
EMBEDDING THEOREMS FOR WEIGHTED CLASSES OF HARMONIC 

AND ANALYTIC FUNCTIONS 

V. L. Oleinik UDC 517,54 

We establish conditions on the measure ~ , under which for any analytic (harmon- 

ic) function in some domain~ we have the inequality 

(1) 

where ~ >O is a continuous function and ~ is the Lebesgue measure in ~. In 

addition, one finds out under what restrictions on ~ is the embedding (i) compact. 

For many concrete ~ and ~ one finds necessary and sufficient conditions. 

Introduction 

In many problems of analysis the question arises of the comparative strength of the norms 
on a set of analytic functions. Thus, e.g., Carleson in his well-known paper on the corona 
problem [i] makes use of the following statement (see also [2, 3]). 

THEOREM A. Let ~ be the open unit circle, let H P be the Hardy class (see [4]) of 

functions which are regular in ~ , let ~ be a positively, measure in the closed circle ~ , 

let ~4 be the Lebesgue measure on the circumference ~ , let 0 �9 p 4 ~ < 00 ~ , = ~ - ~ 1 ;  

we set for ~6-D 

In order that for all functions %~P we should have the inequality 

lu,(e )i d,X,) (o.1) 

it is necessary and sufficient that 

a,, ( n (0.2) 

Thus, condition (0.2) is a necessary and sufficient condition for the boundedness of 

the embedding of H P in L~) . 
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In this paper we shall determine the conditions on the measure j~ in order that for 

any analytic (harmonic) function in some domain ~g we should have an inequality of the 

typ e : 

where 2 is a positive and continuous weight function, ~ is the Lebesgue measure in ~ 

and ~ is a constant independent of ~ In addition, we establish under what conditions 

on ~ will the set of all analytic (harmonic) functions for which the integral in the 

right-hand side of the inequality (0.3) is equal to unity be a compact set in the metric of 

L$(~). The latter means that the embedding (0.3) is compact. We formulate a typicsl re- 

sult (maintaining the notations of Theorem A)~ 

THEOREM B. Let ~ be a positive measure in D , let ~2 be the planar Lebesgue measure 

in D , l e t  o < ~ < o o  , ~ > 0 ,  

The inequality 

D 

holds for any function ~. which is regular in D if and only if 

C . (Dc 9 . 

(0.4) 

(0.5) 

In order that embedding (0.4) be compact, it is necessary and sufficient that for l~-~i we 

have 

% = o (Din)%). (o.6) 

If in Theorem A we extend the measure ~4 into D by zero, then condition (0.2) can 

written in the form ~(5(~ ~ ~ C~,(5(~)) ~ , which coincides formally with (0.5). Both be 

in Theorem A and Theorem B one indicates a class of sets ~(~) [ D(2) , respectively] on 

which the measure ~ is "subordinate '~ to the measure ~ However the sets $(~) border 

on the boundary ~ , while the circles D(~) are included compactly in D The fact is 

that the functions from ~P have boundary values on SD , but this cannot be said about 

the functions su~ab!e over an area. We also note that the larger is tile singularity of the 

functions at the boundary D(~) the smaller is the radius _~ of the circle ~D 

Our method of proof of the inequalities of type (0.3) is based on the mean value theo- 

rem; it can be applied in those cases when the functions ~ can increase sufficiently fast 

when one approaches the boundary of the domain ~ . In this case it is necessary that the 

function of the radii [in Theorem ~ this is t(%) =~z ], which is determined by the weight 
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, should satisfy some additional condition. 

The firsn section of the paper is devoted to the proof of inequality (0,3) for (ioga- 

rithmic=lly) subharmonic functions. Here we consider both cases: p4~ and ~<p , It 

should be mentioned that for ~<~ the conditions on the measure differ qualitatively 

from conditions (0.2) and (0.5). In the second section we consider the classes of analytic 
and harmonic functions: one obtains conditions for the compactness of embedding (0.3). In 
the first two sections one considers only sufficient conditions on the measure ~ , for 

which inequality (0.3) holds. The necessity of these conditions for specific examples is 
established in the last section. 

The author is grateful to B. S. Pavlov for his constant interest in the paper and for 
helpful conversations. 

!. Inequalities for (Logarithmic) Suhharmonic Functions 

Let ~ be an open subset of the ~-dimensional Euclidean space ~ , let ~ be 

the boundary of ~ and for ~ we set ~ =d~(~,~).* We introduce the notations: 

D(~,~) is the open sphere of radius ~>0 with center at the point ~ ; ~(~) is a 

function continuous in ~ such that 0<t(~)~ �9 D(~(~)) =D(~,t(~)) " for G=~, ~=U 

D(t[~)); p(~) is a positive and continuous function in ~ ; ~ is a nonnegative Borei mea- 

sure, finite on any compactum situated in ~ ; for p>0 we set 

If ~= #(~)d~ , then l~Ip~ =i~|p,# �9 Here and in the sequel, integration without the 

indication of the limits denotes integration over ~ . 

we denote the mean value of the function 9 in the sphere 9 =D(~,Or N by ~ (9, 
D)  , i . e . ,  

for ]) = ])(t(mg, It(p,D(t(~))) = ~(p,t(m)). 
Assume that for the functions ~ and t there exists a number ~ ~ such that for 

all ~ one of the following conditions holds: 

l) for all ~cD(t(z~), pc~ ~ Mp(~; 

Then we shall say that the pair ~#,b belongs to the class ~.=F-.(fD, Z. =Z.(n) or 

~ = ~ (~), respective!y. We ~ote that ~| ~_ C T__~ ~ The first inclusion is ob 

vious and the second one follows from the inequality between the geometric and arithmetic 

means (see [5]). In addition, if # ~ ?2, then (~1,t) and (~,,~) belong simultaneously 

to the class ~=,~ or ~&~ 

*In the case ~ ~,L = we set ~ = I~ 

tAs usual, ~ ~,~ mean that 0<64~(~5)~,(~5#~<~<~ for all 0 ~ ,  
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F~naily, we consider the sequence of open subsets ~{~-]'~ ,, ~--{,~,-.. , such that 

~{ = ~ and such that each point of the domain ~ belongs to at most N(N<~) sets 

~ we shall say that such a sequence ~{ forms a covering of the domain ffi of 

finite multiplicity, For a covering ~] , finite positive numbers p and ~ , a mea- 

' <' loff, t'<'+@ sure ,,and functions and ~ we set ~l~"i=l~l;'-p ; ,,,/.; = ~ ~ = ~y~ ; .  for 

THEOREM 1. l .  Let 0<~<oo , t 4  p <co;  (pW'Pi t )  ~=-Z_ for p#~ and ( / i , t ) ~ .  

2_. for p = 

multiplicity. 

the inequality 

; the sets ~ and ~ ~ ~ = ~ , ~ , . . .  form a covering of ~ of finite 

If ~<~ , then for any nonnegative subharmonic function ~ in ~ we have 

I1 u., 1t,, ~ ,~ r J~i~,,~, (i "~ 

where the constant C does not depend on ~ and on ~ . 

Let us formulate the corresponding result for the logarithmically subharmonic functions~ 

i.e~ such ~ ~ 0 for which ~ is a function subharmonic in ~ . 

THEOREM io2. Let 0<p,~<~ ;'(/i,t) e ~  and assume that the sets ~ , ~=~,~,,.o, 

form a covering of ~ of finite multiplicity, If ~ <co , then for any logarithmically 

subharmonic function ,~ in ~ inequality (i.i) holds. 

Proof of Theorem i,i. Let ~ be a nonnegative subharmonic function in ~ . i) We 

consider the case ~>~ �9 Since t ( ~ ) ~  i and ( p ~ ' P , t ) ~  ~ , for any ~e~[ we have 

cf:p/pO 

~<~) < ~.<=)-.<<,., ~ C I /i, v,,. 

, , .',, ~ ' N'J,.' (!t :,p <~,[)v" 

Raising both sides to the power ~i >0 , integrating with respect to the measure }L(~) , and % 

summing with respect to all {, we obtain 

1 C 
Then, for ~ ~ ~Ip <cm (~0) we make use of the inverse Minkowski inequality and of the 

finite multiplicity of the covering {i~l 

M %' ~, -",D 
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If 0<~/p <4 

and ~/j ~ = 

s t at ement : 

( ~ > 0) , then by applying H~Ider's inequality with the exponents ~/~ 

~/~ to the sum in the right-hand side of (1.2), we obtain the required 

~u, ~,~ 

2) In the case 

M 2 
~ . .  

-I  

p=~, (~ , t )  ~F. L. and for 05~fl~ we have 

Then, 

Proof of Theorem 1.2. 

as in case I), we start with inequality (1.2). The theorem is proved. 

If %~ is a logarithmically subharmonic function, then for any 

~ and p>O we have 

In additon, since (/',tJ ~ L ~  , there exists a finite number M~ such that 

(i.3) 

(1.4) 

Adding (1.3) and (1.4), we obtain 

Making use of the inequality between the geometric and arithmetic means, we arrive at the 
relation 

P 

J 

which can be rewritten in the form 

"~(m).< L ira.) [p(m)t(~) ] ~2 " 

Then, one has to proceed as in the proof of Theorem I.i, starting with inequality (1.2) 0 
The theorem is proved. 

P 

The assumption about the finite multiplicity of the covering ~ can be replaced 

by explicit conditions on t(05) ; then the sets ~ are constructed in the canonical man- 

C =0 (n) ner. In connection with this, we prove a lemma about coverings. We denote by o o 

the class of continuous functions t such that for all ~, ~e~' It(~)-t(u)l~4/~,. ~l~'~J' 
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L~mma on Coverings. Let n be a hounded open set in ~m. and t~o Then there 

exists a sequence of points 0C~e~ ~ t =~,~,... , such that !) ~t~ D(t(0~j)) ~ $~ ; 

= t 2) U D (t.(. ~)) f~ ; ~) , , . .  ; 

a covering of ~ of finite multiplicity. 

Proof. Since t is a continuous bounded function, there exists a point ~6~ such that 

where [~GD5 is taken over all ~s Let ~ ,..., ~.~ be the 

points which have been already chosen for the desired sequence. The point ~t is one of 

the points ~ ~. for which t(~)= ~logt(05) , the ~ being extended over all ~eiq 

. Continuing this process, we construct the sequence {~$~I for which con- 

dition i) holds. Condition 2) follows from the boundedness of ~ and the continuity for 

t>o. Since t - - ~ ,  for  eD(t(m)) we have 
t(~)<<, From here we obtain condition 3). Finally, let us indicate a number ~ such 

that each of the spheres D (St (~j)) intersects at most N spheres of the sequence i 

~ ~St(~))}, i.e., such that condition 4) holds. First we note that, according to condi- 

tion i), the spheres D (~ t(~s , %=~,~,..., do not intersect, On the other hand, if the 

two spheres O~St~)) and D(St(~)) do not have common points, then ~'~t(0~)%t(~) 

, since I ~-'~I ~St<~) and ~(~)~ +'A Therefore, D(4/a[(~)C 

C ~(~,~($)) ~ ~'~ and 4/~ t(~) > t<~) In the sphere of radius nonintersect- 

ing spheres of radius ~'~t(~) are located, at most ~ pieces. We now set ~ = ~ 

The lemma is proved. 

Remark. If the domain ~ is not assumed to be bounded, then we represent it as the 

union of the bounded sets G 0 = [ ~  i~ ~@ I 7g ={O~ ~Ql~i~i~(~)]~ ?~=~,~.... 

For t~Co and for any ~>~0 the sets G t G t and ~+~ do not intersect. Each set 

admits a covering by the spheres [D~ such that i 0raL} is a covering of finite multi- 

plicity. Taking the union with respect to �89 of all such coverings, we obtain a covering 

of _~ , satisfying the conditions 2)-4) of the Lermna on Coverings. 

Every covering, satisfying conditions 2)-4) of the proved lemma for t~~ , will be 

called a t -covering of ~'~. 
We reformulate Theorems i.! and 1.2. We consider an arbitrary open set ~ t 

~o~) and a sequence of points ~ ~, ~=~,~,... , such that the spheres [~(t(~))} 

form a t-covering of ~ . In this case for O< ~ ~ ~ <oo we have 
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and for O<Ov<.p <(~o 

. < =  

we have 

THEOREM 1.3. Let 0<~< o~ , i~p<oo ; re00 ~(p~'P,t] e ~ for and (~",~)~ 

~ for p=4 if ~<~ , then for any nonnegative subharmonic function ~ in I~ we 

have the inequality 

where 6 ~ r and does not depend on ID and on ~ . 

THEOREM i. 4. Let0~p i ~<~ ; teCo,(~i,t) e~. If ~Oo, thenforany 

logarithmically subharmonic function ~ in ~ inequality (1.5) holds, 

Remark. Theorems i.i and 1.3 (1.2 and 1,4) can be extended in a natural manner to the 
case of (logarithmically) plurisubharmonic functions in pluricylindric domains. 

2. Classes of Harmonic and Analytic Functions 

In this section we give applications of the theorems of the preceding sections to the 
problems of boundedness and compactness of the embedding of different classes of analytic 

and harmonic functions. We denote by ~p(.-(].,~] (p~'4") the space of functions harmonic in 

" p(.O. ~ , for which lll~Ip.p <o0 Similarly, for ~C~ (~4) by ~ ,9 ) (p>0) we denote 

the space of functions analytic in ~ , for which ~ ID |p.p ~ . Finally, Lp~,~) is the 

space of measurable functions for which llDIp.~ ~ ~ . For P )| , ~p and ~p are normed 

(in general, nDt complete). For O<p<~, ~pt~tp) (Lp is a metric s p a c e s  space 

with the metric d(ID,v) = ~ID -Vfp, 9 ( |~-Vi PP,~ , respectively) . It is known that I%~ is 

a subharmonic function if ~ is harmonic and p)~ If ~ is analytic in ~c~ i and p>0 , 

then IIDI P is a logarithmically subharmonic function. Finally, if ~ is analytic in ~C 

~<-~>| , ~=(Zi, ..,~) and p>O , then IIDI P is a logarithmically subharmonic function 

in fl with respect to the variables ~k (k =~,~,...,~t~] Thus, Theorems 1.1-1,4 refer 

in the same degree to harmonic and analytic functions. In terms of the embeddings of the 
spaces, Theorems 1.3 and 1.4 can be formulated in the following manner. 

THEOREM 2.i. Let ~C ~ C  ~i] and assume that the conditions of Theorem 1.3(i~ 

hold. If .~<oo , then the embedding operator Sp~,?] [~wp(.O_,~l ), respectively] in 

Li~(..Q.,jI~) is bounded. 
We elucidate now the conditions under which the embedding in Theorem 2,1 will be com- 

pact. The latter means that the unit sphere in the space w "~-~'qP('~"~ is a compact set in 
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Lr we introduce the following notations; for 8>0, ~_~= ~ ~E.n :~dm~" 1 , when 

~ ~ a.~d C~)8 =~(0~ "i) ; ~5 ~\~ ~ is the restriction of the measure ~ to 

the set ~ According to the definition of the number ~ , we set for 0 < p ~ < 

and for 0{.l~#,<p<oo 

Finally, we note that the set KcL~(~,j~)(~>0) is compact in m~(~,j~) if for any 

6>0 there exists $~0 such that a) K is compact in L~.~,~) and b) for all %~e~ 

we have ~ %& @ ~,~ ~.$ it can be easily seen that from a) and b) there follows the existence 

of a finite g-net of the set ~ for any $>0 

For the sake of definiteness, we consider the space ~pC~,~)(p>0, ~ ) .  Le~ 

K=[~e~pC~,f) : II~p.p w~} , We have to find conditions under which the set K is com- 

pact in L~(~,#) Since ~ is a positive continuous function in ~ ~ for any $ >0 there 

exists C(~)>0 , such that 9(~))r >0 for all ~ ~/~ . Then, by virtue of the sub- 

harmonicity of It&l r s for all ~e~, (@$~=$~) we have the inequality 

46 I t )lP iu'l ', pdt ' 
%,) 

which means that the set K is uniformly bounded on ~,. Consequently, K is compact in 

the uniform metric on ~(~$~ ~, )o The latter implies the compactness of the set K 

in L~,~) since ~(~ ~ C(~ < oo This means that condition a) holds for any 

~>0 Now we consider ~ Under the conditions of Theorem 1,4, for all ~ we have 

the inequality II %L~,~ ~ C~ Therefore, if ~ #~ =0 , then condition b) holds and, 

consequently, ~ is a compact subset of L~(~, , i.e., the embedding of ~pk~, into 

L~(~) is compact, we note that for 0~q, ~ < oo from the condition #~oo there fol- 

lows ~$-~0 , for ~-~0. Thus, we have proved the following theorem 
THEOREM 2~176 Let ~C~ ~ and assume that the conditions of Theorem 1.4 hold. If 

0<p~Oo and ~G~#~= 0 or if 0<0y~<~ and #<oo then the embedding of 
~;-~0 ' 

 pCn,f) i to L Cn,#) is compact~ 
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In the same terms one can formulate the conditions for the compactness of the embedding 

of SpC~,p)C~c~ ~) or ~pC~,~) C ~ is a pluricylindric domain in r into 

%Cn ;~) 1 "  

Remark. It is easy to see that condinion ~ <~ in the Theorems 1.3-1.4, 2.1 and 2.2 

can be replaced by an equivalent one: ~ <oo for some $>0 Thus, it is sufficient 

to verify the conditions on the measure ~ only in the neighborhood of the boundary 3~ 

and for large l~l . 

3. Examples 

In many cases the conditions on the measure ~ in the theorems of the previous sections 

are also necessary for the boundedness (compactness) of the corresponding embedding~ For 
the proof of the necessity one has to construct an extremal function (more precisely~ a func- 
tion close to an extremai one) which depends in an essential manner on the domain and on the 
weight ~ . We consider some examples: in Subsections 1 and 2 we consider the space of 

analytic and harmonic functions in a bounded domain with a power weight; in Subsection 4 we 
consider the entire functions in the complex plane;in Subsection 5 the domain is once 

again bounded but the weight is exponential. The case ~< p is discussed in Subsection 3, 

in the remaining examples p~ . 

i. Let be a bounded domain of the complex plane ~', p(Z) =d;(-1 <i <oo), 

~(~) = ~/q ~. Obviously, (dT, 4/q d~) e ~,c ~ and I/~ dz e C o , and so, according to 

Theorems 2.1 and 2.2, a sufficient condition for the boundedness (compactness) of the embed- 

of ~eCn,d~) in Lr for 0<p~<~ will be ding 

C~ ~R d, .p.CDCYqd)) =0). 
8+o d~,.S' 

2. Let 

boundedness (compactness) of the embedding of 

sufficient that 

(3.~) 

be a bounded domain in the Euclidean space ~"~ ~ , a;e.O., p{~)= " C-~ ' . J .<~ ) ,  

~Co; therefore, as in Subsection !, for the 

5~Cn,d~) in L~,{.n,~) (~-r p ,  ~ -.,~) it  is 

s+o d,,5 . CDCV  =o). 
(3,2) 

The conditions (3.1) (p){) and (3.2) have been obtained in a somewhat different 
manner and for more general spaces in [6].* In the same paper one has established the neces- 

*There is a misprint in the formulation of Theorem i in [6]. One has to assume: (~ p ~ 
K~). In addition, for the proof of the necessity in Theorem i, the restriction p ~{ can be 
replaced by p>O . 
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sity of the conditions (3.1) and (3.2) in the case of a bounded domain ~ with a smooth 

boundary C~9.~..C =) and ~ e [ O , o o ) .  

3. We turn to the case ~< p.  We consider only one example, Let D=DC0,0 be the 

unit circle of the complex plane (%=~+{~), ~=~ , ~=Z, and assume that the carrier of the 

measure ~ is on the ray ~=0 , 05~ <~ . We divide the segment [0~j into ~he inter- 

-~ -k 

 als . . . .  we set , , 

2.1 there follows that under the condition ~ <oo there exists a constant 

for any function ~ e~<~,~) there holds the inequality 

, �9 ( 3 . 3 )  

From Theorem 

such that 

We prove that the converse is also true~ i.e., that under our assumptions, from in- 
equality (3.3) it follows that ~ <~ . First we assume that the carrier of the measure 

is situated strictly inside the segment (--I, i) and we consider the function 

0 

We have 

(3.4) 

(3.5) 

(3.6) 

From (3,3)-(3~ we obtain that ~$~C <oo From this follows at once the assertion 

.~ < oo for any measure 

4 Let ~ be an arbitrary open set of the complex place . We consider the space 

~ ( f ~ 2 ( ~ } )  . I t  is convenient to set p (~ )  = ~ ~  �9 ; then the condition (j~", t) e~ 

(see Theorem 1.4) can be written in the following form: there exists a number M such chat 

for all ~ we have 

(3.7) 
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In order to satisfy condition (3,7) it is sufficient that the function q be twice con- 

tinuously differentlable and that there should exist constants 

~fl ( A is the Laplace operator) 

2) a~(~) ~%a~(~) , when I~-~I  ~tCm). 

Indeed, let ~:0 ; integrating the identity 

6| and ~ such ~hat for 

(3,8) 

with respect to the variable ~ between zero and ~ =t(0) and making use of 

tions i) and 2), we obtain 

the condi- 

t 

~t'- ~(~)d~d?~q(o)+ c=a~'(o) "c,& ~.oo~.i-/i 
m~t ~C 

From here we obtain (3.7) with ~ =C,C=/~. 

THEOREM 3.1~ Assume 0 < p ~ <oo , @ is a twice continuously differentiable 

C ~ 
function in the domain ~ ~ ~q > 0 , ~C~) = [A~ C~)]'~ Assume, in addition, that 

there exist constants ~ and ~ such that the following conditions hold: 

der the condition 

Then, un- 

(3.9) 

for any analytic function ~ in at[ we have the inequality: 

where the constant C does not depend on tl and on ~ . 

Proof. We verify the conditions of Theorem 1.4. We set t(~)= ~ (~) , and then 

It(~)-t(~)l ~<I/4 ~-~J and ~(E) 41/q~ , i.e., tc~)egoCfD In addition, tC~)2Aq(~) 

=~ and for I%-~I ~< t(~) we have Cf~V(~))~=C~C~)-~(~))(A~(~)'A~(~))~+ CA@.C~)) f~ 

40~CA~(~))~+ (A~(1))~ ~ I/q Cg~C~)) �89 § ~ , from which we obtain (3,8) and thus also 

(3.7). Thus (e , ~6~))eke. In order to conclude the proof of the theorem it remains 

to make use of Theorem 1.4 for 0 ~p ~ ~oo . The theorem is proved. 
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Now we prove the necessity of condition (3.9) for the case ~=~ and q(~) =q( l l l )  = 

IEi z~.~l%i') (#~> ~/2), where g is an analytic, slowly increasing function~ i,e,, a function 

regular and continuous in the plane with the cut C-oo-~j , 10Jr ~l&~, CgCl~J > 0 ~ for 

which we have ~" ~ ' ( ~ )  "- ~F~ = 0 . We need the following properties of the function u (see 

[7, 1.2]) : 

~) ~ s Ck=4,~,...); 

2) for any ~>0 there exists ~0 such that i~ip~[lil)~o_. 

ill> ~) : 

monotonically Ci<l -->~ , 

3) for any ~ ~0 we have 

The estimate is uniform with respect to ~ if O<~-<I~i~A<~ 

THEOREM 3.2. Let 

should have the inequality 

i t  i s  n e c e s s a r y  and s u f f i c i e n t  t o  have t he  following c o n d i t i o n :  

be an analytic, slowly increasing function, q(~)=~ ~ ) 

~n order that for any entire function ~ Z~C~', 

for some %>0 

, ~> 

we 

(3,io) 

S4~O tcR~j. ~/P e (~) 400 (3.11) 

where tC~) ~ L~ } 
Proof. First of all we note that by virtue of propertyl) of the function ~ for ~n~ , ~q~)== 

~~C~I~)C~+0(~)) and, in addition, [~Cl~l)] "~ =oCI~ 0 . Therefore, according to 

Theorem 3.1, condition (3.ii) is sufficient for inequality (3.10) to hold. 

The necessity will be proved in the following manner. We construct an entire function 

F~ (~>Zo>O) for which 

Here the constants ~ and G= do not depend on % ~ Then, inserting the function F~ into 

the inequality (3.10) and taking into account (3.12) and (3.13), we obtain condition (3o11) 

on the real axis (~=T) , and consequently also for all ~ . 
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I. We construct [z . Following [7, I, p.54], we set for I~I<~ 

L~ 

where LR consists of two rays C~@iW~z, ) oo ~)/~,,),. (oo~/=z, , ~p-L~i-/=~.,) and the arc of a ci r -  

cle: I~l =~ ) ~II~9~/~6,, 4/s163 <s Outside the angle ~21 ~ / ~  
tion F is bounded. For [Z] <~ < ~ , by Cauchy~s theorem we have 

the func- 

~-~- ~_~ ~ ~ - ~  d~- 
L~ L~ 

Therefore, 

~f l~i>~ 

F 

, I OY~ 2J < 9[/~gr , then by the residue theorem we have 

F(~) = e  + ~ ~_~ . 

h~ 

can be continued analytically into the entire plane and is an entire function, 

(3.14) 

We note that the integral in (3.i4) is bounded. Now we set [~(~) =e "~) F(z~) 

the following estimates hold for F% , uniformly with respect to (~-->~) : 

Then 

e + 0 ( 0 ,  �9 

(3.15) 

(3.16) 

II. We estimate from above the integral 

= Ii (%). 

a) Io(~) is an integral over the domain I~ ~i >~/~L~ . From (3.15) i t  fo!- 

lows at once that io(q~)~C =0(t(%@) ,%-~ 

b) I~(%) is an integral over the domain J~J4%/~ , i~l ~/~4. By virtue of the 

properties 2) and 3) of the function ~(~) , for any 6>0 and some ~o =$o(6)>0 for 

I~}41~,]~i~I , i~i 4~/~ , ~41>~%o we have the inequalities: I~(~)I ~< (~ +g) ~i~l~t ~I<~I) 

~(~ +g)]<,l~ (I~I). Therefore, ~e[(%~)a~(~2)] ~I(~2)~)~ ~%'~/~(Z2/M) (~+g)~ 

~?q~ ~(%2)(4 +6] 2, when I~; ~%/~ , ;~ 2~ ~/~g~ ~ %> @%, We choose g from the condition 

~- ~' ='(~ +el =_ ~> 0 ; then i~e[(~e)~g(zm)]-%='s ~-~q(~) From here, taking into 

account estimate (3.16), we obtain [~ (%) 4C~ "~(~O = 0 (~(%f)) % -->o~ 
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c) I~(%] is an integral over the domain I~Z~ %%/h4~ , %/@ ~ l~I ~ q% . As it 

fo!low~ from (3.i6)~ in order to estimate ~=C%) it is sufficient to estimate the func- 

tion ~C%,~) =~(%~ -~%~eC~g ~%))§ We consider the identities: 

2:~ Zz 

' ' +I 
g(zz) =g + e 

%= 

(t.iT) 

(3.18) 

We note that by virtue of the properties i) and 3) of the function g for %y@ ~l<i~@Y~ 

Inserting (3.17) and (3.18), taking into account (3.19), into the expression for ,%(~,~ , 

we obtain: 

g.~, ~'(~-0 ~ .,,, 1[~(~_ 0 ~ = 
( 3 . 2 0 )  

The two-sided estimate (3.18) is uniform with respect to ~ in the domain under considera- 

i .tcd~# tion and with respect to q~, T >%o, for some %. Finally,wehave I=(%) --<C e D&% 
G 

Ct C%; The integral i,(~) gives the main contribution in [ C~) 

d) I~(%) is an integral over the domain I~~/~,6~, I~I>~@% . In the same way as 

for the estimation of the integral [~ C%) , in this case we have (%~ I%y@ ~$>0, [(g)>0 , %> 

"~o Cg)): 

.r 2 
Consequently, [~(%)~C8 =0ct(z)) ,I-~oo. 

Finally, from a)-d) the estimate (3.12) follows for all T>%= for some ~o>O ~ 

Iii. We estimate from below the integral with respect to the measure ~ Under the 

condition It-%I ~ t(%) the estimate (3.20) gives: ~(%,~) ~a , where the constant C 

does not depend on ~ and on %>%o Therefore, taking into account (3.16), we obtain 

The theorem is proved. 

Remark, Theorem 3,2 holds also for 0 ~ ~ ~/2 in this case the function Fz will 

have several directions of largest increase of the modulus (the indieatrix is proportional 
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to 60$~ ,  lel ~1~ ). However, for each J~ these directions form a finite set, Therefore, 

the entire plane can be split into a finite number of angles and in each angle one can carry 
out the same estimates as in the proof of Theorem 3.2. 

Remark. Theorem 3.2 can be extended in a natural manner to the space of entire func- 
tions of several complex variables. 

5. Let ~ be a bounded domain of the complex plane 9(Z) =eo~o(-~m ) , where i~ is 

the distance from the point ~ to the boundary ~ . Assume, in addition, that ~ >~ 

and that the domain ~ is such that 

for some 6>0 , for each point Z~, ~6 ~(A) 

there exists only one point ~e~ nearest Z , i.e~ &~=IZ-il. ] 

In this case one can make use of Theorem 3.1 and 3.2 in order to prove criteria for the 

of Zp(~,Q(Z)~__ _ _ _ . _in L~(~,~_ ~ ," we start with~o .__ - _ t w ~  remarks: boundedness of the embedding 

I) We consider the unit circle ~o=LZe~ ~ , 0<IZI<4j . As usual, ~p[D~,e~(-l~J ~) is 

the class of functions analytic in Do , ~ is the power whose modulus is summable over 

the area with the weight function e/J~p(-IZl'~). Performing the substitution Z=W -~ , we ar- 
~ . ~ n , ' ~  . ~ t " ~..$~ r ,  ~ . "~ 

rive at ~l~pt~\D,, Iw['~e/'~.,P{,-Iwl"),) In this case J,>'J, iw~e~ptlwl), =eoqt-Iw,d+elwl 

~W{)] = eos~ (-IWi~g(~WI~)) , where 6(~)=~+~'~ is an analytic, slowly increasing func- 

tion <I<l ~) . Consequently, one can apply Theorem 3,2. Returning to the variable Z , we 

obtain a necessary and sufficient condition on the measure ~ in the neighborhood of the 

point Z=0 . It appears in the following manner: 

where tC~) = ~ ' ~ ,  ~ >O . 
4 

(see Theorem 3.1) (eo~p (I-IZI) -~ , 
THEOREM 3.3. Let 

CA), p 

< oo (3.21) 
) 

Since [A(~- IZI ) - ' ]  "~ ~ C~-Iz l )  '*~, Izl <4 , the pair 

(4 - I~ I )  i''/~ ) belongs to L ~ ( D )  �9 
be a bounded domain of the complex plane, satisfying condition 

�9  un:: on (n, 

have the inequality 

-., )'/P 

it is necessary and sufficient that the following condition be satisfied: 

:Z ell t~-~.w.L(~) 

(3.22) 

where t(~] =-~ �9 
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Proof. We fix %o~_.~ ~o ~g ; let ~ be the nearest point of the boundary 

to the point $~. We consider through the point ~a a circumference ~g of radius 6 so 
A 

that the points ~o and ~ should lie on the same radius, We denote by D6 the circle 

with boundary ~& . By virtue of the conditions (A), the circle ~6 is entirely situated 

in ~ and ~o is the unique common point of r and ~ . We also construct the tangent 

g tO the circumference Cg at the point ~ We set ~=~ (~,Ca) and ~ =~(~,g) 

It is easy to see that for i~ - ~I ~(~o), ~oA 6 we have the chain of inequalities* 

A .g -& A.& -~.,& A -4 

where Ehe constants ~ and g~ depend only on g and ~ Here the first two inequalities 

are obvious, while for the proof of the last two one essentially makes use of the fact that 

that ~(~) = ~~ 

By virtue of the inequalities ~%= -< & < ~ I~o-~ +~, the necessity of condition 

(3.22) follows at once from (3~21). 

Sufficienc~ By virtue of Remark 2), applied to Dg instead of D, and by virtue 

of the definition of the class ~ , we have 

+~- 

Here ~ does not depend on ~oG~ Therefore from the inequality i< ~i~ it follows 

that the pair (~ ~, ~ belongs to . Thus, the sufficiency of condition 

(3.22) is obtained at once from Theorem 2,!. The theorem is proved. 

Remark~ The compactness condition in Theorems 3.2 and 3.3 can be written in the stan- 

dard manner [see (3.1) and (3.2)]. 
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