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Abstract.  Chi t in  synthase  act ivi ty  in to ta l  m e m b r a n e  fract ions f rom two polyene-res is tan t ,  ergos- 
terol -def ic ient  mu tan t s  o f  Candida albicans was signif icant ly h igher  in compar i son  to the pa ren ta l  
po lyene-sens i t ive  strain.  The  zymogen  c o m p o n e n t  f rom m e m b r a n e  p repa ra t ions  o f  s ta t ionary-  
phase  cells o f  ergos terol  mu tan t s  was more  suscept ible  to t ryps in  d iges t ion  t han  those f rom the pa-  
ren ta l  polyene-sens i t ive  strain. Mechan i sms  that  might  exp la in  the  effect o f  changes  in m e m b r a n e  
compos i t ion  in the  m u t a n t  s trains on chi t in  synthase  ac t iv i ty  are  discussed.  

In tens ive  studies on the mode  o f  ac t ion  o f  po lyene  
ant ib io t ics  have  shown that  al l  fungi  hav ing  sterols in 
thei r  cell  m e m b r a n e s  are  sensit ive to po lyene  ant ib i -  
otics, and  close cor re la t ion  was found  be tween  the 
a m o u n t  o f  po lyene  b o u n d  and  the ergos terol  content  
o f  the  yeast  ceils [9]. Consequent ly ,  the  i so la t ion  o f  
po lyene- res i s tan t  mu tan t s  wi th  a l te red  m e m b r a n e  
sterol  content  has  become  a useful  tool  for s tudying  
the impor t ance  o f  sterols in re la t ion  to the s t ructure  
and  func t ion  o f  m e m b r a n e s  [13,17]. 

Al t e ra t ions  in the  compos i t ion  o f  the  cell  mem-  
b rane  m a y  cause changes  in the p l a s m a  m e m b r a n e  
processes o f  Candida albicans [20], inc lud ing  the ac- 
t ivit ies o f  m e m b r a n e - b o u n d  enzymes.  Ch i t in  synthe-  
tase (EC 2.4.1.16) in C. albicans has been  shown to 
be ma in ly  associa ted  wi th  the  p l a s m a  m e m b r a n e  [1], 
as h a d  been  ear l ier  r epo r t ed  for Saccharomyces  cere- 
visiae [5], and  in bo th  species it is invo lved  in the  for- 
m a t i o n  o f  the  p r i m a r y  b u d  scar. 

Thus  the  purpose  o f  the s tudy repor ted  in this pa-  
per  was to compa re  the  act ivi ty  o f  chi t in  synthetase  
in an  e rgos te ro l -producing ,  polyene-sens i t ive  s t ra in  
o f  C. albicans a n d  its p o l y e n e - r e s i s t a n t  mu tan t s ,  
which  do not  conta in  ergosterol ,  in an  a t t empt  to as- 
sess changes  in m e m b r a n e  act ivi ty  wi th  respect  to 
chi t in  format ion .  

Materia ls  and M e t h o d s  

Microorganisms. Two polyene-resistant strains, designated erg-2 
and erg-16, were isolated from a polyene-sensitive strain, 33 erg +, 
of Candida albicans 33 ade- following nitrosoguanidine treatment 
and nystatin enrichment for selection [16] using the method of 
Molzahn and Woods [12]. 

*To whom reprint requests should be addressed. 

Culture media. The following media were used throughout the ex- 
periments. Complete medium (YPG): 0.3% yeast extract, 0.5% 
peptone, 1% glucose. Minimal medium (MM): 1% glucose, 0.5% 
(NH4)2SO4, 0.1% MgSO4 �9 7H20, 50 #g/ml adenine, 2 #g/ml bio- 
tin, 400/~g/ml thiamine, 2% agar (Difco). 

Determination of minimal inhibitory concentrations (M1Cs). Cells 
from mid-log phase, shaken cultures were harvested and washed 
by centrifugation. Cells at a density of 1 x 104/ml were plated on 
YPG media containing a concentration range of drugs which were 
freshly prepared in dimethyl sulfoxide. The MICs were deter- 
mined after incubation for 48 h at 30~ MIC was defined as the 
lowest antibiotic concentration that completely inhibited growth 
under these conditions. 

Sterol analysis. For sterol analysis, strains were cultured in MM 
for 72 h at 30~ on a shaker at 150 rpm, and extracts of non- 
saponifiable sterols were quantified [24]. 

Protoplast formation and chitin synthase assay. Four-day-old 
stock cultures were inoculated at a concentration of 106 cells/ml 
into 2-liter conical flasks containing 400 ml YPG medium and 
shaken at 150 rpm and 30~ Cells were collected after attaining 5 
• 107 cells/ml. Protoplast formation was carried out as described 
by Braun and Calderone [1]. The ceils were incubated with 2% 
lyophylized snail enzyme, prepared from Helix pomatia in the De- 
partment of Microbiology, Attila J6zsef University, Szeged, in 1 
M mannitol buffered to pH 5.8 with 0.2 M phosphate-0.1 M ci- 
trate. Protoplasts were washed (3 times in buffered stabilizer) and 
then resuspended in 200 mM Tris-hydrochloride, pH 7.5, at 4~ 
and subjected to four passes in a hand homogenizer. 

The lysate was then centrifuged at 100,000 x g for 1 h at 4~ 
in a Beckman L265B ultracentrifuge, and the pellet resuspended 
in buffer. Preparations were stored overnight at -20~ and used 
as the enzyme sample. Chitin synthase was assayed according to 
the method of Ryder and Peberdy [18]. The Tris-hydrochloride 
buffer system, pH 7.5, employed in this method has been shown to 
give the same activity with Saccharomyces cerevisiaechitin syn- 
thase [6] as the imidazole pH 6.5 system, which was first used for 
this enzyme [4] and in a study of C. albicans enzyme [1]. Pro- 
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Table 1. Minimal inhibitory concentrations of polyene antibiotics 
and patterns of cross-resistance in Candida albicans. 

Polyene concentration 

Ampho- 
Nystatin tericin B Candicidin Pimaricin 

Strains (U/ml) ~ / m l )  (p/ml) (p/ml) 

33 erg § 25 1.5 1.5 0.6 
erg-2 400 12.0 24.0 10.0 
erg-16 400 12.0 24.0 10.0 

teolytic activation of chitin synthase preparation was achieved us- 
ing various concentrations of trypsin (4-8 #g) in Tris-hydro- 
chloride, pH 7.5, containing 1 mM MgSO4 in a total volume of 108 
/d to ensure optimal activation of the samples. After incubation for 
10 min at 25~ the digestion was terminated by the addition of 
soybean trypsin inhibitor (8 #1) to give a concentration double that 
of trypsin. Duplicate assays were carried out using volumes of 50 
#1. In control reactions to determine the active chitin synthase 
component the trypsin inhibitor was added first. 

Chemicals. Nystatin (5,777 U/mg) was purchased from Chinoin 
(Budapest). Pimaricin was from Gist-Brocades N.U. Mycofarm, 
Delft. Amphotericin B and candicidin were from Sigma Chemical 
Co., and other chemicals, of analytical grade, from BDH. UDP-N- 
acetyl-DIU-14C]glucosamine (300/xCi/mmol) was purchased from 
the Radiochemical Centre, Amersham. 

Resul t s  

Characteristics of strains. The characterization of 
polyene-sensitive auxotrophs and polyene,resistant 
mutants has already been reported [14,16]. Thirteen 
resistant strains were found to have altered sterol 
composition and could be subdivided into three cate- 
gories. One group contained nearly as much ergoste- 
rol as the parental strain plus an additional sterol, the 
second had a significantly decreased amount of er- 
gosterol, and the third was strains having no ergos- 
terol. 

In the resistant strains, polyene antibiotics in- 
duced ion leakage to a smaller degree, as shown by 
conductometric measurements [16]. Bound Ni L§ ions 
were not liberated by nystatin treatment of resistant 
cells and their cytoplasm remained unstained after 
treatment with polyene antibiotics using UO~§ - 
ceau red stain [14]. The freeze-etched surface of 
pIasmalemma of the erg-2-resistant strain showed no 
detectable changes in structure after treatment with 
nystatin at a level of the MIC [15]. Two strains from 
the ergosterol-deficient category were used in sub- 
sequent experiments [16]. 

The MICs of polyene antibiotics for the sensitive 
strain (33 erg +) and the pattern of cross-resistance of 
nystatin-resistant strains (erg-2 and erg-16) are 
shown in Table 1. UV-absorption spectra of the er- 
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Fig. 1. Ultraviolet absorption spectra of (a) ergosterol standard 
and sterols extracted from (b) 33 erg § (c) erg-2, and (d) erg-16. 

gosterol standard and nonsaponifiable cell extracts 
(Fig. 1) indicate that the 33 erg § strain produces er- 
gosterol, but 24(28)-dehydroergosterol is not present 
in a detectable amount [24]. A difference was found 
between the two resistant strains, with the presence 
of three small peaks between 262 and 269 nm in ex- 
tracts of the erg-2 strain. Culture conditions had no 
effect on the qualitative spectra of the strains. The 
relative plasma membrane parameter values of the 
strains that were in exponential growth phase have 
been determined by electron spin resonance studies 
by using spin-labeled fatty acid. Sterol mutants had 
higher order parameter values and thus a greater de- 
gree of plasma membrane "rigidity" than their pa- 
rental strain, as follows: erg-16 > erg-2 > 33 erg § 

Significant changes were observed in the phos- 
pholipid content of sterol mutants as compared with 
the ergosterol-producing strain (Table 2). The ratio 
of unsaturated fatty acids to saturated fatty acids in 
sterol mutants was lower than in their parental strain 
(M. Pesti, unpublished data). Data on sterol content 
of these strains will be published elsewhere in detail. 

Table 2. Phospholipid content of ergosterol-producing strain of 
Candida albicans and its sterol mutants. Phospholipids are 
expressed as percentage of total phospholipid phosphorus. The 
error of the determinations was <5%. 

Percentage of total a 

Strains PC PE PI PS PA 

33 erg + 53.9 16.1 10.6 13.2 6.2 
erg-2 33.2 20.7 25.3 5.7 15.3 
erg-16 48.0 14.1 23.3 4.3 10.3 

a PC, phosphatidylcholine; PE, phosphatidylcthanolamine; PI, 
phosphatidylinositol; PS, phosphatidylserine; PA, phosphatidic 
acid. 
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Table 3. Chitin synthase activities in protoplasts from nystatin-sensitive and -resistant strains of  Candida albicans. Total activities are 
expressed as nanomoles GlcNAc per minute per 109 protoplasts, and specific activities as nanomoles GIcNAc per minute per milligram 
protein. Mean values are from four separate experiments, each determination being in duplicate. 

Active Active + zymogen 
Membrane protein 

Sample Total Specific Total Specific (mg/10 9 protoplasts) 

33 erg § 0.55 + 0.04 0.38 • 0.04 2.0 + 0.08 1.35 • 0.02 1.45 • 0.09 
erg-2 1.17 • 0.05 0.85 + 0.03 3.2 • 0.06 2.40 • 0.04 1.38 • 0.11 
erg-16 0.74 • 0.06 0.76 • 0.04 3.1 • 0.05 2.05 • 0.06 1.61 + 0.14 

Chitin synthase activity. Protoplast preparations were 
obtained after a 1-h digestion of cells with snail en- 
zyme, which gave 100% conversion. The values of 
chitin synthase activity in the active form and zymo- 
gen form (after trypsin digestion) are given in Table 
3. The total activity, active plus zymogen, is the opti- 
mum value determined following trypsin digestions. 
The chitin synthase specific activity, both active and 
zymogenic, is higher in the sterol mutants than in the 
parental strain. In the case of stationary-phase cells, 
where budding has virtually ceased, the active com- 
ponent of the sensitive and resistant strains was 
found to be at the same low specific acitvity (0.12 _ 
0.02 nmol GlcNAc/min/mg protein), whereas the 
zymogenic component still showed greater suscepti- 
bility to trypsin digestion in the resistant strains (erg- 
2 = 0.46 • 0.02 and erg-16 = 0.42 • 0.04 nmol 
GlcNAc/min/mg protein) than in the sensitive one 
(0.31 • 0.03 nmol Glc/min/mg protein). 

Discussion 

Several studies have shown that altered lipid content 
of the cell membrane in fungi has a marked con- 
sequence on cellular processes. In Candida albicans 
sterol mutants having lower ergosterol content, a de- 
creased rate and level of accumulation of certain 
amino acids has been found [20], and changes in in- 
ositol-containing lipids of Neurospora crassa plasma- 
lemma may have been the cause of the observed ma- 
jor effects on cell wall synthesis [7]. A preliminary 
investigation of carbohydrate assimilation by C. albi- 
cans nystatin-resistant strains showed significant re- 
ductions in comparison to the sensitive strain [16]. It 
is significant that sterol incorporation into mem- 
branes has been shown to increase order and rigidity 
of both artificial membrane systems [2,13] and the 
cell membrane of C. albicans [10]. It has also been 
proved that sterols could regulate the plasma mem- 
brane lipid composition by adaptive alteration in liv- 
ing organisms [ 19]. 

This type of change in cell surface phenomena, 
possibly due to the absence of ergosterol in the 

plasmalemma, prompted the investigation of chitin 
synthase activities of polyene-sensitive and -resistant 
cells. This enzyme has been shown in yeast to be in a 
zymogenic form, which is activated during budding 
[3,4]. The transformation to the active chitin synthase 
may be brought about by an endogenous protease, 
proteinase B [4,22], itself under the control of a pro- 
teinaceous inhibitor [21]. This proteinase B has also 
been shown to inactivate the active chitin synthase at 
a slower rate than that activation [8] which would 
complete the regulation of the localized deposition of 
chitin in the bud wall. The higher total and specific 
chitin synthase activities, both active and zymogenic, 
observed in the C. albicans sterol mutants may be ex- 
plained in relation to the regulatory mechanism con- 
trolling chitin synthase activity. In the changed mem- 
brane environment,  the protease functions of  
activation and inactivation may be altered in such a 
way that there is greater chitin synthase activity 
existing at the population level. The observed in- 
crease in chitin synthase activity may also be inter- 
preted in the following terms: the greater rigidity of 
ergosterol-deficient membranes resulted in the in- 
creased accessibility of activating factor or trypsin to 
the zymogenic form of chitin synthase and so in- 
creased the number of active enzymes by which both 
the total and the specific activity were enhanced. The 
conformation of the enzyme changed favorably as a 
consequence of the complex alterations of plasma- 
lemma lipid composition to allow greater activity in 
sterol mutants. The purified chitin synthase from S. 
cerevisiae has been shown to have a requirement for 
certain phospholipids [6], and in C. albicans the 
plasma membrane-bound mannan synthetase is in- 
fluenced by its lipid environment [11]. Certain lipid 
molecules in model membrane systems, "boundary 
lipids" lying adjacent to protein components, have 
been shown to be tightly associated with membrane 
enzyme molecules [23], and this type of  inter- 
relationship of lipid and protein would obviously be 
of fundamental importance to any integral mem- 
brane enzyme. 
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