Z. Phys. C 65, 681-690 (1995)

ZEITSCHRIFT
FUR PHYSIK C

© Springer-Verlag 1995

The extended Nambu-Jona-Lasinio model with separable
interaction: low energy pion physics and pion-nucleon form factor

L.V. Anikin, M.A. Ivanov, N.B. Kulimanova, V.E. Lyubovitskij

Joint Institute for Nuclear Research, Dubna, Russia

Received: 18 May 1994 /In revised form: 18 August 1994

Abstract. A Lagrangian formulation of the Nambu-
Jona-Lasinio model with separable interaction is given.
The electromagnetic interaction is introduced in a non-
minimal way to the nonlocal quark current. Various choi-
ces of the vertex form factors characterizing the composite
structure of mesons and baryon are investigated. We find
that the physical observables depend very weakly on form
factor shapes. We calculate the z NN form factor consider-
ing nucleon as a three-quark system.

I Introduction

The Nambu-Jona-Lasinio (NJL) model [1], and other
models motivated by it [2-10] are powerful instruments
for the study of the composite structure of hadrons. Ac-
tually, the first success of this model has been related to
the explanation of the spontaneous breaking of chiral
symmetry and the small pion mass [2].

To give a sense to various loop integrals arising in this
approach, a momentum cutoff is usually introduced and
the detailed momentum dependence of the hadronic
vertices which characterize the composite structure of
hadrons is neglected. In this rough approximation it was
shown that the NJL-model reproduces the standard for-
mulation of the g-model [2].

More realistic generalizations of the NJL-model use
the nonlocal four-quark interactions, usually in a separ-
able form. In this way hadron wave functions and global
hadronic characteristics can be connected [3-5].

There exist more fundamental approaches [6] which
realize the NJL mechanism starting from the QCD boson-
1zation, but this requires to introduce bilocal hadronic
fields producing equations that are difficult to solve. Any
simplifications of this approach yield a kind of NJL-model

Supported in part by the RFFR, Russia under contract 94-02-
03463-a

with nonlocal interactions and/or modified quark propa-
gators.

A special formulation of quark confinement has been
introduced in [9, 10]. It was assumed that the hadron-
quark vertices are local but the quark propagators inside
the quark loop are described by entire analytical functions
providing both a quark confinement and ultraviolet con-
vergence of all diagrams.

The main goal of this paper is to give a Lagrangian
formulation of the NJL-model with separable interaction
both for mesons and for the first time for baryons.
We check the Goldstone theorem in this approach
which means that a zero-mass pion appears in the chiral
limit.

In fact, we do not pay much attention to the Schwin-
ger-Dyson (SD) equation for constituent quark masses
and the Bethe-Salpeter (BS) equation for hadron masses
because they have too many free parameters to be predic-
tive. Actually, these equations may be considered only as
the self-consistent constraints which connect the quark
and hadron masses with the NJL coupling strength.

All important information about the composite struc-
ture of hadrons is concentrated in the matrix elements of
the physical processes, in particular in the electromagnetic
form factors characterizing the response of a bound state
to the interaction with a photon. Here, we introduce the
electromagnetic interactions by means the time-ordering
P-exponent in the nonlocal quark currents. This repro-
duces automatically the Ward-Takahashi identities and
electromagnetic gauge invariance in each step of calcu-
lation.

One of the principal goals of this paper is to investigate
the dependence of the physical properties on the choice of
the various form factors of the separable interaction.
There are two adjustable parameters, a range parameter
A appearing in the separable interaction and a constituent
quark mass m,. As in the papers [4, 5], the weak decay
constant f;, the two-photon decay width I',....,,, as well as
the charge form factor F,(¢%) and the y*n° — vy transition
form factor F,,(g%) are calculated. Here we consider both
monopole and dipole, Gaussian, and screened Coulomb
form factors.



682

For the first time we calculate the nN N-constant with-
in the NJL-model with separable interaction considering
a nucleon as a three-quark system. It gives us a hope to
construct an unified scheme for hadronic interactions
which allows to take into account the quark structure of
hadrons at low energies.

The paper is organized in the following way.

In Sect. IT we give the Lagrangian formulation of the
NJL-model with separable interaction based on the so-
called compositeness condition in quantum field theory.
Such approach may be used not only for the simplest
two-quark states (mesons) what is shown to be equivalent
to the QCD-bosonization but for the arbitrary quark
states, for example, baryons. As a result we get the non-
local interaction Lagrangian with form factor characteriz-
ing the distribution of quarks inside a hadron. We intro-
duce the interaction with electromagnetic field into this
Lagrangian using the time-ordering P-exponent that
allows to control the gauge invariance of the matrix ele-
ments on each step of calculation.

In Sect. I1I we calculate the basic pion decay constants
(fz and g,,,) and define the model parameters (a parameter
A characterizing the interaction range and a constituent
quark mass) by fitting the experimental data for the four
kinds of form factors: monopole, dipole, Gaussian, and
screened Coulomb.

In Sect. IV we calculate the charge pion form factor
and the y*xn® — y transition form factor. Our results are in
good agreement with available experimental data and
depend very weakly on form factor shapes.

In Sect. V we calculate the fundamental strong NN
constant using a Gaussian form factor both for ngg vertex
and Ngqq one. We find that the value g2yy/4n = 14.4
which is usually used in the literature is reproduced
if a range parameter for nucleon is equal to Ay =~ 24,

=2 GeV.

In conclusion, we discuss the obtained results and give
their perspective.

IT The NJIL-model with separable interaction

For the convenience of the reader we give the Lagrangian
of the NJL-model with separable interaction (SI) [3]

_. G
LISVIJL:ql@CI‘{’E{Jg + J3} (1)

with J given by
Js = [dyd(x + y/2) f(y*) q(x — y/2)
Tp = [dyd(x + y/2) f (") iy Tg(x — y/2). 2)

Here the form factor f(y) characterizes a region of
a quark-antiquark interaction. In the original NJL-model
the form factor was chosen to be a d-function (or unity in
momentum space). The Lagrangian (1) is invariant under
the global axial (g — e ") and vector (g — %) trans-
formations.

The standard way of the bosonization of the NJL-
model may be found in many papers (see for instance
[2, 3] ) so that we just give a short sketch of some points
which will be needed further. Let us consider the vacuum

generating functional
Z = [0q{dqexp{ifdxLiy} (3)

{an infinite renormalization constant is omitted).

Using the Gaussian transformation for the quadratic
interaction of quark currents and then integrating over
quark fields one obtains

Z = [do|omexp{iWy[a, n]} (4)

with the effective action W, given by
WL(Z) 2 5
W, ] = — 22 fdx[6%(x) + 7(x)]

— iN trln[ig — 6 — iy°#]. (%)

where N is a number of colors, m = 1/G is a bare meson
mass, and the fields ¢ and 7 are given by

51, X3) = a(’“ 5 "Z)f((xl - %)
7= (’“ ] xZ) Flbee = x2)7). (6)

Assuming that the field ¢ has a nonvanishing vacuum
expectation o,

o(x) = 5(x) + 0o (7

and varying the action (5} oW [0y, 0]/606¢ = 0, one ob-
tains a gap equation
d*k (k%)
1=4G |
N Nf lj (27‘6)4 k2 — ZZ(kZ) (8)
with the quark mass operator defined by
Z(k?) = a0 f (k%) ©)

where f(k?) is the Fourier-transform of the vertex form
factor.

In the calculation of physical values [4, 5], the mo-
mentum-dependent mass operator is approximated by an
effective mass <(Z(k*)> = m, (we neglect here the bare
quark masses). The integral (8) is calculated by transition
to the Euclidean region k° — ik, so that k> > — k2. This
procedure is well-defined for a wide class of form factors
f(k?) decreasing rapidly in the Euclidean region (see, for
details [9]).

Further we would like to show how to extract the
kinetic terms from (5). To do this, consider the leading
order in the series of (5)

W‘Z’——m—%jd 2 2 i.N SG +iy’m)1%, (10

eff 2 X(S +ﬁ)+2 ctr[ (s—i—wn)], ( )
where we have introduced the notation for the quark
propagator

S(x) = [ — X(— 9] "o(x). (11)
After simple transformations, one obtains

1
ng) = 2 Z jdxl fdxzfﬁ(xl){ - m%é(m — X,)

o=s,m

+ I, (x1 — x2)} ¢ (x2) (12)



with IT,(x) given by

ity
2

xF¢S<~x— yi%)rql, (13)

IT,(x) = iN:Ny [y, [dy, f(51) f(3) tr[5<x

where

L,=1(¢=s), or iy =mn).

Further we represent the Fourier-transform of the
two-point function of Eq. (13) in the form

I, (p%) = [ dxe™ I, (x) = I1,(m2)
+ T, (mg) (p* — m)) + TI5"(p?)

where m] is the physical meson mass. Using this expan-
sion one obtains

1
W& =3 ¥ {1dxd([(—m} + 10, (m2)

+(O — my) M (ml)] ¢ (x)
+ jdxl Idx2¢(x1) IT5" (q — x2) (x2)}- (14)

It is readily seen that if we require fulfilment of the
condition

d*k
(2m)*

| = G (m2) = iGN, N; | =—= f2(k?)

1
X tr {Fw[k + p/2 — Z((k + p/z)z)}

1
1
xx [k T ) }}m 1

the physical pole appears in the meson Green function.
Putting the pion mass in (15) to zero one has the gap

equation (8), thereby reproducing the Goldstone theorem.
Scaling the fields ¢ (s or n) in (5) by the factor

1//T1,,(m2) one obtains W
1
Weels, n] = 5 Z {fdxd)(x)(D - mf,)d)(x)

@=s,7

o 1 (}; n
- S—— ;. 16
- n;2 n . [ N/ H;,(mj)} } (10

One can see that the only connection of this expression
with the original NJL-Lagrangian is via the quark mass
operator Z(k?*) in the gap equation (8).

We would like to remark that the effective action (16)
can be obtained from the quantum field theory defined by
the following Lagrangian

L =Lo+ Ly, (17)

where

1 1
Lo =q(id = m)q + 3 5(0 — m)s + 3 m(C) —m)m (I5)

Lin = % 5(x) Js(x) + % (%) Jp(x) (19)

683

if the renormalization constants of the meson fields are set
equal to zero

g

Z,=1-3

I, (m2) = 0. (20)
This condition reflects the composite nature of the had-
rons (dressed states in quantum field theory). It is the
so-called compositeness condition discussed in many pa-
pers (see, for instance [9-12]).

Our formulation of the NJL-model with separable
interaction may be extended to describe the interactions
of any physical states. For instance, we give here the
Lagrangians describing octets of vector (axial), pseudosca-
lar (scalar) mesons, and baryons.

1 .
1. Mesons M = \ﬁ YAl

LYy(x) = + % trM (x) (O — mé) M(x)

(+forS,P —forV, A) 21
L}\'}t(x) = ngd)h jdhf((yl - )’2)2)

X 5(X -~ —; y2> q(y) F'yM(x) q(y2)

=g {dy f(y?) G0x + Y/ TuM(x) g(x — y/2). (22)
_1_ 8 10 i

\/E YTAY

Ly(x) = trB(x) (i¢ — myp) B(x), (23)
LE'(x) = B*"(x) [ dy; [dy, [dy;

Vit Vatys\ L Y
><5<x EE— >F<182(J}i yj)>

i<j

2. Baryons B =

x {igv JV(y1> 2, ¥3) + 91 ¥ (11, ¥2, ¥3)} + hec.
= B¥"(x) [d¢, [dE, F(ET + &3)
X {igy JP(x — 281, x + & — /30 x + &
+/3E) + gr JP(x — 28, x + &
— 3 x + & + 38} + he. (24)

where

TPy, va.ys) = APyt g (yy)

X (g2 (y2) €7 A0 Cyt gl (y3)) €42, (25)
JH(y1, y2ps) = li-’"”’a”“vsq’é’:(yl)
X (g (y2) €=" 21 Ca™ gy ) €242 . (26)

The notation implied is as follows: k, m, n and a are flavor
and color indices, o =4[y* 9"], and C is the charge
conjugation matrix, respectively. The choice of variables
in the form factor of the separable interaction implies the
use of the center of mass frame

yi=x—2¢ y’2:x+f1‘\/§fz y3=x+§1+\/§§2
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so that

¢ Y2t ys— 2y é_y_%—yz
1= 2 — .
6 2\/§
The Fourier-transform of the vertex form factor is
defined as

d%k

Jampe FE)

F(&?) =

where &2 = ¢2 + £2 and k® =k? + k3. This means that
there is an analogy between the meson form factor f (k?) in
the four-dimensional space and the baryon one F(k?) in
the eight-dimensional space.

Now we introduce the eclectromagnetic interaction
into this scheme. Note that this was done in [4] by
using the minimal substitution &* — " —ie,4* both
in the free quark Lagrangian and in the interaction part
which has a form factor. Restoring gauge invariance in
this case requires a complicated procedure which is fairly
arbitrary.

Here we would like to suggest to introduce the electro-
magnetic fields to the interaction Lagrangian using the
time-ordering P-exponent. In this case the gauge invariant
meson-quark vertex has the form

Lij(x) = gu [dys fd)/z5<x — y—1—2£>f((h —12))

x G(y1) P exp {ieQ f dz”A“(z)} Iy M(x)

Y1

x Pexp {ieQ yf dz”A“(z)} q(y2) (27)

where Q = 3(13 + ﬁig) = diag(2/3, — 1/3, — 1/3).

For neutral mesons one obtains

' +y2>f( (y1—y2) )Q(h)

L) = g, 23~

« Pexp {ieQ i dz”A“(z)} FuMOO)q(ys). (28)

Y1

For baryons this interaction is introduced in a similar
way.
We shall use the S-matrix defined by

S = Texp{i[dxL™(x)} (29)

to derive one-loop quark diagrams describing the physical
processes. The T-product is defined in a standard manner
1
m,— k-
The hadron-quark coupling constants g, in Eq. (22)

and g in Eq. (24) are defined from the compositeness
condition (20).

—ik(x—y)

<01 T (g( (30)

HI Model parameters and pion decay constants

First we would like to discuss the model parameters.
Of course, the form factor f(k*) characterizing the
composite structure of hadron is an unknown function. In
principal its shape could be related to a quark-antiquark
potential but here we are going to test the sensitivity of
physical observables on the choice of this form factor.
With this in mind we consider four kinds of widely used
form factors:

e monopole f(k?) = Az’”k;
e dipole f(k*) = z%pn
e Gaussian f(k?) = exp {43}
o screened Coulomb f(k*) = —

L1 —exp{s))

All Feynman diagrams are calculated in the Euclidean
region (k* = — k%) where the form factors decrease rap-
idly so that no ultraviolet divergences arise. For conveni-
ence the form factors are chosen to be dimensionless.

The three-dimensional Fourier-transforms of the form
factors can be considered as nonrelativistic potentials (in
Born approximation). Putting k° = 0 one can get

3

k |
3 ezkrf( —

] ) k2) = A3u(rA). (1)

V()=

We obtain
e monopole v(r) = ze "
e dipole v(r) = &e "
e Gaussian v(r) = ;=e™"*
e screened Coulomb v(r) = zk(1 — mjo/zdte"z)

Thus there are two adjustable parameters, A charac-
terizing the region of quark-antiquark interaction, and the
constituent quark mass m, We shall define these para-
meters by fitting the experimental pion decay constant
So(fS =132 MeV) and g,,,(g2" = 0.276 GeV ™).

We shall imply that all masses and momenta inside the
Feynman integrals are expressed in the unit A. Also we
shall neglect the pion mass when calculating the physical
plon decay constants.

I Pion-quark coupling constants

As mentioned above the pion-quark coupling constants
are defined from the compositeness condition (20) with the
pion mass operator given by

d*k
Hn(pz) = 6j (27'6)4if2(k2)

5 1 5 1
X“{y [mq—k+ﬁ/2}/ [mq—k—ﬁﬂ]} -9

Neglecting the pion mass one has

392\t © (3m§ + 2u)
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p —~»%<—»P
f1k2)
k-p/2

Fig. 1. The diagrams describing the weak pion decay

a1

Fig. 2. The diagrams describing the pion two-photon decay

2 Pion weak decay

The weak decay of the pion is defined by the diagram of
Fig. 1. After simple transformations of the Feynman inte-
gral, we have

PR £62)
=7 402 "7 T — ¥ p/2)P1m; — (k — pj2)]
- 39, < 1

3 Pion two-photon decay

The two-photon decay of the pion is defined by the dia-
gram of Fig. 2. After similar transformations we have

(0% 4% 3) = — =2
nw P, qla (12 \/5 2/12
&k £0)
n?i [mg — (k + p/2)*1[mg — (k — p/2)’]

1
“TmZ = (k + (41 — 220271

The two-photon decay coupling constant is obtained from
Eq. (35) where both photons are on the mass shell:

(35)

my @ 1
2\/, 2 g duuf( — u)~——~—(m; el
(36)

Gryy = Gr:y/ mn: 0 0)

The numerical results for the physical observables for
the best fit are shown in Table 1 for different choices of
form factors. Inserting the best values for A and m, into
the gap equation (8), gives G = 3.0397%4? for the mono-
pole form factor. One can check also that the low-energy
relation f;g,,, = 1/(2\/§7r ) is reproduced with good ac-
curacy (< 7%).
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Table 1. The best fit of the physical observables

Form f.(MeV) Groy,(GEV ™)
Factors  A(MeV) m,(MeV)NJL SI EXP NIJIL SI EXP [14]
monopole 400 267 132 0.251

dipole 1000 245 132 132 0.263 0.276
Gaussian 1000 237 132 0.261

Coulomb 450 250 132 0.262

IV Pion electromagnetic form factors
1 The y*1® — 7y form factor

The form factor for the y*n° — y transition was measured
for space-like momentum transfer Q% > 0 of the virtual
photon [13] by making use of the two-photon process
yy — n°, where the two photons are radiated virtually by
colliding e*e™ beams.

In the extended NJL model this form factor is ex-
pressed as

Fyn(QZ) = eZan(mgn - Qza O)

= TR (0347 (37)

22\/> 2/12

with the structure function R;, given in the Appendix.

Our results for various form factors are shown in
Fig. 3. The experimental data are described by the mono-
pole fit with

2
€ Gnyy

The radius for y*n° — y transition is defined by

F..(0
<r§v> = —6 I:"W((g) (39)
where
R S(—w
F.(0) g duu P
' _ l@_ B f( - u)
F,0)= — 5 A4£ u(m,? e (40)

The numerical results for the radius r,, are given in
Table 2. Excellent agreement with the available experi-
mental data is reached. Qur results practically do not
depend on the choice of vertex form factors f(k?).

2 The pion charge form factor

The pion charge form factor is defined by the diagrams of
Fig. 4. These diagrams are not gauge invariant separately.
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The F,.{(Q°) Form Factor (Monopole)
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Fig. 3. The form factor of the y*7° — y transition for spacelike photons
0 < Q% < 10 GeV?. The dashed line is the result of the monopole fit

The sum of the diagrams can be written as

‘iﬁ [IL.(p) — T(p")]

3gn d4k p 2 p/ 2
Argi (3] (5]
X tr[ysS(k +p) ( — qu) (k + p)ysS(k]

4k1
’% f 51100 0) 1+ a1/

e
e pebg)

A¥p,p) =

The F,.(Q%) Form Factor (Dipole)

10 ¢

\ . Our ‘

o A=l GeV

my=0.245 GeV

\# Jt

0.1 : e

(In,_,3/647T)F7ﬂ2(Q2) (ev)

0.01 F—— i

0.0 5.0
2 2
Q" (GeV")
The F,.(Q°) Form Factor (Coulomb)
10 ¢
£
A — Qur
— L _
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IR
1E \R J m,=0.250 GeV
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2 F N
Nri LN
= ' - i S
& ~
3 01 - 1 e
~ £ ~
© f T
£ e
0.01 L —
0.0 3.0 10.0
2 72
Q* (GeV?)

with A = 770 MeV. The solid lines are our predictions for different
choices of the form factors. The experimental data are from [13]

where we use the following notation

=P P=p+/p.

The Ward-Takahashi identity directly follows from
(41)

0, 4%(p, p') = Ua(p?) — TL(p"?). (42)
Taking g = 0, one obtains on the one hand

0X(p?) . ,8Z(p?) “3)

A*(p,p) = PR A

where Z.(p*) = (3¢2/4n®)I1,.(p?) , and, on the other

hand

A*(p, p) = 2p"F.(0) (44)
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Table 3. The electromagnetic radius of pion

Table 2. The radius of the y*z° -» y form factor
Vertex Foy(fi11)

Function  NJL SI EXP [14]
monopole  0.655

dipole 0.658

Gaussian 0.654 0.65 +0.03
Coulomb  0.659

k+p/2 q

p—- P~

ket /2)?) £(k2) #tx~qt/2?)

k-p/2

k-p/2

Fig. 4. The diagrams describing the pion charge form factor

where F,(0) is the pion charge form factor at the origin. It
follows from the comparison of (43} and (44) on the pion
mass shell that the compositeness condition X'(m2) = 1 is
equivalent to the normalization of the pion form factor at
the origin F,(0) = 1.

Note that the implementation of gauge invariance in
the context of the minimal substitution [4] leads to

flk + q/2)%) — f(k?)
kg + q*/4

i

fdef’ ((k + qt/2)* + ¢*t(1 — 1)/4) =
0

in (41) while the gauge invariant vertex (27) leads to
1

fdtf’ ((k + qt/2)?)

[}

For practical purposes this difference is not important in
our case.

The numerical computation of the pion charge form
factor is performed in the Breit frame

q=(0,q), p=(E q/2), p=(E, —q/2), E=/m} + ¢~
(45)

The analytical expressions for the form factor are given in
the Appendix.

The contributions to the pion charge radius coming
from the triangle (4) and bubble (O) diagrams are written
down

2,(0)

1 1 2,(0)
A% @4 (0

t= —6 Ve @,(0)

2’

(46)

Form NIL SI EXP [14]
Factor 2y e total fm?
monopole  0.545 —0.012 0.533
dipole 0.461 - 0.005 0.456 0.430
Gaussian 0.409 —0.002 0.407
Coulomb 0.488 — 0.006 0.482
F.(Q%) Form Factor (Monopole)
—
1.0 ¢ ‘
; — Full |
| _ A
c___ Int ‘
\ .
P \\ A=0.4 Gev
& L . oy
— v\ my=0.267 GeV
= Ly
W,
\
| X
= \\L
R
0.0 Lo T e s e e
0.0 2.0 4.0 6.0 8.0 10.0
Q° (GeV?)

Fig. 5. The pion charge form factor F,{Q?) for spacelike photons
0 < Q? <10GeV? Separate contributions from the triangle
and bubble diagrams are shown as dashed and dotted lines, respec-
tively. The solid line is the total result. The experimental data are
from [14]

b= — Iduu{(f—(t:—u))g[lz 2+§mu+;mq:,

Lf'(—w]? 3
T e [’“32’""]}

* 1 f3(—w
@z—gduu{w( T

1 [f( M)]Zuz
48 (m2 + u)®

I ) 2
@0_(j)d g )3[4 +2]

The numerical results for the radius are given
in Table 3. One can see that our results are in good
agreement with the available experimental data and
depend very weakly on the choice of vertex form
factors f'(k?).

The behavior of charge form factor for monopole
vertex is shown in Fig. 5.

mg(mg — u]



688

Fig. 6. The diagrams discribing a the Gy - form factor and b the
nucleon mass operator

G.yy Form Factor

o~ N
= BT
=z, 3
z
= S
U \ . N
. 05 AN N
& N\ A N
& N . S
% . ~
(5 \\\ ~ -
e ~
| e @
i\ \\_>\ J
, ~T"— our
0.0 e ey (3)
0.0 05 10, 15
Q" {(GeV")

Fig. 7. The strong NN form factor. The solid line is our prediction
(Ay = 1.95 GeV). The dashed lines are the result of [15, 20-21] for
various shapes of the nNN-form factor. (1) -~ Hard Monopole
(A.nn = 1.30 GeV), (2) — Soliton model, (our) — our result, (3) — soft
Gaussian (A yy = 0.64 GeV)

V Strong nNN form factor

The N N form factor plays a crucial role in the analyses of
low-energy nN, NN scattering and in the reaction of
n-meson photo-production. Usually this form factor is
introduced phenomenologically with a shape being
chosen from the best description of the experimental data.
Many attempts have been done to get the aNN form
factor from more fundamental representations. For
example, realisitic calculations of strong pion-nucleon
vertex function have been done within the chiral soliton
models [15]-[18] and within the quark confinement
model (QCM) [19].

Here, we will use the Lagrangian (24) which describes
a nucleon as relativistic three-quark system to calculate
the = NN form factor. For simplicity, we will choose the
Gaussian form factor

kZ
F(k?) = exp <A_§,>

with Ay being an adjustable parameter characterizing the
distribution of quark inside a nucleon. Also, we will use

the tensor three-quark current (26) since it provides more
reliable description of the static baryon characteristics
(see, [9]).

The NN form factor is defined by the vertex diagram
of Fig6a with the tensor coupling constant gr being
determined from the compositeness condition (20) where
the nucleon mass operator is defined by the diagram of
Fig.6b. The matrix element is written as

chN = a(p,)TiAnNN(ps p')u(p),
Aayn(p, P') = 7> Grawn(@®) (47)

where u(p) and u(p’) are the spinors corresponding to
initial and final nucleon states with momentum p and p’,
respectively, g =p — p".

The vertex function A xy(p, p’) is written as

, d*k . d*k’
Awnip, ') = gngﬂ P j_n?
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X eXp (k+p/2— /o) 5 P/o) 368, IH—p’—-IZ y°S, K+
A2 3 3
X Tr[ysSq (k +k - §>y53q <k’ + g)}
2
et
xpTr| S, (k+ k' = Z)s, [k + 2
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Va5 ’ 2p P
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J

After cumbersome calculations, we have

£1£ 'uequnNN(lua r QZ/AI%’)
AN RNN(.ua r)'\/ R’IETE(‘H)

where we introduce the notation

+36y°S, <k +p

Gavn(g?) = 16/6m (48)

lu - /17Z E] AN .

The integrals Ryy and R, yy are given in Appendix. The
integral R, is defined by (33). We make calculations on
the threshold, i.e. we assume that my = 3m,.

The only adjustable parameter Ay is defined by fitting
G,.xn(0) to the widely used value 13.45. We find that the
best value is Ay = 1.95 GeV ~ 24,.

The behavior of the form factor G,yy(Q?) in the Eu-
clidean region up to 1.5GeV? is shown in Fig.7. For
comparison we plot the aNN form factors obtained in
other approches [15], [20], [21]. One can see that the
pion-nucleon form factor obtained in our approach falls



off somewhat faster than in the OBE-model [20] and is
closed to the result of soliton model [15].

VI Summary

We have formulated the Nambu-Jona-Lasinio model with
separable interaction using the Lagrangian with the
compositeness condition and non-minimal inclusion of
the electromagnetic interaction. This allows to calculate
any low-energy physical processes on one-loop level
maintaining the relativistic and electromagnetic
gauge invariance in each step of calculation. On one
hand the form factors in the hadron-quark vertices
take into account the composite structure of hadrons
thereby being related to a quark-antiquark potential,
on the other hand, they make the Feynman integrals
convergent.

We have calculated the pion weak decay constant, the
two-photon decay width, as well as the form factor of the
y*7% — y-transition, and the pion charge form factor. The
two adjustable parameters, the range parameter A ap-
pearing in the separable interaction and the constituent
quark mass m,, have been fixed by fitting the experimental
data for the pion decay constants.

The main goal of this paper has been to investigate the
sensitivity of the physical observables to the choice of the
vertex form factors defining the composite structure of
hadrons. We have considered the following form factors:
monopole, dipole, Gaussian and screened Coulomb, and
found that the numerical results depend very little on
these shapes.

We have calculated the NN form factor and found
that it has a ”soft” behavior.
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Appendix

(1) The form factor of the y*z° — y transition is written
down

S(—u) 1
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2

3 ' 1 1
@:(0%) = | dkk’ | dx [ dyf(— k)
0 0 1

X
N2 g
S =T~k /0)
Pl(kaxfyaQZ)
X{z Pz(kaxay’ QZ)P3(k,2x,y, QZ) _ 1}
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where
Pi(kx, 1,03 =[my + K +3kxy /0 + 51 +55(1 - x)
P, (k,x,y,0% = m, +1+2x ~%kxy\/@
Ps(k,x,y, 0%y =m2 + k* + —kxy\/—2 +<
04k x,y,0%) =[m2 + k2 + $kxy /O + EE (1 — %)

(3) The structure integrals defining the nucleon mass op-
erator and the TN N vertex are written down
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where M. (u,0) =
+ 20°mia.

(2) The contributions coming from the triangle (4) and
bubble (O) diagrams to the pion charge form factor are
written as

m2 +u + Q%0/2, R(u,0, Q%) = M2 (u, )

Cbz(Q )
241(0)
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where
D(B1s Bas Bslxy, X2, x3) = x1 + X2(B1 + B2 + Ba)
+ x3(B1B2 + B2Bs + B1B3)
F(By, B2, B3) = (1 + B) (B2 — Ba)* + (1 + o) (B3 — f1)?
+ (1 + B3)(Br — B2)?
G(B1, B2 B3s Balx1, X2, X3) = X1 + x3(B1 + B2 + B3 + fa)
+x3(B1 + B2)(Bs + Ba) + Bsfa
E(B1, Ba, B3 Ba) = (1 + By + B2) (B3 — fa)?
+ (1 + B3)(By + B2 — Ba) + (1 + Ba)(By + B2 — f3)°
M(B1, Bas Bay Ba) = (1 + 2B)(1 + 2B2)(2 + B3 + fa)
N(B1, B2, B3lx) = x(1 + 2B:)(2 + B2 + f3).
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