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We present extensive numerical results applying the finite size scaling method to the 
theory of electrons in disordered systems. A method is developed for studying the loca- 
lisation length in 1-dimensional systems of finite cross section. By studying these results 
as a function of cross-section and using scaling ideas, we derive the critical properties of 
2-D and 3-D systems. We calculate transport properties as a function of temperature 
which can then be compared with experiment. 

1. Introduction 

In recent years, since the formulation of the scaling 
hypothesis for localisation by Abrahams etal. [1] 
the subject of Anderson localisation has attracted in- 
creasing interest with a rapid development of new 
theoretical and experimental approaches. Diagram- 
matic expansion of the conductivity proved particu- 
larly useful in the regime of weak impurity scattering, 
and led to the most spectacular result that all states 
in the two dimensional (2d) disordered system 
should be localised in the thermodynamic limit giv- 
ing rise to logarithmic effects in the conductance as 
a function of the various parameters, such as the 
temperature, the frequency and the system size [1- 
3]. One of the most important experimental results 
was the discovery of the logarithmic increase of the 
resistance of ultrathin metallic films and inversion 
layers with decreasing temperature [4-7]. This, to- 
gether with the theoretical prediction that interac- 
tion effects should result in a similar behaviour [8, 
9], showed that the effects of the disorder and par- 
ticle-particle interactions are much more subtle than 
assumed hitherto, especially if combined with an ex- 
ternal magnetic field [10], and the peculiarities of 
the band structure in semiconductors [-11]. Ques- 
tions like whether the electronic states contributing 
to the transport are truly exponentially localised or 
power law localised are still controversial [12]. On 
the other hand, the regime of strong scattering in 

three dimensions (3d) where the scaling theory yields 
an Anderson transition at a finite disorder while 
seemingly quantitatively understood [13] still offers 
such basic questions as to  what extent quantum 
mechanical effects are important for the transition, 
and the precise critical behaviour of the localisation 
length and the conductivity. 
At about the same time serious doubts began to 
emerge about the reliability of the numerical methods, 
which had been applied to the problem [14]. At- 
tempts to calculate the d c-conductivity of a disor- 
dered one dimensional (ld) system directly from the 
Kubo-Greenwood formula failed to confirm the ab- 
sence of diffusion for all values of the disorder pa- 
rameter, however small [15]. The resolution of this 
contradiction helped however to clarify the con- 
ditions affecting the conclusiveness of numerical re- 
sults [16-19]. The finite system sizes used (about 
10,000 lattice constants) were not sufficient to pre- 
vent large fluctuations depending on whether the Fer- 
mi energy lay between eigenenergies or exactly at 
one. The standard way around this problem in 
volved the introduction of a broadening of the energy 
levels, which implied in some sense inelastic scatter- 
ing. This then dominated the behaviour of the con- 
ductivity for low disorder. 
It was therefore clear that the size of the systems 
studied had to be substantially increased to over- 
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come these problems [19]. Since the restriction on 
the system size was due to the size of the computer's 
core store it was necessary to find a method which 
does not suffer in this way. One possibility is to ap- 
proach the thermodynamic limit by implementing 
directly the renormalisation group idea, i.e. con- 
structing successively larger systems from ensembles 
of comparatively small subsystems [20-22]. Al- 
though system sizes could be increased by one order 
of magnitude in 2 d using this technique the method 
still suffered from the same problems as described 
above. Consequently, the results seemed to be incon- 
sistent with the scaling hypothesis mentioned at the 
beginning [21]. Another possibility arises from the 
study of one dimensional disordered systems [23- 
26]. The idea is to embed the system in an infinite 
ideal metal, which serves to generate a continuous 
energy spectrum, and which can be treated analyti- 
cally [27]. 
The Anderson Hamiltonian [28] may be written in 
the form 

H = ~  e~ li) (i] + r ~  li) (Jl (1) 
i ij 

2. Methods for Systems with Finite Cross Section 

In this section we discuss the technical details of the 
generalisation of the method for 1 d systems sketched 
in the introduction to systems of finite cross section. 
Since we started our work there has been some 
progress in the study of the analytical properties of 
such systems [33-35]. Several points which where 
previously little more than plausible assumptions 
have since been rigorously proven. 
There are two closely related methods of calculating 
the localisation length on such a system, the 
Green's Function method [36], and the Transfer 
Matrix method [37]. Both methods attempt to solve 
the generalised form of (2) 

A,+ 1 = ( E -  H,) A , -  A ,_  I . (3) 

The energy units have again been defined so that the 
(constant) off-diagonal elements of the Hamiltonian 
are unity. H,  is the Hamiltonian of the n th (d -1)  
dimensional slice of the d dimensional "bar"  when it 
is not coupled to the rest. All quantities in (3) are 
matrices operating in a ( d -  i) dimensional subspace. 

where the diagonal elements e~ are independent ran- 
dom variables and j is summed over the nearest 
neighbors of i. The off-diagonal element V is con- 
stant and the units may be chosen so that V= 1. The 
corresponding SchrOdinger equation for 1 d may be 
written as 

ai+ 1 = (E --ei) ai--ai-  1 (2) 

which provides us with a recursion formula for the 
coefficients a~ of the wave function. This rises expo- 
nentially with probability one with increasing i for all 
non-zero values of the width of the distribution of 
the ~. The computer storage needed to implement 
this formula is independent of the length of the 
chain as required to fulfil the conditions discussed 
above. 
This paper is devoted to the results of a general- 
isation of this method. In Sect. 2, the method for 1 d 
is widened to systems of finite cross section. In 
Sect. 3 the results of the scaling theory and its appli- 
cation to such systems are discussed. Similar ideas 
have been used before in quantum Hamiltonian field 
theory [29] and the theory of spin glasses [30] mak- 
ing use of a refinement of phenomenological renor- 
malisation [31-32]. Finally, in Sect.4 the transport 
properties of systems at finite temperature are de- 
rived from finite size scaling arguments. 

a) Green's Function Method 

First let us define the localisation length 2 on the 
"bar" by 

2 - lim _1 In TrlGI,12 (4) 
n~oo n 

where G1, , is the submatrix of the Green's function 
or resolvent coupling pairs of atoms at opposite 
ends of a "bar" of length n. G1, can be found by 
iterating the equations 

Gln+l =G1.G.+l.+l, (5a) 

Gn+ l n +  1 = [ E - - H n +  1 - G n n ] - l .  ( 5 b )  

Equations (3) and (5) are related by 

A.+ 1 =Gi-, 1, (6a) 

A~ = 1 ,  (6b) 

A 0 =0  (6c) 

which may be verified by insertion. 
Iteration of (5) is computationally more complicated 
that (3) since the former involves a matrix inversion 
at each stage. The eigenvalues of A,  however rise ex- 
ponentially with the length of the "bar"  such that 
when the ratio of the smallest to the largest eigen- 
value becomes comparable with the machine ac- 
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curacy the smallest is lost. It is however this smallest 
eigenvalue of A n, which provides the dominant con- 
tribution to G1, and therefore to )~ 
This difficulty may be removed by the following 
transformation, which has to be performed regularly 
(e.g. every 10 th step) but not necessarily at each step. 

A, = 1, (7 a) 

/1 I = A , _ I A ~  -1 (7b) 

which implies via (3) 

~Zln+ 1 =A.+ 1 An -1 (7c) 

Further, we define 

B n =B,_  1 A21/b, (7d) 

where 

2 2 h. - y~ I(B._I  A; % iI 2 - II B .  --1 As Ill (8) 
ij 

and with B o = 1 at the beginning. 
Thus, while the iteration of (3) starts again from in- 
itial values of the order unity, after another step 

b,~+l = liB. A.-+~I II 2 

= llA;+~a II 2/b.2 
= Tr [G1.12/b2. (9) 

still contains the full information about the resolvent 
between the first and the n th slice of the system. The 
localisation length may then be calculated iteratively 
as follows 

n 
2. = - - -  (10) 

Cn 
where 

cn=c,_ 1 + l n b ,  (11) 

and c o = 0 at the beginning. 
Correspondingly, the statistical error in 2, may be 
calculated from 

A2=dn-- (~) n (12) 

where 

d , = d ,  1 +(lnb,) 2 (13) 

and d o =0. 
A was used to decide whether 2, had converged. In 
agreement with earlier work [-38, 39] for ld  systems 

it was found that the length of the "bar"  required 
for convergence is proportional to 2 and is approxi- 
mately given by 

nma x ~ 2 )L/E 2 (14) 

where e is the relative accuracy required. Thus for e 
=0.01, which is the accuracy we used throughout 
this work, and 2=10 we need as much as nr.,x 
=2.105 iterations. 
As noted by Johnston and Kunz [34], for such very 
long strips the variation of 2, from step to step is 
very small due to averaging, and this can lead to a 
false impression of convergence. We wish to empha- 
sise that we have used the quentity A 2 to determine 
when to break off the iterations, in spite of the (false) 
impression of wasting computer time calculating 
small changes in 2.. 

b) Transfer Matrix Method 

Equation (3) can be rewritten in the form 

where T. is the transfer matrix. 

Given initial values for A 0 and A 1 the behaviour of 
A. is given by 

M,,= f i  T~. (17) 

M. satisfies Oseledec's theorem, namely that in the 
limit of large n the matrix (M, M+) 1/" converges to a 
limiting matrix. This implies that the modulus of the 
eigenvalues of M. and the corresponding eigenvec- 
tors are determined in this limit. In addition the 
product of T~ acting on some vector will converge to 
the largest eigenvalue of M, times its eigenvector. 
However, the required eigenvalue is that with mod- 
ulus closest to unity, so that this procedure suffers 
from similar problems as the one discussed above, 
namely the tendency to lose the important eigen- 
value due to rounding errors. 
This can be overcome by the following transfor- 
mation, which is carried out for each column B i of 
the product matrix in succession (the index n is sup- 
pressed in these equations). 
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B, = (B, - ~ (Bj. Bi) Bj)/b (~ (18 a) 
j<i 

b (~ = IBm- Y' (Bj. Bi) Bjl. (lSb) 
j<i 

Thus each column is orthonormalised to the pre- 
vious ones. The first column converges to the eigen- 
vector corresponding to the largest eigenvalue, the 
second column to the second largest and so on. As 
before it is unnecessary to perform this transfor- 
mation after every stage of the calculation. In prac- 
tice, since M, and T, are symplecti c (i.e. eigenvalues 
occur in pairs, which are reciprocal of one another) 
it is only necessary to calculate half of them. 
Again, as in the Green's function method the local- 
isation length may be calculated by iteration. For a 
"bar"  of cross section m 

n 
2. =c• ) (19) 

where 

(m) (m) c. = in b. + c~_ ) 1 (20) 

which may be compared with (t0) and (11). The dis- 
cussion on statistical errors in the previous section 
may equally be applied here. In particular (12) to 
(14) apply to each eigenvalue separately. Since we 
require that eigenvalue which gives the largest 2 its 
error is also the dominant one. 

c) Comparison of Methods 

Both of the methods discussed have been used to 
study the localisation properties of quasi-one dimen- 
sional systems [36, 37, 40]. In general they yield the 
same raw results within the accuracy of the respec- 
tive calculations. Apparent contradictions (Ref. 36 
vs. Ref. 37) are due to differences in interpretation 
rather than in the raw results. 
The matrices employed by the Green's function (GF) 
method are smaller than those required by the trans- 
fer matrix (TM) method. On the other hand the 
transformation required to preserve numerical stabil- 
ity is more complex in the GF case (7) than in the 
TM (18). The TM seems to be somewhat faster [40] 
although the exact comparison depends on such de- 
tails of the implementation as the algorithm used for 
matrix inversion and the degree of parallelism of the 
machine used. The difference is small for the very 
large systems which dominate the total computer 
time. 
The Green's function method is capable of general- 
isation to the calculation of more complicated 

properties of quasi-one dimensional systems [16, 41, 
42]. The transfer matrix approach yields more infor- 
mation in that it gives all eigenvalues and eigenvec- 
tors, not just the dominant one. This has as yet not 
been used although the other eigenvalues may con- 
tain useful information [33, 34]. 
The GF approach is in principle sensitive to the in- 
itial conditions whereas the TM is not. In the sys- 
tems considered here this is unimportant since the 
memory of the initial conditions is lost in a length 
comparable with the localisation length. This is not 
true in general however. Particularily in the presence 
of a magnetic field the initial conditions are impor- 
tant [43, 44]. 
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Fig. 1 a and b. Double logarithmic plot of the renormalized expo- 
nential decay length A=2M/M of the transmission coefficient of 
strips of width M a and bars of cross section M x M b as a func- 
tion of M for the indicated values of the disorder parameter  W/V 
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d) Results 

The raw results of our calculations are plotted in 
Fig. 1 for strips and bars (i.e. 2d and 3d systems) for 
the center of the band, E--0.  There is clearly a qual- 
itative difference between the two cases. Whereas in 
2d, Fig. la,  2M/M always falls with rising M. albeit 
weakly in some cases, in 3d, Fig. l b, there exists a 
value of )~M/M,.~0.6 above which )LM/M rises with 
rising M. 
This behaviour can be understood in a simple way 
as follows. 2M/M falling implies that 2 M is tending to 
become small compared with M, so that the states 
will remain localised in an infinitely wide system. On 
the other hand 2M/M rising implies that 2 M is tend- 
ing to become large compared with M, so that the 
states are extended in an infinitely wide system. We 
thus have numerical confirmation that all states are 
exponentially localised in 2d as predicted by 
Abrahams et al. [1]. 
The remainder of the paper will be taken up by an 
extended analysis of these results and their impli- 
cations for real systems. 

3. Scaling Behaviour 

where the constant of integration, ~(W), is a charac- 
teristic length which depends on W but not on M. 
The function f which is closely related to Z may de- 
pend on dimensionality and on certain symmetries 
but is otherwise universal [45-47]. 
Before applying these ideas to the analysis of our 
data let us consider the analytical properties of the 
scaling functions z and f 

i) For  small A the width, M, of the strip or bar is 
much larger than 2M, SO we expect 2 M to converge 
to its value for a 2 d or 3 d system. Thus 

z(ln A) = - 1, (24a) 

A(M, W)= ~(W)/M, (24b) 

f ( x ) = x .  (24c) 

In this case we can identify the characteristic length 
~(W) with the localisation length in the 2d or 3d 
system, 2o~(W). 

ii) For large A, 2g is much larger than M and a 
wave travelling along the strip is evenly spread over 
the whole strip. The effective disorder seen by the 
wave in each slice of the strip is a statistical average 
over the disorder in the slice. The result of pertur- 
bation theory for l d  [48, 49] is also valid here, with 
the modified disorder: 

a) General 

The raw data shown above yield much more infor- 
mation when we analyse them by making use of the 
ideas of the renormalisation group [1, 20]. 
Let us define the renormalised localisation length on 
a "bar"  as 

A(M, W) = 2M(W)/M (21) 

where W is a composite parameter representing dis- 
order and energy. Thus A is simply the localisation 
length expressed in units of the strip width. The es- 
sential hypothesis of our analysis is that the be- 
haviour of A under changes of length scale M' --* b M 
depends on A alone, and not on M or W separately. 
This ansatz can be written as 

d l n A  
-)/(ln A). (22) 

d l n M  

This is equivalent to the condition that any change 
of length scale M can be compensated by a change 
in W so that the Hamiltonian remains essentially 
unchanged. Integrating (22) we obtain another useful 
form of the renormalisability condition 

A(M, W ) = f { ~ ( W ) / M }  (23) 

W '  2 -_ W 2 / M  e - 1 ,  (25 a) 

2 M ~ W' -  z = W -  2 M e- 1. (25 b) 

From these we can derive the behaviour of 7~ and f 
to be: 

)/(ln A) = d - 2, (26 a) 

A(M, W) = (M/~ (W)) e- 2, (26 b) 

f (x)= x z-d. (26c) 

In this case ~(W) is related to the resistivity of the 
3d system (see Sect. (4) below). 

iii) From the behaviour of ;~(A) near a fixed point, 
)~(Ac)=0, we can calculate the critical indices [1]. 
Expanding Z around the fixed point gives 

dln A 
d In M - ;( (ln A - In Ac). (27) 

The solution of (27) can be written 

in A =ln  A c + [M/~(W)] z' (28) 

where we have chosen the constant of integration to 
conform with (23) above. Since we expect A to be an 
analytic function of W for all finite M, ~(W) must be 
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chosen so that (28) has the form 

in A = In A c - A M  x' ( W -  Wc). (29) 

Comparing (28) and (29) we conclude that the criti- 
cal index of 3, v, is equal to -1 / ) (  on both sides of 
the transition. 

iv) For small disorder we can write down r by 
comparing (25) and (26) to obtain 

~(W)~  W 2/(a-2). (30) 

The exponent 2/(d-2)  in (29) suggests an essential 
singularity at W--0 for d = 2  (see below). Our data 
for ~(W) fit 

(W) = (B/W u) exp (A/Wu'). (31) 

A and B being positive and #, #' of order unity. 

b) Fitting Procedure 

We shall now discuss the procedure used to test the 
data for scaling behaviour. Our analysis is based on 
a least squares procedure for fitting the parameters 
~(W) in (23) above. If we plot our data in the form 
ln A(M, W) vs. ln M (as in Fig. l) we have a set of 
curves characterised by different disorders, W. For 
most values of In A there are several values of In M 
corresponding to different W's. In order to conform 
with (23) the origin of ln M must be shifted to 
in ~(W) so that curves for different W overlap. A suf- 
ficient condition to achieve this is that the variance 
of the values of l n M - l n ~ ( W )  corresponding to 
each value of In A should be a minimum. This is 
achieved by minimising the quantity 

S = ~. { ~  ~ [ln M i j -  In ~(Wj)] 2 

- [ ~  ~ (ln M i j - l n  ~(Wi))] 2 } (32) 

where "i"  is summed over A's and "j"  over W's. 
In Mij is the value of In M for a particular " i"  and 
"j", obtained by simple linear interpolation (but not 
extrapolation) if necessary. 
N~ is the number of curves at A = A i. The minimum 
of S is obtained by solving the system of equations 

= ~  { ~  ( + .  6Jk)} In MiJ' N~ (33) 

Unfortunately the matrix on the left of (33) is sin- 
gular: it has at least one eigenvalue corresponding 

to a shift of the absolute origin of l n M - l n  4, or of 
the mean corresponding to the variance in (32). It is 
therefore necessary to make an additional assump- 
tion about In ~(W). Equation (24) above tells us the 
behaviour for small A. By fitting the form 

A = (a i /M)  + b(a ~/M) 2 (34) 

to the data for the largest disorder (i.e. smallest A's) 
it is possible to establish the absolute scale of ~(W). 
It should be noted that this procedure in no way 
changes the functional form of ~(W) but only its 
scale [50]. 

c) Discussion of the Scaling Curves 

Figure 2 shows the results of our fitting procedure. 
In both 2d and 3d we have succeeded in putting all 
points with M > 4 on one curve within the accuracy 
of the data, with the exception of those with W = 2 V 
in 2d (see Sect. 3e below). The curve for 2d (Fig.2a) 
is qualitatively different from that for 3 d (Fig. 2b). In 
2d there is one branch and A always becomes very 
small for large M, whereas in 3d there are two 
branches the upper of which behaves like (26) for 
large M. 
The presence of two branches is a sign of the exis- 
tence of an Anderson transition. The inserts in Fig. 2 
contain the calculated ~(W). The numbers are listed 
in Table 1. The function for 2d agrees with (31) for 
small W. However this form is rather insensitive to 
the precise values of # and #' for W within the range 
of our data. Setting # = # '  we obtain "best fit" values 
of A=12.5, B = l 1 2  and #=# '=1 .5 ,  respectively. As 
is shown in Fig. 3a reasonable fits can also be ob- 
tained for # between 1 and 2. It is perhaps worth 
noting that the value for W = 2  V, r  106a (a is the 
lattice constant) is a macroscopic length (~  1 ram) 
although W/V is still larger than unity and the disor- 
der may not be considered a small perturbation of 
the ordered system. Such behaviour is characteristic 
of the critical dimensionality. Also worthy of note is 
that for W = 6  V, ~ ~ 102 a. This length correponds to 
the maximum system size attainable with previous 
computational methods and corresponds therefore 
to the critical disorder predicted by them [51-54]. 
Indeed Yoshino and Okazaki gave an illustration of 
an extended state on a 100 x 100 square lattice at W 
=2  V [51]. We now see that their lattice was four 
orders of magnitude too small to detect the localised 
nature of the state directly. 
In 3 d however we can extract little new information 
from ~(W). The critical disorder WJV=16.5_+0.5 
agrees, more or less, with previous estimates [54]. It 
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Table 1. The scaling parameter ~(W) in units of the lattice dis- 
tance a as function of the disorder parameter W/V for dimensions 
d=2 and d=3 

1 
I 0  

d=2 d=3 

w/v ~(W)/a w/v r A 1 o o 

2.00 0.7994 10 6 10.0 1.143 
2.10 0.3661 10 6 10.5 1.391 
2.25 0.I435 10 6 11.0 1.608 
2.50 0.3608 l0 s 11.5 2.007 
2.75 0.1150 105 12.0 2.530 
3.00 0.5046 104 12.5 3.229 
3.25 0.2502 104 13.0 4.346 
3.50 0.1428 104 13.5 5.786 
3.75 0.7024 103 14.0 9.189 
4.00 0.4810 103 14.3 0.1170 102 
4.50 0.1920 10 3 14.5 0.1437 102 
5.00 0.9758 102 15.0 0.2204 102 
5.50 0.5863 102 15.3 0.3086 102 
6.00 0.3746 10 z 15.5 0.4444 102 
6.50 0.2576 102 15.8 0.7119 101 
7.00 0.1853 102 16.0 0.1062 103 
8.00 0.1107 102 16.1 0.1292 10 3 

9.00 7.296 16.2 0.1274 10 3 

10.00 5.451 16.3 0.1379 103 
11.00 4.220 16.4 0.1616 103 
12.00 3.443 16.5 0.1690 10 3 

13.00 2.915 16.7 0.1038 103 
14.00 2.492 16.8 0.9304 102 
15.00 2.200 17.0 0.7852 102 

17.2 0.5060 102 
17.3 0.4668 10 / 
17.5 0.3940 102 
18.0 0.2453 102 
18.5 0.1854 102 
19.0 0.141i 10 z 
20.0 8.502 
21.0 6.370 
22.0 4.992 
24.0 3.457 
26.0 2.596 
28.0 2.212 
30.0 1.867 

s h o u l d  be  poss ib le  in p r inc ip l e  to  ca l cu l a t e  the  cri t i -  

cal  ind ices  d i r ec t ly  f r o m  ~(W) by  p l o t t i n g  

In ~ vs. In [ W -  I/V~]. U n f o r t u n a t e l y  the  r a n d o m  er rors  

in A t e n d  to cause  sy s t ema t i c  e r ro r s  in ~(W). T o  see 

w h y  this  is t he  case  it is necessa ry  to go  b a c k  a n d  

r e - e x a m i n e  o u r  p r o c e d u r e  for c a l cu l a t i ng  ~(W). T h e  

e r r o r  in In A is i n d e p e n d e n t  o f  A and  M.  H o w e v e r ,  

w h e n  the  g r a d i e n t  o f  In A vs. In M is small ,  as it is 

n e a r  the  f ixed poin t ,  the  p r o c e d u r e  we  h a v e  used  
t ends  to r o u n d  off  the  s ingu la r i t y  in ~(W). I t  is there-  

fore  necessa ry  to  i g n o r e  the  i m m e d i a t e  v ic in i ty  of  W 

= W~ a n d  to  e s t i m a t e  the  cr i t ica l  indices  f r o m  fu r the r  
away.  By this m e t h o d ,  a l t h o u g h  it seems  to be  some-  

w h a t  c o n t r a d i c t o r y ,  we  e s t i m a t e  the  cr i t ica l  indices  

-1 
10 

a 

2 
l@ 

10 

W~ V 
o~s lo 1~ 

, , h , J  , , , h , , , [  , , ,I,,,,I , , , h , , , I  , , ,h, , ,I  , , , I  .... 0 

- 2  -1  8 1 2 3 4 5 6 
113 lO 113 10 113 10 113 lO 

1 
10 - 

A 

0 
10 

-1 
10 , , ,q .... I , ~ , f .... I " ,  0 

-1 0 1 2 
10 10 10 1[:3 

Fig. 2a and b. Double logarithmic plot of the renormalized decay 
length of the transmission coefficient A of strips of width M a and 
bars of cross section M x M b as a function of ~/M. ~ is the scal- 
ing parameter, which is choosen to fit all data onto one and the 
same curve. The values of the disorder parameter W/V are the 
same as in Fig. 1. The inserts show the logarithm of the scaling 
parameter 4, as a function of W/V 

to  be  e q u a l  a n d  a p p r o x i m a t e l y  e q u a l  to  1.2 _+0.3. In  

the  n e x t  sec t ion  we  shal l  d iscuss  a m o r e  re l i ab le  

m e t h o d  of  e s t ima t i ng  the  cr i t ica l  indices.  

O u r  c a l cu l a t ed  sca l ing  curves,  F i g . 2 a ,  b are  consis-  

t en t  w i th  the  p r e d i c t i o n s  of  (24) and  (26) for l a rge  

a n d  sma l l  A. Ea r l i e r  we  sugges t ed  tha t  in 2d  the  in-  

dex  d - 2  in (26) m i g h t  be  i nd i ca t i ve  of  l o g a r i t h m i c  
b e h a v i o u r .  T o  test  this we  h a v e  p l o t t e d  A vs. l n ( ~ / M )  

in Fig.  3b,  a n d  i n d e e d  o b t a i n e d  a s t r a igh t  l ine  for  
la rge  A (i.e. A > 2 ) .  T h e  g r a d i e n t  of  this  l ine  was  

m e a s u r e d  to  be  0.63 _+0.01 w h i c h  is c o m p a t i b l e  w i t h  
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Fig.3. a shows the logarithm of ~ W" as a function of W -u for # 
=1 (o), 1.5 (n) and 2 (o) for dimension d=2 .  The data are com- 
patible with an essential singularily at W = 0 .  b shows A as a 
function of the logarithm of ~/M for dimension d = 2. The curve 
becomes linear for large ~/M thus demonstrat ing the logarithmic 
behaviour of (35) 

A = 2 In [4 (W)/M] (35) 

a form we shall require later. 

d) Alternative Analysis 

Although we could obtain considerable information 
from the above analysis the critical indices of the 3 d 
system remain elusive. This was due to the singular 
behaviour of the scaling function at the fixed point 
which is difficult to reproduce numerically. In this 
section we present an analysis based on the ansatz 
(22). We expect this to be more reliable in the criti- 
cal region since the function z(lnA) is analytic at Z 
=0. We first calculate the sums and differences of 
consecutive values of in M and In A for each value of 
W,, from which we can write (22) in difference form 

A lnA 
A In M - Z ( l n  A). (36) 

In this form however the data are extremely noisy, 
due to the small value of A In M in the denominator. 
It is therefore necessary to smooth the data in order 
to proceed further. This can be achieved by fitting 

A In A i = {Zi + X'~(ln A - In A~) 

+ t / 0 n  A - I n  A,) 2} A In M~ (37) 

to the ln A's near each ln Ai.zivs.lnA~ is then plot- 
ted in Fig. 4 for 2d and 3 d (in 1 d Z = -  1 for all A). 
One additional advantage of this procedure is that 
the validity of the scaling assumption can be tested 
by calculating 

S 2 = ( A  lnAi-ziA lnMi) 2. (38) 

In 2d S=0.01 and in 3d S=0.015, which is about 
what would be expected from purely statistical fac- 
tors, thus confirming our assumption of scaling. The 
3d data fall more or less on a straight line of gradient 

X( InA ) 

2 ] 0 1 2 

/nA 
Fig.4. Scaling function Z = d  In Aid In M for the renormalized ex- 
ponential decay length A of the transmission coefficient as a func- 
tion of the logarithm of A for dimensions d = 2 (lower data points 
with smaller error bars) and d = 3  (upper data points with large 
error bars). For details of the calculation of the error bars see 
text. The curve represents the smoothed data (see text) 
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0.66+0.02. This gives v=1.5+0.05, which agrees 
with the estimate given by Sarker and Domany [22], 
contrasts however strongly with other estimates 
which mostly agree on v = 1 [20, 55, 56]. Such large 
difference between numerical and analytical results 
is somewhat surprising since the quantity S (Eq. (38)) 
confirms that the calculated systems are large 
enough for scaling to be valid. On the other hand 
the analytical estimates involve either expansions 
from large conductance (small disorder) or in 2+e 
dimensions. 

e) Deviations from Scaling 

Although the results of the analysis in the previous 
sections seem to agree well with our scaling hy- 
pothesis, there are two important deviations from 
scaling behaviour, for small M and for small W. The 
simple form of (23) is only true when there are no 
other relevant lengths in the system comparable with 

and M. For small M the lattice constant clearly 
becomes significant. The deviations from scaling 
seem to be greater for small disorder, however. A 
clue to this behaviour can be found by studying the 
dependence of A on the lateral boundary conditions 
[57, 58]. Figure 5 shows In A vs. In M for various W 

0.5 

10 I 

5 

4- 

o 2 

O 

§ 

o 

4- 

o 

@ 

@ 

0"2 I I I I I 

2 4 8 16 32 
M 

FigI ~. The reno rmalized exponential decay length A o f t h~ t rang I 

mission coefficient Of strips as a function of the strip width M for 
periodic (o) and antiperiodic (+) boundary conditions across the 
strip. Upper, middle, and lower data points correspond to disor- 
der parameters W/V=2, 5, and 8 respectively 

and with periodic and antiperiodic lateral boundary 
conditions. From this figure we see that the de- 
viations from scaling are oscillatory and appear to 
change sign with change of boundary conditions. 
Thus the deviations from scaling behaviour are as- 
sociated with the sensitivity of A to the lateral 
boundary conditions. In fact for free boundary con- 
ditions (not shown) the deviations are even larger, 
but this may be due to one dimensional surface ef- 
fects. 
At first this may appear to be contradictory to the 
ideas of Thouless, who laid the groundwork for the 
scaling theory [59]. In that case, however, the sensi- 
tivity of the energy levels to boundary conditions 
gives a measure of the conductance. The sensitivity of 
the conductance and of such quantities as A to 
boundary conditions is a higher order effect. We 
would suspect such an effect to be related to the ra- 
tio of the phase correlation length, which may be re- 
lated to the "mean free path" J~mfp, to the strip 
width. This does not contradict Thouless since his 
ideas relate to diffusive transport. The mean free 
path however marks a transition from ballistic to 
diffusive behaviour (Ioffe-Regel criterion [60]) and 
thus presents a limit of scaling behaviour. This 
agrees well with the idea put forward by Wegner [45, 
46] that local gauge invariance corresponding to 
)~mfp'~a is a prerequisite for scaling, and is im- 
plicitely assumed in many theories where 22~flp is in- 
troduced as the upper limit of an integral over re- 
ciprocal space. 
In the thermodynamic limit this property, (namely 
local gauge invariance), is always fulfilled. In a real 
system, however, at finite temperature where the ef- 
fective system size is determined by inelastic scatter- 
ing the results of scaling will not necessarily apply if 
)'mfp is longer than the inelastic scattering length. In 
that case the conductivity is due to ballistic trans- 
port between inelastic scattering processes and is 
purely Ohmic (see below Sect. 4b). 

4. Transport Properties 

a) Scaling of the Conductance 

In order to compare the present theory with other 
scaling theories and with experiment we must estab- 
lish a connection between A and some transport 
quantity. The theory of Abrahams et al. is expressed 

h 
in terms of the dimensionless conductance g=e2  G 
and the fi-function 

dlng 
- fi(g). (39) dlnL 
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The function /3(8 ) has very similar properties to 
z(lnA), the most significant difference being that 
l im/3(g)=lng whereas l i m x ( I n A ) = - l .  For  these 
g ~ 0  A ~ 0  

two quantities to be compatible it is sufficient that 
we can write, independent of the dimensionality, 

g (L) = F [A(L)] (40) 

and we identify the length of a side of a square or 
cube, L, with the width of our strip or bar, M. In 
doing so we effectively consider a typical square or 
cube of size M e cut from the strip or bar. We can 
now calculate the fl-function from 

d lng  dlng dlnA 
d ln~  - d l n ~  d l n ~  - /31 (g))~(ln A) (41) 

where i l l ( g )  is the fl-function for a ld  system, where 
Z = - 1 .  Another way of reaching the same result is 
to consider the long strip or bar as made up of 
blocks of size M e and A as the localisation length of the 
resultant 1 d system of blocks. This is then a similar 
construction to the "block-spins" of the renormal- 
isation group theory of phase transitions and con- 
tains all the relevant information for describing the 
critical behaviour. We are therefore justified in 
applying the Landauer [23] formula relating the 
conductance and the transmission coefficient of a ld  
system to our system. Defining T=exp(-2/A) ,  
which is consistent with our original definition of 
2u, we can write [23, 24] 

g=~- 

from which we can derive 

ng 
/31(g)=( l + ng) In (l~+~gng ) �9 (43) 

The /3-functions calculated by this method are 
shown in Fig. 6. 
By combining the above formula with (35) the form 
of/3 for large g regime of weak localisation in 2d is 
obtained as 

1 (44a) /3(8)= ~2 g 

which is in agreement with most analytical ex- 
pressions [1, 55]. Some apparent discrepancies of a 
factor of 2 are due to different counting of spins. 
In 3 d the data in Fig. 6 are consistent with 

a 
/3 (8) = 1 (44 b) 

7c2g 

C7~ 

@ 

- 2  

- 3  . " 

- 4  

- 5  i , 
-~ - 6  - 5  

i I I i I 

- 4  - 2  -1  0 

/ng 
Fig. 6. Scaling function fl = d In g/d In M for the conductance g as a 
function of the logarithm of g for dimensions d = 1 (dashed curve), 
d = 2 (dashed-dotted curve) and d = 3 (full curve) 

where the constant a is of the order unity [61]. For 
very large g, where/3--1 we obtain 

g=aL. (45) 

Comparing this with (26) and (42) shows that 

~(W)~ ~- l(w). (46) 

This identifies the characteristic length on the ex- 
tended side of the transition with the resistivity. 
At the fixed point f l=Z =0  we have from (41) 

dfl _ d x d In A d)~ (47) 
d lng  f l t ( l n g ) d l n A ' d l n g - d l n A  

so that the critical indices are the same in both 
cases, as expected. 
Thus, under the assumption (40) the results present- 
ed here are fully compatible with the scaling theory 
of the conductance. 

b) Temperature Dependence 

Up to this point we have discussed our results pure- 
ly in terms of the dependence of various properties 
on the size of the sample at T = 0 K. Such effects are 
extremely difficult, if not impossible to measure di- 
rectly. It is much easier to measure the temperature 
dependence of the conductivity. How can we extract 
this information out of our results? The key idea to 
achieve this is that at finite temperature inelastic 
scattering processes play the dominant role in limit- 
ing the transport. The system is thought to be sub- 
divided into subsystems of a diameter, which is giv- 
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en by the diffusion length L i between two successive @ 
inelastic scattering events, and within which the 
transport  may be thought as being determined only 
by the disorder [62-64]. The diffusion length is re- 

~5 -S 
lated to the inelastic scattering time h via the dif- 
fusion constant D, i.e. % 

_ 2 ( 4 8 )  - 1 D T, i - -  L i 

and replaces the system size L in the scaling equa- 
tions. Since in the cases of interest the inelastic scatter- 
ing time is related to the temperature by [64, 65] 

T i = A / T  p (49) 

where p is of the order of unity and A some con- 
stant, one can derive the temperature dependence of 
the conductivity from the scaling relations. This may a 
be expected to work where the dependence is weak, 
as in thin metallic films, where the conductivity is 2 
larger ("weak localisation regime"). In more general 
cases it is not clear, however, whether such a pro- 
cedure may be justified, because D itself becomes a 
function of the size of the system. 
We first relate z~ to the dimensionless conductance g 
via the Einstein relation. 

�9 i = p ( E ) q g  -1 (50) 

where p ( E )  is the density of states. Then we define a 
dimensionless conductivity by 

a' = g ( L ] r  2 .d .  (51) 

Identifying Li with M we may calculate this quantity 
from our data. Since p ( E )  is only weakly dependent on 
L~ and g, and using (49) and (50), a plot of a '  versus 
In g - d  in M is essentially a plot of a '  against p In T 
(Fig. 7). 
The temperature dependence of the conductance and 
the conductivity may also be given in a diffential 
form, which may easily be derived from (50). 

d lng 
- f l  ( g ) / ( d  - f i  ( g ) ) ,  ( 5 2  a )  

d In -el 

d l n a  
= ( f i ( g )  - ( d  - 2 ) ) / ( d  - f l ( g ) ) .  ( 5 2  b )  

din  ~i 

Using these relations we can discuss a number  of 
limiting cases, which are of special interest with re- 
spect to recent experiments carried out on quasi-2d 
metallic films and also on 3 d systems. 

( i )  For  small g, which implies large disorder, and/or 
very low temperature, such that 

L~ (T) >> ~ (W) > ~ m f p  (53) 

-15  
z 

! 
xx 

u 

(T/To}P 

2 0  , I ~ , , I , , , I , , I 

0 20 40 50 80 

p. In( T / T  o 

4 ~ T  ~ %~ 6- 
(2) )p13 

-8 
o 

~ (T/TolP 
- 1 0  , , , I , ~ , I , , I 

0 10 20 30 

b p .  In( T / T  o 

F i g .  7 a  a n d  b .  T h e  l o g a r i t h m  o f  t h e  d i m e n s i o n l e s s  c o n d u c t i v i t y  a 

as defined in (51) as a function of (lng-dlnM) for dimensions d 
=2 a and d=3 b. As described in the text (lng-dlnM) is 
equivalent to p In T/To, where T is the absolute temperature, T o 
some suitable constant, and p=0 (1). The characteristic tempera- 
ture regimes, which are described in the text (cf. (55), (58), and 
(61)), are indicated 

Equation (52b) yields 

d l n a  
1 (54) 

din  a i - -  

since ]fl(g)[ ~> 1. 
Integration with respect to z i gives 

a = a o Zio/Z ~ = a o ( T / T o )  v (55) 

independent of the dimensionality. % ,  z o are inte- 
gration constants. Thus a power law temperature de- 
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pendence appears as a consequence of the scaling 
theory rather than being in contradiction to it [66, 
67]. According to (53) this is expected at very low 
temperatures. 

ii) Increasing the temperature L i ( T  ) decreases ac- 
cording to (48) and (49) and eventually 

( W )  > L, > 2mf p. (56) 

Near the Anderson transition in 3d where [3(g)~O 
we have 

d lno-  
- * (57)  

d In z i 3. 

This gives by integration 

a = a 0 (Zio/Zi) 1/3 = a 0 (T/To)P~3. (58) 

In the regime of "weak localisation" (cf. (44)) we 
have 

fl(g) = d - 2 - a/7g 2 g 

we obtain 

(59) 

d l n a  1 
d l n z  i - 2 re2 o. (d =2), (60a) 

d l n a  a ( 19 ~1/2 
d l n ' q -  2 ~  2 l ~ z / ]  (d= 3). (60b) 

Integration yields 

~r=ao + ~ 2 1 n ( T / T o )  (d=2) (61 a) 

and 

a ( T t p / 2  
cr = ao +~5~2 \To!  (d= 3). (61b) 

Thus, the experimentally observed In T behaviour of 
the conductivity in 2 d appears also as a consequence 
of the scaling theory, It should be noted, however, 
that similar temperature dependences are also de- 
rived from interaction effects [8, 9, 68, 69]. In 3 d the 
result (61b) has to be compared with earlier calcu- 
lations in the weak scattering regime (68). Including 
electron-electron interactions yields a resistance in- 
crease a s  T 1/2 when T is decreased [68]. Assuming p 
to be of order unity, this is similar to the above re- 
sult from the scaling theory, and seems to be in 
agreement with most recent measurements on metal 
semiconductor alloys [70]. 

iii) We expect the above temperature dependencies 
to be valid as long as relation (49) holds and 
Li>)~mf p. For  very high temperatures and/or low 

disorder this condition breaks down. We have classi- 
cal Boltzmann like transpor t such that 

a ~ z  i (62) 

independent of dimensionality. 

iv)  For very low temperatures and localised states 
the inelastic scattering time ri is no longer indepen- 
dent of the transport process and we enter the hop- 
ping regime [71] where 

(63) 

5. C o n c l u s i o n s  

We have presented numerical calculations of local- 
isation for very long (up to 10 9 atoms) quasi one- 
dimensional systems. We were able to calculate the 
localisation length with an accuracy of 1% in all 
cases. The results are consistent with the assumption 
of scaling. From this it was possible to derive the 
critical properties of 2d and 3d disordered sys- 
tems. 
In 2d all states were found to be localised. The loca- 
lisation length was however macroscopic for still fair- 
ly large disorder ( W = 2  V; 2 ~  106). In 3d there is an 
Anderson transition with critical indices s = v  ~ 3/2. 
We have shown that deviations from scaling are re- 
lated to the sensitivity to boundary conditions and 
that this happens when the system size is smaller 
than the phase correlation length or mean free 
path. 
The relationship between the present theory and the 
scaling theory of the conductance is established and 
the influence of a finite temperature discussed. Apart 
from the well established results for high conduc- 
tance (i.e. a = c o n s t - ~  T p/2 in 3d and a ~ l n  T in 2d) 
we have shown that for higher disorder or lower 
temperature the transport in localised states gives a 
power law o-~ T p where p is the index in the depen- 
dence of inelastic scattering " c i ~ T - P  , an effect al- 
ready observed by Davies and Pepper [66]. Near 
the mobility edge in 3d the conductivity obeys an- 
other power law, namely cr~ T p/3 in 3 d. 
The method we have discussed here is capable of 
generalisation to a large number of related problems 
such as systems in a magnetic field and the quan- 
tised Hall effect, systems with spin orbit coupling or 
magnetic impurities [-44] and to the study of finite 
size effects in mieroelectronic components. 
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