that m,v = 3mq. 

The only adjustable parameter  AN is defined by fitting 
G,NN(0) to the widely used value 13.45. We find that the 
best value is AN = 1.95 GeV ~ 2A~. 

The behavior of the form factor G~NN(Q 2) in the Eu- 
clidean region up to 1.5 GeV 2 is shown in Fig.7. For  
comparison we plot the ~zNN form factors obtained in 
other approches [15], [20], [21]. One can see that the 
pion-nucleon form factor obtained in our approach falls 
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off somewhat faster than in the OBE-model [20] and is 
closed to the result of soliton model [15]. 

VI Summary 

We have formulated the Nambu-Jona-Lasinio model with 
separable interaction using the Lagrangian with the 
compositeness condition and non-minimal inclusion of 
the electromagnetic interaction. This allows to calculate 
any low-energy physical processes on one-loop level 
maintaining the relativistic and electromagnetic 
gauge invariance in each step of calculation. On one 
hand the form factors in the hadron-quark vertices 
take into account the composite structure of hadrons 
thereby being related to a quark-antiquark potential, 
on the other hand, they make the Feynman integrals 
convergent. 

We have calculated the pion weak decay constant, the 
two-photon decay width, as well as the form factor of the 
y.~o __. y-transition, and the pion charge form factor. The 
two adjustable parameters, the range parameter A ap- 
pearing in the separable interaction and the constituent 
quark mass mq, have been fixed by fitting the experimental 
data for the pion decay constants. 

The main goal of this paper has been to investigate the 
sensitivity of the physical observables to the choice of the 
vertex form factors defining the composite structure of 
hadrons. We have considered the following form factors: 
monopole, dipole, Gaussian and screened Coulomb, and 
found that the numerical results depend very little on 
these shapes. 

We have calculated the rcNN form factor and found 
that it has a "soft" behavior. 
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Appendix 

(1) The form factor of the 7*re ~ --, y transition is written 
down 

q~l(Q2)= 3- dkk 3 dx d y f ( -  k 2) 
7~ 0 1 N ~ X  2 -  

f (  k 2 Q~ - - ~ -  k x y , f ~ )  
X 

Pl(k ,x ,y ,Q 2) 

•  P2(k'x'y'Q2) (k,x,y, Q2) - 1 }  

c~ 1 1 
~2(Q2) = ~4 N//~ f dkkOidxx3~/~-x2  I d y y S d t f ( - k 2 )  

TC 0 0 1 0 

2 k2 mq + 
• 

Q +(k,x,y, QZ) Q_(k,x,y,  Qy) 

where 

x ~,z, rm2 U + ~ k x y , ~ Q ~ +  a~12 kYa~- Pl(k, , y , v  ) = [  q + 2j @ T ( l - x 2 )  
2 i +32x z k2 1 2 Pz(k,x,y, QZ)=mq + -- g k x y x / ~  

Ps(k, x, y~ Q2) _ 2 /s 1 2 Q2 -- mq + + ~ k x y , , f ~  + ~- 

Q_+(k,~,y, Q ~) ; [ ~ g  + k 2 _+ ~ k ~ y , / ~ ]  2 + T ( 1  -- x ~) 

(3) The structure integrals defining the nucleon mass op- 
erator and the n N N  vertex are written down 

7 dfildfiz 
0 ~ O3(~l, /~2, 013, 2, 1) 

I F(f l i ' f l2 'O) l 
x exp - 12#2r2 D(fll,/32, 013, 2, 1 i 

•  ~ ~ - + 

~o dfl l dfl2dfl 3 
+2! 0 

[ 1 x exp - 48#2ra D(fil, fi2, fisl3, 2, 1) 

x [1 + fl, + 48/~2r 2 (2D(fi~, fl2, 01 15, 13, 11) 
N 

D(fl,, fi2, 0[1, 1, 1) D(fil, fi2, 0110, 7, 4)~ 

D(fll,/~2, J~3[ 3, 2, 1) ) 

7 d u f ( - u )  idc~{ 1 
R~'(Q2) = Jo u m2 + U o x/R(u, cqQ2)[x/R(u,~,Q 2) + M+(u,~)] 

+ .,jR(u, c~, Q2) + 4uQYc~(1 _ a)[x/R(u ' e, Q2) + 4uQZc~(1 _ ~) + M+ (u, c0] 

2 where M+(u,c 0 = mq + u +_ Q2c~/2, R(u,~,Q 2) = MZ_(u, oO 
+ 2QYm~. 

(2) The contributions coming from the triangle (A) and 
bubble (�9 diagrams to the pion charge form factor are 
written as 

(Pl(~ 2) 4~2(Q 2) 

�9 ~(0) ' , /h (0) 

+ 2592#%4f13D(flb fi2, OI 1, 1, 1) 

(~ D(fil, fi2, O]l,l, 1) 9D(fll,f12, O[1,1,1) 
x D(fi>flz, fls[3,2,1) d D(f11, fi2, f1313,2,1) 

\ 
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R~NN(I~, r, Q2) 

= -- 64 ~ dflldfl2dfl3 
o o o D2(fll + r, f i2, /3313,2,~ exp - 12#2r2 

F ( &  + ~, &, &t N ( &  + ~, &, & 11 + rl]  
D(fl~ + r, [32, fl3[3, 2, 1) - 3Q2 D(fl~ + r, f12, fl3[3, 2, 1)J 

dfi,dfi2dfl3 [ + 160 12/~2r 2 
- - - Gi(f i l  q- F, fl2, fi3 , 013,2,1) exp 0 0 0 

M r r E( f l l  q- t ' , f l2 ,  fi3,O) _ 30aM(il l  L ~ , f i 2  ~ f i 3 , 0 ) ~  

G(fll + r, fi>fi3,013,2,1) ~ G(fil + r, fiz, fi3,013,2,1)J 

dfildfi2dfi3fi4 + 32 
0 0 0 0 

e(/3~ + r, &, &, &) 
12t~2r2G(fi I + r, fi2, f13, fi4-[ 3, 2, 1) 

X e x p  

_ 3Q2 M ( f l ~  § ~, fi2 -]- ~, fi3, fi4) 
G(fia + r, fiz, fi3, fi413, 2, 1) A 

[ ( D(flz, f14, 011, 1, 1) ) 
• 120 2 - 3 G ( &  + ~, &, &, fl,13, 2, l i  

1 +i l l  +f12 + r  
6(1~ 1 -~-1", /~2, /~3, f14,[ 3, 2, 1) 

D(fl3, fi4, 0ll, 1, 1) 

+ Q2 1 - 4 G(fll q- r, fi2, fi3, fi413, 2, 1) 

M( & + i ,  o, &, fl~) 
+ 1 1  

6 ( &  + r , & ,  &, &t3,  2, 1) 

(1 + G)~(& - &)~ 
- 6  

G(fi~ + r, fi2, fi3, /7413, 2, 1) 

3 (O(fi3, f14, 0[1, 1, 1 ) +  M(fl~ + ~, O, f13, fi4))2~ + 
G(fl~ + r, fi2, f13, fl413, 2, 1) J 

Q 2 
+ 

G(fll q-t., fi2, f13, fl413, 2, 1) 

• (6D(fi3, fi4, 0l l ,  1, 1) - 9M(fil + L O, &, f14))/ 
A 

where 
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D(&, & ,  &lx~ ,  x2, x~) = x~ + x i ( &  + & + &) 

+ x~(&& + &G + fi~&) 

F(fi~, G ,  fi~) = (1 + f l 3 ( G  - G)~  + (1 + &)(f i~ - &)~ 

~- (1 .-[- fl3)(fil - fi2) 2 

a(fll, fi2,fl3,fl4lXl, X2,x3) = x l  n u X2(fll "4- fi2 -k f13 -t- f14) 

+ X~(& + &)(& + Be) + & &  

g( f l l ,  f12, f13, f14) -~ (1 "Jr- fll -I- f12)(f13 -- f14) 2 

+ (1 + &) (& + G -- fl~)2 + (1 + &)(& + & -- &)~ 

M(fl l ,  fi2, fla, fi4) = (1 + 2fil)(1 + 2fl2)(2 + fi3 + f14) 

N(fl> fi2, fi3lx) = x(1 + 2fi~)(2 + fi2 + fi3). 


