EMBEDDING THEOREMS FOR WEIGHTED CLASSES OF HARMONIC
AND ANALYTIC FUNCTIONS

V. L. Oleinik UDC 517,54

We establish conditions on the measure Jﬂt , under which for any analytic (harmon-~

ic) function in some domain S]_ we have the inequality

[ e Jhee({uredn % .

where ‘?>O is a continuous function and .)& is the Lebesgue measure in Q In
addition, one finds out under what restrictions on ﬁd is the embedding (1) compact.

For many concrete S:L and g one finds necessary and sufficient conditions.

Introduction

In many problems of analysis the question arises of the comparative strength of the norms
on a set of analytic functions. Thus, e.g., Carleson in his well-known paper on the corona
problem [1] makes use of the following statement (see also [2, 3]).

THEOREM A. Leat ]J be the open unit circle, let H’ be the Hardy class (see [4]) of
functions which are regular in IJ , let j& be a positive measure in the closed circle j§ .
let A«. be the Lebesgue measure on the circumference 9D , let 0<p £G4 <o J’z =1 -1%1;
we set for 2e& D

B@) ={(ef) 1e ™M | <d,z} )

P
In order that for all functions W&H we should have the inequality

(St c( (el dn) 0.1
B )

it is necessary and sufficient that

th i
}L(B(z))a'ick,(B(Z) N 3D)a'. ©.2)

Thus, condition (0.2) is a necessary and sufficient condition for the boundedness of
P
the embedding of H in L%(P).
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Tn this paper we shall determine the conditions on the measure jL in order that for

any analytic (harmonic) function in some domain {1 we should have an inequality of the

type:
( g l“"q&f")%’ <C( % “’"'PP“)% ) (0.3)
iy &

where Jg is a positive and continuous weight function, A/ is the Lebesgue measure in 1L
and Cs is a constant independent of W . In addition, we establish under what conditions
on }L will the set of all analytic (harmonic) functions for which the integral in the
right-hand side of the imequality (0.3} is equal to unity be a compact set in the metric of
L%(FJ. The latter means that the embedding (0.3) is compact. We formulate a typical re-
sult (maintaining the notations of Theorem A).

THEOREM B. Let }L be a positive measure in ]) , let .kz be the planar Lebesgue measure
in T, let 0<pegeo, 450,

Pi?»)ww(-df),mﬁ{i sz~ <5L;"°} _

The inequality
Y %
( Sluﬁﬁd}b)q & C( g’uplpdljp (0.5)
D bi]

helds for any function U which is regular in D if and only if

% Yo
pO@) ¢ CL,(Dw) . (0.5)
In order that embedding (0.4) be compact, it is necessary and sufficient that for [%i->i we
have

pO® =00, D" ©.6)

.0

If in Theorem A we extend the measure .)w into D by zero, then condition (0.2) can
be written in the form }L(B('z’))ﬁ’ QCL,(B(%))VP , which coincides formally with (0.5). Both
in Theorem A and Theorem B one indicates a class of sets R(Z) | I)(z) , respectively] on
which the measure J 1is "subordinate" to the measure & . However the sets B(%) border
on the boundary gJ) , while the circles D(2) are included compactly in D . The fact is
that the functions from HP have boundary values on QU , but this cannot be said about
the functions summable over an area. We also note that the larger is the singularity of the
functions at the boundary Dw , the smaller is the radius d;a of the circle 0D .

Our method of proof of the inequalities of type (0.3) is based on the mean value theo—
rem; it can be applied in those cases when the functions U can increase sufficiently fast

when one approaches the boundary of the domain {)} . In this case it is necessary that the

{9
function of the radii [in Theorem B this is (A¢)) =ciz }, which is determined by the weight
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P , should satisfy some additional conditiom,

The first section of the paper is devoted to the proof of inequality (0.3) for (loga-
rithmically) subharmonic functions, Here we consider both cases: p&q and G<p . It
should be mentioned that for q,q? the conditions on the measure differ qualitatively

from conditions (0.2) and (0.5). 1In the second section we consider the classes of analytic
and harmonic functions: one obtains conditions for the compactness of embedding (0.3). In
the first two sections one considers only sufficient conditions on the measure }L , for

which inequality (0.3) holds. The necessity of these conditions for specific examples is
established in the last section.

The author is grateful to B. S. Pavlov for his constant interest in the paper and for
helpful conversations.

1. Inequalities for (Logarithmic) Subharmonic Functions

Let {} . be an open subset of the M -dimensional Euclidean space R™ , let Bﬂ be
the boundary of {1 and for xefl we set d:n:di,st(m,aﬂ % We introduce the notatiomns:
Dz, v) is the open sphere of radius U>0 with center at the point X 'ﬁ‘/(IJ) is a

- 't N
function continuous in {1 such that 0<t(05)£d/m : :D(t(m)) -.:D(:r,,t,(m)) . for G=Q, G =i_£5
D(t(’-f:))', p(I) is a positive and continuous function in Q M is a nonnegative Borel mea-

sure, finite on any compactum situated in Q ; for p>0 we set

tui,, =(j lul &}»)VP :

1f d}b= p(:r,) d:n » then ﬂ%ﬂwb =“LEP'P . Here and in the sequel, integration without the

indication of the limits denotes integration over .
We denote the mean value of the function P in the sphere D =D($,L)Cﬂ by R(g’j,

D) , i1.e.,

i
Wep.D) =7 ;&)pdg y w..=£"‘/r("‘/z HY,
for D =D(b@), Tp,Dt@n) =M (p,Lw).

Assume that for the functions P and T, there exists a number M 21 such that for
all x€{) one of the following conditions holds:

1) for all yeD(tw), pip «Mpw;

2) R(P,t(cn)) < MP@‘);
3) %(Cogp,t(m) dog [Mp(x)]-

Then we shall say that the pair (P,t‘) belongs to the class ZN=Z_°,(Q), 2. =2 or

Z'&"i =Z.bg (ﬂ) , respectively. We note that Z.,,C Z_C Z.gq . The first inclusion is ob:
vious and the second one follows from the inequality between the geometric and arithmetic
means (see [5]). 1In addition, ifT Pi% P.“ then (P_,,t) and (P”t) belong simultaneously
to the class Z_O,,Z_ or Z&’%

¥In the case £ =R~  we set dﬁ.’ = | X}

TAs usual, .p‘ %Pﬁ mean that 0<0494{$)P,(m)4$c<00 for a1l x € §) .
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Finally, we consider the sequence of open subsets Q‘;ﬁﬂ . v=1,2,... , such that
i}ﬂ = {] and such that each point of the domain 0 belongs to at most N{N<o} sets
ﬁ& . We shall say that such a sequem.e {Q} forms a covering of the domain {1 of

finite multiplicity. For a covering 3 s finite p081t1ve numbers P and ‘1/ ; & mea-

sure ;,and functions and 1 we set & -Q P S (9t )“"ip d}b y b= Sup ’f"i for
%

4
® &0 and &2(20{,?)& for & >0.
- ol
THEOREM 1.1. Let 0<{<o , 44 p <oo;(p"“°,t) € tor p#t and (p,L)e

TR
Z_M for P={ ; the sets Q; and ﬁi s b=4,2,... form a covering of £l of finite

miltiplicity. If 4L <o , then for any nonnegative subharmonic function U in {1 we have
the inequality

ﬁ'ﬁ«%l}t%c& §%|P,P9 (1.7}
where the constant { does not depend on % and on jL .

Let us fermulate the corresponding result for the logarithmically subharmonic functions,
i.e., such % »0 for which W is a function subharmonic in £l .

THEOREM 1,2. Let 9<P,q,<oo ;‘(P'Q,?,) ez.%g and assume that the sets Qi , =49,
form a covering of ) of finite multiplicity. If o 49 | then for any logarithmically
subharmonic function K ¥y in 0 inequality {(1.1) holds,

Proof of Theorem 1.l. Let U be a nonnegative subharmonic function in . 1) we
consider the case PT?‘% . Since t('xmd,m and (P‘I"P e Z. , for any X& ﬂi_ wa have

(p'=p/lp-1)

. /.
u(ﬂ:)sm & ’“"d% t(z) o, (S Do prd‘j)p"

R i 4p o o % ' d
'(QM&P ) < g ay gD '(iiu? dﬂ) <o t(m)'ﬁf’(x)‘lp (S w )MW

Raising both sides to the power Q', »0 , integrating with respect to the measure ]Mx) , and ¥ ,

summing with respect to all i, we obtam q{/
N\ P
juld 4-—-—- & (§ o pd
e 7 L ¥ pdy)

Then, for ‘ﬁﬁq.fp <00 (240} we make use of the inverse Minkowski inequality and of the
t
finite multiplicity of the covering gﬂ} .

4

5 ww (supd.’)z_( updtj)

s:: .

!

t

[

! Yo
ﬂa}?—d&'(?rg uppdag} M (N/w7 AR
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1f 0 <q’/p <} (®>0) , then by applying Holder's inequality with the exponents P/q/
and P/vq, = &/oy to the sum in the right-hand side of (1.2}, we obtain the required

statement:

Wi, IRz & £ pdg) " W (W)t tult,

-
2) In the case P=1, ( ,t) (= Z_ and for %€ ). we have
5 o i

w@< T, Uay < Moo, (pet @) S updy.
ni

i

Then, as in case 1), we start with inequality (1.2). The theorem is proved.
Proof of Theovrem 1.2. If W is a logarithmically subharmonic function, then for any
xell and p>0 we have

&xjum‘. g @oguj,d? (1.3)
S Y

In additon, since ( L) = Z_ , there exists a finite number M>5 such that
i

Eoﬂf’(x)"ﬁf)i‘_@?% ?"?Pd‘?J'e"ffM' (1.4)

D)
Adding (1.3) and (1.4), we obtain
9 i [
eo?[u,(x)j;(x)] % m S“ )Rog [u P] dlj + (]/09 M.
D)

Making use of the inequality between the geometric and arithmetic means, we arrive at the
relation

M
W@ P < yaFa §“ i PdAj

which can be rewritten in the form

| ; t
W) € (M/wm)/P [pta] * (S o p d’j) ’
&

Then, one has to proceed as in the proof of Theorem 1.1, starting with inequality (1.2}.
The theorem is proved.

The assumption about the finite multiplicity of the covering iQ 3 can be replaced
by explicit conditions on t('.x:) ; then the sets Qi. are constructed in the canonical man-
ner. In connection with this, we prove a lemma about coverings. We denote by Ca =COQQ}
the class of continuous functions U such that for all T, ye Q, ‘t(m)‘t(ld)iSJ‘/q lm‘ijf,
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o<tbm<thd,.

[2:1 .
Leama on Coverings. Let (1l be a bounded open set in R and tac‘, . Then there

exists a sequence of points X;&€ (), {=4,2,..., such that 1) X, & D(t(mﬂ) y VE

HUYDEEN =0 ;3 D dt@EnedB@ENeq , i=1,2,...: 4 (DOL@EY i
a c:)vering of £l of finite multiplicity.

Proof, Since t is a continuous bounded function, there exists a point %i such that
t(m,):mmt(:c) , where MOX 1is taken over all Xefl . Let Xy By s Ty be the
points which have been already chosen for the desired sequence. The point %, 1s one of
the points ‘§e:; ﬁ. for which t(?);m&mt(x) , the MAX belng extended over all xe i}

\éj, D(t(fﬁﬂ) » Continuing this process, we construct the sequence %%J for which con-
<

ditdion 1) holds. Condition 2) follows from the boundedness of £} and the continuity for
t>0. since t€(, , for yeDL@) we nave t(m) «1(P by + [V(@) + Yy ln-yi] <
3 t(ﬂﬁkdmg From here we obtain condition 3). Finally, let us indicate a number N such
that each of the spheres D (‘ﬂ; (I‘i)) intersects at most N spheres of the sequence |
{:D (ﬁt(%)}} y 1.e., such that condition 4) holds. First we note that, according to condi-
tion 1), the spheres D t(x{)) y#=1,2,..., do not intersect. On the other hand, if the
two spheres D (31L(X)) and D(?}at(%)) do not have common points, then T%(x)&t(%) %
(X)) , since | 'Jt."&él &3t *3“%), and t(H) & L@y + Yy ii'%? . Therefore, 9(72%,(%)(:
D(:n,ft(%)) no and 4/2t(lp >Q.qt(ff.) . In the sphere of radius 25%,(‘.1‘,) nonintersect-
ing spheres of radius Q.Ht(%) are located, at most po pieces. We now set N =02
The lemma is proved.

Remark. If the domain {1l is not assumed to be bounded, then we represent it as the
union of the bounded sets Gc =‘~{G‘,€Q, fol <4 } ,Gw={<r,e:ﬂ, Q%Q.!T;I %Q“M):%, w={9,....

t

. r t
For @ﬁﬁa and for any N30 the sets b, and sz do not intersect. Each set Gn

¢t
admits a covering by the spheres {DME such that iDM} is a covering of finite multi-
plicity. Taking the union with respect to ' of all such coverings, we obtain a covering

of Q » satisfying the conditions 2)-4) of the Lemma on Coverings.

Every covering, satisfying conditions 2)-4) of the proved lemma for tQQ , will be
called a b ~covering of ) .

We reformulate Theorems 1.1 and 1.2. We consider an arbitrary open set ﬂ ’ te
CO(Q) and & sequence of points e Q, $=4,2,..., such that the spheres {:D (t(x,—))}
form a tmcovering of £} . In this case for 0<% P % @‘, <9 e have

=1t dp bl by,

4
Dhid D
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L = supd; ¥ Sth(a:) (S P%dﬂ)/ =B,

and for 0<(1I<P<w we have

pe (Z_[t(x ”/”S X d}dw)eﬁ

JJ(tm)
THEOREM 1.3. Let 0<Q<® , {&p<®@ tel, ',(9%'?,?,) € 7 for and ip",‘%“,)e:
Z_,o for p={ . 1If p<o , then for any nonnegative subharmonic funcrion () in U we
have the inequality
buldy , <op ludy,, (1.5)

where { <o and does not depend on U and on
THEOREM 1.4. Let 0<p, G <o ; teC,,(p",t)eZ_M. If B<® , then for any

logarithmically subharmonic function U in 0 inequality (1.5) holds.

Remark. Theorems 1.1 .and 1.3 (1.2 and 1,4) can be extended in a natural manner to the
case of (logarithmically) plurisubharmonic functions in pluricylindric domains,

2. Classes of Harmonic and Analytic Functions

In this section we give applications of the theorems of the preceding sections to the
problems of boundedness and compactness of the embedding of different classes of analytic

and harmonic functions. We denote by SP (Q,P) (P)” the space of functions harmonic in
m
Q , for which “U“P-P <% .| Similarly, for QcC (mat) by %P(Q ,P) (p>0) we denote

the space of functions analytic in O , for which i\u,ip_,, <0 , Finally, Lp(ﬂ,}b) is the

space of measurable functions for which RUl,, <e . For P>, :Rp and Sp are normed

spaces (in general, not complete). For 0<p<1, '.RP (ﬂ, ) (LP (ﬂ,}k)) is a metric space
with the metric d(u,v) =1 U -VIPP'P (Iu-v!';& , respectively)., It is kmowm that il is
a subharmonic function if U is harmonic and PM . If W 1is analytic in ;QC@,4 and p>0 s
then U/ 1s a logarithmically subharmonic functiom. Finally, if W is analytic in {lC
c" (m>1,2=(%,...,2,) and p>0 , then HMP is a logarithmically subharmonic function

in Q) with respect to the variables %, (k =4,2,.. -ym) . Thus, Theorems 1.1-1.4 refer

in the same degree to harmonic and analytic functions. In terms of the embeddings of the
spaces, Theorems 1.3 and 1.4 can be formulated in the following manner.

'
THEOREM 2.1. Let (lc RM(QC ‘E) and assume that the conditions of Theorem 1.3(1.4)
hold., If P<oo s then the embedding operator SP.(O"JO) [%P(Q,P ), respectivelyl] in

La'(ﬂ ,}L) is bounded.

We elucidate now the conditions under which the embedding in Theorem 2.1 will be com-
pact. The latter means that the unit sphere in the space SP(:}('P) is a compact set in
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_ . -4

L@(Q,}L) We introduce the following notations; for 5>O, ﬂ5= {(x‘,e.ﬂ :6&(114,5 } . when
- 5

O# Em and (R ) (0 b ‘) ; 0= Q\QE; f‘as is the restriction of the measure }1, to

the set fff . According to the definition of the number 55 , we set for O <Pp&g <o

and for O(Qp,(P(OO

Y, % -
g=(Z D™ | §*al™) "
D(tm)ﬂﬁ
Finally, we note that the set Kc LQ(Q,}L) (@)0) is compact in L@(Q,}L) if for an
£>0 there exists 570 such that a) K is compact in La’,(ﬂs,}b) and b) for all HUek

we have !iu,ﬁghézf; . It can be easily seen that from a) and b) there follows the existence

of a finite & -net of the set K for any £€>0 .

For the sake of definiteness, we consider the space %P(Q,P) (p>0, ﬁcﬁi). Let
K =£%€%F (Q, P) : i{'u/ﬂp_? “i} . We have to find conditions under which the set K is com-
pact in qu(ﬂ }ﬂ . Since P 1s a positive continuous function in Q , for any S>€) there

exists C(ﬁ) >0 , such that px) 20 >O for all L &€ QB/ Then, by virtue of the sub-
harmonicity of luif (ue K) for all &c.ﬂb, (48" =38) we have the inequality

2

4
®EC(D) g
o.%)

umyl < m pdi 2.

Tﬁ’C(cT)

which means that the set K is uniformly bounded on QIS’ . Consequently, K is compact in
the uniform metric on Qs(ﬂgﬁ QS‘ J. The latter implies the compactness of the set K

in L%’(ﬂs ,M} since }b(ﬂs‘} &« C(0) <° . This means that condition a} holds for any

~ 5
0>0 . Now we consider (] . Under the conditions of Theorem 1.4, for all W€K we have
the inequality §iuﬂ‘w‘5 < OPS . Therefore, if ?_{rg p5=9 , then condition b) holds and,

consequently, K is a compact subset of LQ(Q,}Q s 1.e., the embedding of %P(ﬂ’?) into
LQ(Q;}L) is compact. We note that for 0<g <p<o from the condition p«io there fol-

lows PS -0 , for 5—>0 +» Thus, we have proved the following theorem
THEOREM 2.2, Let (lc @i and assume that the conditions of Theorem 1.4 hold. If

0<§)€,q<00 and %ﬁﬁ’gpa= 0, or if O<OV<P<M and ﬁ(w » then the embedding of

%P(ﬂ,jﬁ} into Lov(ﬂ'j‘l’) is compact.

i~
[¥%)
w



In the same terms one can formulate the conditions for the compactness of the embedding
of SP(Q,P) (ﬂC R,m) or %P(Q’P) (ﬂ is a pluricylindric domain in ‘@m,mﬂ) inte
qu(ﬂuu).

Remark. It is easy to see that condition poe in the Theorems 1.3-1.4, 2.1 and 2.2
can be replaced by an equivalent one: PS o0 for some 8>0 . Thus, it is sufficient
to verify the conditions on the measure J only in the neighborhood of the boundary BQ
and for large X! .

3. Examples
In many cases the conditions on the measure J¢ in the theorems of the previous sections

are also necessary for the boundedness (compactness) of the corresponding embedding. For
the proof of the necessity one has to construct an extremal function (more precisely, a func-
tion close to an extremal one) which depends in an essential manner on the domain and on the
weight p . We consider some examples: in Subsections 1 and 2 we consider the space of

analytic and harmonic functions in a bounded domain with a power weight; in Subsection 4 we
consider the entire functions in the complex plane;in Subsection 5 the domain is once

again bounded but the weight is exponential. The case q,<P is discussed in Subsection 3,

in the remaining examples Péq, .
4 <
1. Let be a bounded domain of the complex plane Q, P(Z) =dz (-1 <d <o)},

by = ’/q d!. Obviously, (d-:, Yy d;) c Z_mcz_w‘1 and Yy dz € C, , and so, according to
Theorems 2.1 and 2.2, a sufficient condition for the boundedness (compactness) of the embed-

ding of K, (Q,d}) in L (Q,p) for 0<pag<® will be
p 2 gL P<g

~@Hdp
sp d,  p(DUhd,) <o

ef) (3.1)
-(zu.)ﬂz/
(éﬁlf: sup d, P}L(D(‘/qd;}) =0).

2. Let ﬂ be a bounded domain in the Euclidean space Rm, Xe ﬂ, j)('x,) = d; (-i {ds (m) ,
t(il‘,) = e/ll dx' Then ( d:, 4/4 dm) EZ_“ y 4/1.1 dnr, €C°; therefore, as in Subsection 1, for the
boundedness (compactness) of the embedding of SP (ﬂ,d:) in La'(ﬂ’}k) (4&? & q, <o) it is

sufficient that

Z{é% d;(m‘mlpﬂ (D Yy dm)) < 0o

med) 3.2)
(lim sup. d, %}L(D(‘/q d)) =0).

5‘-’0 (A

The conditions (3.1) (P)% } and (3.2) have been obtained in a somewhat different
manner and for more general spaces in [6].*# 1In the same paper one has established the neces-

*There is a misprint in the formulation of Theorem 1 in [6]. One has to assume: ({4 P éq,
<o) . 1In addition, for the proof of the necessity in Theorem 1, the restriction P>{ can be
replaced by p>0 .
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sity of the conditions (3.1) and {3.2) in the case of a bounded domain £} with a smooth
%
soundary (Ol € € and 4 & [0,00),

3. We turn te the case q,<p We consider only one example, Let [J =D(0,1) be the
unit circle of the complex plane (Z=%*ﬂé}‘, q,=’§ y P=2, and assume that the carrier of the
measure }L is on the ray %:0 , 0T <1 |, We divide the segment [0,4{] into the inter-
vals 53{%”4%,4*4‘&) , k=4,2,... . We set }Jk =}|(,I);}, t,ﬁq_k, Pﬁ =Z‘.(}lk/tk)g . From Thecrem
2.1 there follows that under the condition j3 <00 there exists a constant C» such that

for any function U e?‘ﬁzﬁ), ‘1) there holds the inequality

-~
(O]
N
(@8

~——

g luldp &G(S luigdxdxj}%
[ by )

We prove that the converse is also true, i.e., that under our assumptions, from in-
equality (5.3) it follows that p <o . First we assume that the carrier of the measure j“’

is situated strictly inside the segment (=1, 1) and we consider the function

{4
‘u,s(f} "‘g “_23)2
We have
i { §‘4
0 dw® g du (D _ g du(5dp
\ iu;l dxd%-g g (a7 ) Ay dmdrj-ﬁj mﬁ.&_,, (3.4)
D Do ¢ 60 t
f £l du () dp
- | | 20l .
y e (3 a3 @2
it
duch é,uop X p(i)d}t('z) iy .
[ % I:
From (3.33-(3.8) we obtain that PQQVTC C <o | ¥rom this follows at once the assertion
pcos for any measure o
4. Let [} be an arbitrary open set of the complex place @ We consider the space
-9

. -4
g‘f}?iﬂ;yaz)) . It is convenient to set (%) =¢& ; then the condition (f D) EZ"{{%
(see Theorem 1.4) can be written in the following form: there exists a number | such chat
for all ze() we have

i { e@dSdy <9 +M. (3.7)

I Fl
TL@) az'-}t)st@




In order to satisfy condition (3,7) it is sufficient that the function ¢ be twice con-

tinuously differentiable and that there should exist constants Ci and 92 such that for
ze () (A is the Laplace operator)
2
1y t@ av@ <c,

~~
(3]

-
5]

s

2) AP(E) €CAP(Z) , when 12-¢1 <t ().

Indeed, let 2=0 ; integrating the identity

y T (4
%.S ¢(0)d$ = 4(0) +-2—ggg 890 bog 77 d5 dy

with respect to the variable T between zero and t‘—‘t(o) and making use of the condi-

tions 1) and 2), we obtain
t

! o
Wémt‘?(z)dsdqé&?(on%%fi‘lngzg Lagdy<d) t Y50t 890 <90 +¢c, /5.

U 1LieT il
From here we obtain (3.7) with M =C‘c‘/g )
THEOREM 3.1. Assume 0 <P < q, <00, @ is a twice continuously differentiable

3 .
function in the domain Qc U, 49 >0 , Ty(2) =[ A9 (%] % | Assume, in additiom, that
there exist constants C, and C, such that the following conditions hold:

a) 11y (B -1 ¢, 1201,

4
b) Te(®) & ¢, dish (2,00) (VoD & ¢, 121 1f Q=C). We set 4y =min (¢},C,). Then, un-

der the condition

90
S e‘rfp

W/p 1 - N
m(w(z)) ap(t) =K <o (3.9

12-%le ¥pl2)

for any analytic function % in (1 we have the inequality:

( S lulo'd‘jxjhyé CK ( %mt"équd@‘/",

where the constant C does not depend on Y and on

Proof. We verify the conditions of Theorem l1.4. We set L) = YTy (%), and then
1@ -t <3 12-0) and 1(2) ¢ ¥yd, , 1.e., L EC(Q) . 1n addition, V@) A9@)
=¥* and for {2-T! €« 1(2) we have (A“?(‘C))%=('L¢(Z7'L¢((»))(A‘P(?S)'A‘P(‘C))y;+ (A‘?((»%

/ % ;
&C,X(A"V(‘C))l + (A‘?(Z)) & 4/14 (A‘?(m)/: + (A“P(z))% , from which we obtain (3.8) and thus also
)
(3.7). Thus (em, t(Z)) ez_w% . In order to conclude the proof of the theorem it remains

to make use of Theorem 1.4 for Q<p sq/ < oo . The theorem is proved.
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Now we prove the necessity of condition {(3.9) for the case Q=0 and 9@ =902 =

h Fod 3 2
FIRE AL IN (4> Y J, where { 1s an analytic, slowly increasing function, i.e., a function

regular and continuous in the plane with the cut (-o0,=4) , %GIL% 1e%, (Lt » G, for
which we have g;{,rg A4S By

X€a . We need the following properties of t.:—he function {see
{7, 1.21):
1y lim M-O (k=1,2,..);
£ pco LD
2) for any PB>0 there exists Q>0 such that E'C‘E%(f'(i}**oo monotonicaily (|t >,
I>a) :

3) for any 2 =0 we have

b0 =L@ 0) (C=o, janglles -iang 21).

The estimate is uniform with respect to 2  if 0« &izigs pcoo,

lang tle¥ <o, langli<T -V,
4
THEOREM 3.2, Let 8 be an analytic, slowly increasing function, C(’(fg)’ f ?} ?) N
T -‘?(:z
4/9, y 0 < p QCV £ oo . In order that for any entire functiom uef}"ﬁ ((ﬂ ) we
should have the inequality
N Yo
(% il dp) QC( luf'e dxdtg) (3.10)
¢
it is necessary and sufficlent to have the following condition: for some ’L’,>0
o [ 4fpouth
sup t Q) R d}i(t; {oo, (3.11)

1% - st {al)
where t{g) = Vge’d’f/ (§2>-¢2

Proof. First of all we notethat by virtue of property 1) of the function & for (- , A¥{#)=
Tai-dq 2 N
AL Y4+0{)) and, in additionm, EA‘V(!'L‘D]% =0({%!) . Therefore, according to
Theorem 3.1, condition (3.11) is sufficient for inequality (3.10) to hold,

The necesgsity will be proved in the following manner.

We construct an entire function
F.I (T>T,>0) for which

g 15 @l el d% et

1 {3.12)

g SO}
IFwlzce , lv-zl <l (3.13)

Here the coustants C% and (, do not depend on T . Then, inserting the function F*c into

the inequality (3.10) and taking into account (3.12) and (3.13), we obtain condition (3
on the real axis (¥=T) , and consequently alsc for all 2
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I. We comstruct Ft . TFollowing {7, 1, p.54], we set for 121<R

ee/,,z‘em
F(2)=—2jﬁ:§ S <z d'ﬂ,
Lo
ed G/ /24, -i%/2d
where LQ consists of two rays (Re 5 ‘, g '), (008 ‘ 5 Re ') and the arc of a cir-

cle: 1TI =R, IMAZ‘CK%/Q,L” Yo <dy <d . Outside the angle IOJUj 21 «% /24, the func-
tion F 1s bounded. For %] <R < R, , by Cauchy's theorem we have

Ypt LCL) 2L L (L)
_ g e dt = Lg e
2%1 ? (-2 291 {-2

R $

dt, -

Ly

Therefore, F can be continued analytically into the entire plane and is an entire function,

if |21>R , tong Z] <ﬁ'/:z,,z,‘I , then by the residue theorem we have

o ¢ULC0)
pitm e
Fin =e +-2-m—g T dt. (3.14)

)

We note that the integral in (3.14) is bounded. Now we set Ft ) =e-‘/ﬂm F(tz) . Then

the following estimates hold for F’c , uniformly with respect to (T—>0):

IR @I =00, 1ag 21>,

{(3.15)
P4 e
() 2T Re (¥ (1) ‘
e IFR@Il=¢e +0), i(mﬁ‘zjg%’ ) .16

II. We estimate from above the integral

Im =& \F, (z)ipém)dxdtj =SZ Ij 0.

j=o

a) I,(’t) is an integral over the domain !wr,g Zl >9'(:/‘2,.,(,1 . From (3.15) it fol-
1)
lows at once that I,,(T,)ch ¢ =0(t(’C)Q) , T —> o0,

) 1,(t) 1s an integral over the domain 12144, 1a1g %I 4%/24,. By virtue of the
properties 2) and 3) of the function [({), for any £>0 and some T, =7, (£)>0  for
KARSL AT M I Iwujii <%/gu, , 1{,1»1, we have the inequalities: L <« (4+8) TRMACEAY
SU+EY L L L,)), Therefore, Re[(xe)brey) <lcee*b@a «™/4" ¢ (Vu) (1+6) <
T L@ (A +6), when 121 <y | |ang %1 <%/24,, T>H%Y,. We choose & from the condition

i- 2‘_“’(4 + 8)2 = ¥>0 ; then 2Re [(T 2)& { (ta)] -0 ('Ca) & -¥Y(T). From here, taking into

. 2
account estimate (3.16), we obtain L (t) «Ce WO _ g (t@y), T-—->e.
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ey L,(1) is an integral over the domain §0/b(§ 21 &%%/Qm c Ut <84T, Ae 1t
follows frem (3.16), in order to estimate 1,(”{} it is sufficient to estimate the func—
tion W (T,2) =900 - 97*Re (2*f (12)) +Y1%l).  We comsider the identities:

2t
Lazhy =L +Ueyal -ty | 1 (0 -9 4%, (3.17)
@t
bany =L+ Eahyaz-ty+l () (2 -0) de. (3.18)
,CI

We note that by virtue of the properties 1) and 3) of che function ¢ for ‘5;74 &i‘ﬁéiﬁ*,

V) =0 l@) =o' L@h), 1o (3.19)

Inserting (3.17) and (3.18), taking into account (3.19), into the expression for h(’c,z) s

we obrain:

h(m,z)za(ﬁg‘;gzé-t&f +8,(T;2) (;ZJ.H ~'1:“LH !ﬂ B

s | (<) -4 X - ¢
AT AT el o ) 2 T btz = b IR - T (3.20)

The two~-sided estimate (3.18) is uniform with respect to % in the domain under considera-
(<

EP
S ¢
tion and with respect to T, T>7T,, for some T, . Finally, we have 12('5} LC S e T4

scl ('C}2 . The integral L{’C) gives the main contribution in L (T)

d) L {T) is an integral over the domain iwb%?ii 4%/245, 121 24T . 1In the same way as
for the estimation of the integral L (T) , in this case we have (T4 m/l-@ , 620, ¥(8)>0, 1>
T, (&)):

Re[Cear L] <ixl /4 Lash U ve,
IRe[(te) L o] - 110 () <-y9 ).

-0 2
Consequently, L (1y<ce =0t , T =0,
Finally, from a)-d) the estimate {3.12) follows for all T>T, for some T,>0 .
I1I. We estimate from below the integral with respect to the measure }L . Under the

condition |T -1l & (1) the estimate (3.20) gives: h(T,%) &C , where the constant C

does not depend on 2 and on T>T, . Therefore, taking into account (3.18), we obtain
& [ = [ Hp(euzh-hez) Yo pUrz)
_EEE;E > | iR &Juacgﬁ . dp}cge .
€ iz-Tis b @ 1-tielay

1Z-1etin

The theorem is proved.
Remark. Theorem 3.2 holds alse for < < 4&‘/2 . In this case the function ;:'c will

have several directions of largest increase of the modulus (the indicatrix is proportional
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to 0548, 1014% ). However, for each 4 these directions form a finite set, Therefore,

the entire plane can be split into a finite number of angles and in each angle one can carvy
out thc same estimates as in the proof of Theorem 3.2,

Remark. Theorem 3.2 can be extended in a natural manner to the space of entire func~
tions of several complex variables,

5. Let {1 be a bounded domain of the complex plane Q:g P(Z) =exp(-df;) , where dz is
the distance from the point 2]l to the boundary al . Assume, in addition, that 4 >4
and that the domain Q is such that

for some £>0 , for each point ze (1, GLL,&& . (A)

there exists only one point Z2e 0{) nearest % , i.e., dzzi‘z-li.

In this case one can make use of Theorem 3.1 and 3.2 in order to prove criteria for the
boundedness of the embedding of }KP(Q,Q(E)) in qu(ﬂ,}l;) . We start with two remarks:

1) We consider the unit circle Do={2€@1 , 04[2144} . As usual, EKP(D,,,%PQ!EI_J') is

the class of functions analytic in Do » P 1is the power whose modulus is summable over
the area with the weight function exp(-12I""). Performing the substitution 2=w' , we ar-

rive at %P(@i\:ﬂ,, inqeﬂ‘P(_-lwl“)) . In this case 4>1{, !wi-q exp (~lw]‘), =&1;P[—§W§J'(1 sl ln
wil = exp (-iwiJE(IWIz)) , where L(Z)=1+20*ln{  1is an analytic, slowly increasing func-

tion (h’,i z1) . Consequently, one can apply Theorem 3,2. Returning to the variable 2, we
obtain a necessary and sufficient condition on the measure J}, in the neighborhood of the

point %Z=0 . It appears in the following manner:

Sup m“)-’% & exp (% m-l) dp(0) <o, (3.21)
1214Y -Gtz

where {(%) ='§iu/ﬂ , 'z>0 .
1 ~dw =Y +
2) Let E={2€@, (Zl<‘i} . Since [A(’i-l'ﬂ) ]/z X(‘i‘iil){%, {2} <4, the pair

~-d i+%
(see Theorem 3.1) (exp (1- 120, (4-1%D) )} belongs to Z'“S(D) .
THEOREM 3.3. Let £) be a bounded domain of the complex plane, satisfying condition

-d
)) we should

(A), 4L>1, 0<P‘q, <@ | In order that for any function W € f}ﬁp (Q ,P/I,P(-CJ.Z

have the inequality
4 {
v, \ P - o
(g lul d}t) 4cglul %P('dz)dmdlj> ,
{ fol
it is necessary and sufficient that the following condition be satisfied:

m t(z;% S e/xp(q'/Pd:) de() < oo, (3.22)

P RATAA¢]

i+4fa
where U(%) =d‘z .
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Proof. We fix %,€ (), d/z <f ; let %, be the nearest point of the boundary 2
g o .
te thoe point aﬂ We consider through the point % 6 & circunference CE, of radius € so

A
that the points % and Z should lie on the same radius, We denote by De the circle

©

with boundary Cé . By virtue of the conditions (A), the circle DE is entirely situated
in f—‘l and ‘%C, is the unique common point of Ce and 0{) . We also comstruct the tangent
{ to the circumference C& at the point %, . We set 3,,5 =dist (¢ :Ca) and E{z =dist ({,0) .
It is easy to see that for |Z,-7| it(l,), dz(,{*’ ¢ we have the chain of inequalities*

e, A

wd gk A4 -
12,10 ed, &dy <dy v, < 1%, -1 +C,,

where the constants {, and (, depend only on & and 4 . Here the first two inequalities

are obvious, while for the proof of the last two one essentially makes use of the fact that

that t(2) =d, "%,

By virtue of the inequalities l%a -‘C!“‘& d,"; & 1%, - +C,, the necessity of condition
(3.22) follows at once from (3.21).

Sufficiency. By virtue of Remark 2), applied to D& instead of D, and by virtue
of the definition of the class Z—Kos , we have

A omel . -d
m,_j;mg d&%dm% <dy +M.
%o igitsly

Here M does not depend on E,GQ . Therefore from the inequality d: g&? it follows
that the pair (exp d:, d:w} belongs to Z%(Q} . Thus, the sufficiency of condition
(3.22) is obtained at once from Theorem 2.1. The theorem ig proved.

Remark., The compactness condition in Theorems 3.2 and 3.3 can be written in the stan-—
dard manner [see (3.1) and (3.2)].
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PN — A ~
sForf =%, , 1%, -2l =dz,=d§agd2u,
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