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Image theory for a point charge 
J. C.-E. Sten, R. Ilmoniemi 

inside a layered dielectric sphere 

Contents Following the approach of Neumann and Lindell 
[1] we derive an image line source that produces in a 
homogeneous medium the same electric field as a point 
charge inside a layered dielectric sphere. The image charge 
density function for the sphere with two interfaces is sol- 
ved analytically, and approximations are derived in the 
case of a thin layer and a low-contrast layer. An image ex- 
pression for the thin-layered sphere with three interfaces 
is developed. We suggest that point charge approximations 
of the image charge may be used to speed up computa- 
tions of the electric potential on the scalp due to sources 
in the brain. 

Elektrostatische Spiegelungstheorie for Punktladungen in einer 
geschichteten dielektrischen Kugel 
Obersicht Basierend auf dem Ansatz von Neumann und Lin- 
dell [1] wird eine scheinbare Linienladung abgeleitet, die in 
einem homogenen Medium das gleiche elektrische Feld her- 
vorruft wie eine Punktladung innerhalb einer geschichteten 
dielektrischen Kugel. Die Dichtefunktion der Bildladung ffir 
eine Kugel mit zwei Trennfliichen wird analytisch bestimmt, 
und N/iherungen ffir den Fall einer diinnen Schicht und einer 
nur kleinen Anderung der Permittivit~it werden abgeleitet. 
Eine Abbildung ffir eine Kugel aus diinnen Schichten mit drei 
Trennfl~ichen wird entwickelt. Die Punktladungsn~iherungen 
der Bildladungen k6nnen verwendet werden, um die Berech- 
nung des elektrischen Potentials auf der Kopfhaut aufgrund 
von Qellen im Gehirn zu beschleunigen. 

1 
Introduction 
The electric potential produced by a point charge outside 
a conducting sphere with zero net charge can be compu- 
ted by replacing the sphere with a simple combination of 
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image point charges. This well-known method, usually re- 
ferred to as the Kelvin inversion [2], was recently general- 
ized by Lindell [1] to the problem of a charge outside of 
a dielectric sphere. If a is the radius sphere and d the di- 
stance from the center of the sphere to the original char- 
ge, then the refection image source consists of a charge at 
the Kelvin inversion point d~( = a2/d and a continuous line 
source between this point and the center of the sphere. It 
later turned out that a similar solution for the correspon- 
ding magnetostatic problem had been presented in an ap- 
pendix of a book by Carl Neumann in 1883 [3], but has 
apparently not been applied since the original invention. 

Following the rediscovery, a number of other electro- 
magnetic problems involving spherical interfaces have 
been solved. In [4] it was demonstrated that a point char- 
ge q inside a dielectric sphere of radius a at a distance d 
from the center can be replaced by a line source extending 
from the external Kelvin image point dK = a2/d to infinity 
when the internal potential is computed. For the external 
potential, the image lies between the original charge and 
the center of the sphere. In another paper [5] the layered 
sphere was analyzed in order to solve the reflection image 
of a point charge placed outside a dielectric multilayer 
sphere. A transmission-line analogy for spherical static 
fields was applied to find the reflected potential and the 
image for the two-interface sphere. The interaction of se- 
parate dielectric spheres in a homogeneous field was re- 
cently studied using the image method [6], and in the 
most recent contribution [7] the static image theory for 
the dielectric sphere was extended to the low-frequency 
domain. 

In the present paper, a method is developed for de- 
riving expressions for transmission image sources in the 
case of a point charge located inside a homogeneous sphe- 
re covered by concentric layers of different permittivity. 
When the expression for the transmitted potential is com- 
pared with the expression for the potential due to an im- 
age line charge, we obtain a set of equations for the image 
source. Analytical solutions are derived for the two-inter- 
face sphere with arbitrary radii, for the case of a thin 
layer, and for a thick layer of low permittivity contrast. 
The image for the three-interface sphere is solved in the 
thin-layer limit. 

Images for dipolar sources can be derived by taking the 
gradient of the image for a point charge [4], or simply by 
superposition of images corresponding to a pair of char- 
ges of opposite sign. The present method can also be di- 
rectly reformulated for the corresponding DC current pro- 
blem, with general values for the layer conductivities of 
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the sphere and the surrounding material, just by replacing 
e by conductivity a and q by the source current amplitu- 
de. Similarly, the method can be applied to magnetostatics 
by replacing e by permeability # and q's by magnetic 
monopoles [8]. 

Our method may be useful, for instance, in the analysis 
of electric potentials that are produced by sources of cur- 
rent in the brain and measured from the human scalp. 
Normally, the head is modeled as a sphere consisting of 3 
or 4 conducting layers [9-13], making the computations 
of the potential quite time-consuming. Since a point sour- 
ce in a multilayer sphere can be replaced by a line source 
in a homogeneous medium and this image source can be 
approximated by a small number of point sources, the 
possibility arises that the present method may lead to an 
algorithm allowing rapid computations of the electric field 
in electroencephalography. 

2 
Theory 
Consider an electric point charge q located inside a sphere 
composed of N-1 concentric dielectrically homogeneous 
regions (Fig. 1). The origin of coordinates is at the center 
of the sphere; q is assumed to be inside the innermost re- 
gion on the z-axis at z = d. The radii of the spherical inter- 
faces are labeled a~ ~ a2 ~ ... > an-~ and the permittivities 
of the regions e2 . . . . .  eN respectively, with e~ being the per- 
mittivity of the spurrounding medium. Our task is to 
compute the electric potential ~b, which is related to the 
charge by 

V.  (eE) = q6(r - du~), (x) 

where the electric field E=-Vq~; in homogeneous source- 
free regions (1) reduces to the Laplace equation V2q~ = 0. 

Our problem is rotationally symmetric with respect to 
the z-axis, which allows the potential to be written in 
terms of Legendre polynomials [13, pp. 2o4-2o5], viz., 

oa 

~b(r, O)= ~ [A.r" + B.r -("+')1 Pn(COS 0), (2) 
r/=O 

where r and 0 are the spherical coordinates of the field 
point and P.(x) denotes the n th-order Legendre poly- 
nomial of the first kind. The potential in each region is 

2 

a b 
Fig. m, b. Geometry of a the two-interface problem and b the 
three-interface problem. An electric point charge lies inside a dielec- 
tric sphere covered by concentric spherical layers of different permit- 
tivity. The origin of coordinates is at the center of the sphere 

expressed as follows: 
co 

q)1(r, O) = ~ Blnr -(n+l) Pn(COS O) r ~ al (3) 
n = 0  

r 

~bdr, O) Y. 2 2..-(,,+1), = [A,r" + B,,  I P,(cos 0) 
n = 0  

09 

ON(r, O) = ~ [A~r" + B~r -~"+'~] Pdcos 0) 
r/=O 

al ~ r ~ a2 (4) 

aN-~ = r = d 

6) 

(6) 

These equations can be written [5] as 

B2 _ ~ 2 3 - - 2  2 n + l  T 3 2 j ~ 3  
n - -  I K n  A n a 2  + ~ n  ~ n  ( 1 1 )  

3 - -  T ' 2 3 A 2  -t_ D 3 2 . . : , - ( 2 n + I )  3 A. - . .  . . . . . . .  2 B., (12) 

where we have introduced the dimensionless reflection 
and transmission coefficients for the static fields at inter- 
face a2: 

(n + 1) (~3 - -  G2) 
Rn 2 3  _ Y / ( 8 2  - -  (~3)  R 3 2  _ ( 1 3 )  

~3n + e2(/'/+ 1)' e3n + e2(/'/+ 1) ' 

e2(2n + 1) e3(2n + 1) T 23 - T3, 2 - (14) 
e3n + eE(n + 1)' e3t/+ e d n  + 1)" 

Coefficients relating the potential across the other interfa- 
ces can be obtained similarly. For example, from (3) and 
(4), 

eE(2n + 1) 
1 - -  T 2 1 ~ q 2  _ B 2, 

B t l  - -  ~ n  ~ n  - -  
e3n + e~(n + 1) 

(15) 
B~ (n+ 1) (e2- el) B~ A2 _1r 

n - - ~ . n  a 2n+1 82rl + el(n + 1) a 2"+'" 

To proceed, we must now derive the coefficients B~, 
n = 1, 2 . . . .  All others can then be found by applying 

(10) 

oo 

0N+l(r, 0) y~ ,N+,n ,  = a ,  r , tcos 0) r <  d. 
n = 0  

Each term in these expressions represents a 'mode' of po- 
tential: the ones with A-coefficients grow as r", while those 
with B-coefficients diverge at the origin. Since ~b is finite 
everywhere, tr Bn ~ 0 a n d A l , ~ 0 .  

The tangential component of E and the normal compo- 
nent of the displacement vector D = eE are required to be 
continuous, implying that q~ and eOq~/Or must be conti- 
nuous et each spherical boundary. This allows the un- 
known coefficients A k and Bk, to be determined. For ex- 
ample, at r = a2, we have 

r 0)=  ~b3(a2, 0), (7) 

0~2 0qh 
82 (a2, o)= (a2, 0). (8) 

Because of orthogonality of the Legendre polynomials, the 
modes with different n are uncoupled. Thus, from Eqs. (7) 
and (8), 
A 2 ~ n  _u ] ~ 2 ~ - ( n + l )  _ A 3 a n  j _  i ~ 3  ~ - ( n + l )  

n t~2  w ~LJnt~ 2 - -  ~, 'Xn~ 2 T JLSnr ~ ( 9 )  

2 , 1) B~a2(,+,)). e 2 ( r l A n a 2  - (n + 1) / ~ 2 " 7 - ( n + 1 ) ' ~  - -  3 n *..-2 j - e3(nA.a2 - (n + 
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transmission and reflection formulas such as Eqs. (11) 
and (12). 

If the effects of boundaries were ignored, the potential 
due to q would be inversely proportional to the distance 
from the charge. We expand this incident potential into an 
infinite sum of Legendre polynomials [14]: 

q - q n~O P,(cosO), r > d ,  (16) 
4YgeN Ir-  uzd[ 4YgeNr = 

where Jr-  u f l  I = x/r 2 + d 2 - 2rd cos 0 is the distance from the 
charge to r. Comparison with expression (5) gives 
B N, = qdnl4ereN. To solve for the transmitted field we must 
relate B*, to B~ by using the set of equations obtained 
through the boundary conditions. Instead of being satis- 
fied with this, we determine an equivalent line source such 
that all coefficients in its Legendre expansion outside the 
sphere are the same at those of the original source. 

2.1 
Transmission image problem 
The potential q)l outside the sphere can be interpreted as 
arising from an image line with charge density O~(z), ex- 
tending from the origin to z = d. As shown in [4], 

d 
__1 t "  

dpi(r, O)= I 
Oi(z ')  d z '  

4ere~ ~ ~/r 2 + z ' 2 -  2rz '  cos 0 
0 

d 

_ 1 Y P.(cos O) p i ( z ' )  dz' .  (17) 
4ore~r ,=0 

0 

By comparing Eq. (17) with expression (3) and by applying 
the orthogonality of Legendre polynomials, we are led to 
a set of integral equations for Oi(z), viz. 

d 

~_ __1 f B,  - 4reel Oi(z ' )  z TM dz' ,  n = 1, 2 . . . . .  (18) 

0 

This is a modification of the Mellin integral transform, the 
integration interval being finite [5]. Once O~(z) has been 
found, the potential can be calculated by the integration 
expressed in (17). 

2.2 
Sphere with two interfaces 
Let us apply the method outlined above to a sphere with 

A, = 0, the expres- two interfaces, N=3 (Fig. aa). Because i 
sion for the coefficients B~ can be obtained in a straight- 
forward manner from 01) and (15): 

T21T32R3 
1 _ (19) ~ 2 3 ~ 2 1 t  s x2n+l B n -  1 - ~(, _~, (a2lal) 

with 

3 _  q d".  B. - (20) 
4~e3 

A substitution of the expressions for the reflection and 
transmission coefficients into Eq. (19) results in a rather 
complicated expression, for which the finite Mellin trans- 
formation is not available. Let us, therefore, express Eq. 
(19) by a sum of a geometrical series, as was done in [5]: 

B1, T21T32R3 Z r ~ 2 3 ~ 2 1 ,  - x2n+l lk  1 = - n  - n  ~n [l(n l~n (a21ao ] = Z Bn k. (21) 
k=0 k=0 

[R, R, [ = 1 for all va- This is allowed because a2 < al and 23 21 
lues n = 0, 1, 2 . . . .  and for arbitrary permittivities e~, e2, e3. 
A general term in (21) can be expressed as 

e263(2n + 1) 2 (n2+ n)k(e2- e l )  k ( e 2  - -  e 3 )  k (a2/al) k 

( < + < ) ( < + e ~ )  n + e ~ + <  n+ - 
< + e~/j 

X [ ( a 2 ~ 2 k ]  n 3 

[ \~ ]  J B,. (22) 

Before deriving the exact image expression, let us illus- 
trate the method by dividing the first term in Eq. (21) into 
partial fractions: 

1 __ T 2 1 T 3 2 ] ~ 3  
Bn o -- --n --n ~n 

eze3(2n + 1) 2 = B3. ( (e2+e~)(e,+<) n + - -  n + - -  
e 1 + e 2 

e2qd" [ 4(e~e3- e 2) 

4~(ele3 - e~) (el + e2) (e2 + e3) 

(e3-  ~2/2 I ( e l -  e2~ 2 
+ - -  

V3+e2/ n+ 
e 2 -{- e 3 

e 2 )  
e 2  + e3  

n +  
g l  -]- e2  

(23) 

Noticing that the first term in the square-bracketed ex- 
pression is independent of n and the last two the form 
l[(n + a) ,  we can apply Eq. (18) using the following identi- 
ties: 

1 

5_(x  - Xo) x" dx  = Xo, 

0 

O < x o ~ l .  

x o ; xon 
XoaXa-lx n d x  = - - ;  

n+c~  
0 

(24) 

Here, we must use 6_ ( x ) =  limA~ob(X--A), with A > 0. This 
definition is needed only when x0--1. Substituting x = z ' / d  
in the above transformations, the image function Oio(Z), 
corresponding to Eq. (23), can be found: 

4qele2 6 ( z  - d), 
~i~ = ( <  + e,_) (e2 + e~) 

\ e 2 + e l ]  1"[(0, z, d ) ,  (25) 
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where l-[(a, z, b) denotes the pulse function, i.e., the pro- 
duct of two unit step functions 

I - [ (a , z ,b )=U(z -a )U(b- z )=l  for a < z < b  

= 0 elsewhere. (26) 

The parameters of this lowest-order approximation of 
the image source do not depend on the radii of the inter- 
faces. It is seen from Eq. (!9) that this is accurate in 
the limit of small adav The result can be checked by set- 
ting either 8, = 82 or 82 = 83; Eq. (25) then reproduces the 
image source for a homogeneous sphere, derived in [4]: 

2 
Oi(z) = - -  q6(z - d) + 

G +  1 (8/.+1) 2 d 1-[(0, z, d), 

(27) 

where 8r = 8 3 / 8 ,  is the relative permittivity. The total 
charge of (27) is q, as can be verified by integration. In 
contradistinction of Eq. (25) does not give q, because it is 
only a portion of the equivalent source. Also, when all 
permittivities are the same, i.e., when the sphere vanishes, 
the continuous part of Qi(z) in (25) vanishes, leaving the 
original point charge q6(z- d). In the limit 83-* % which 
corresponds to a perfectly conducting sphere, the amplitu- 
de of the delta peak vanishes, whereas the first part of the 
continuous image function approaches a delta function at 
the origin. Thus, the transmitted potential appears to ori- 
ginate at the center of the sphere with no dependence on 
the position of the original charge. It can also be noted, as 
a brief check, that because the original point charge 
qd(z - d) inside a homogeneous sphere can be replaced by 
an image charge density function with a delta function 
part, viz., 28,qd(z- d)/(82 + 81), the corresponding image 
charge density function with respect to the outermost in- 
terface a, is 48i82qd(z- d)/(83 + 82) (81 "1" 82), which agrees 
with the results in Eq. (25). 

2 .2 .1  

Exact  s o l u t i o n  

In order to solve the complete image charge expression 
for the sphere with two interfaces, we must consider Eq. 
(22) in the form 

B', k =Q-~ / J B,, (28) 

where both P(n) and O(n) are polynomials of degree 
2k + 2. Thus, we can directly accomplish the division as 

P(n) 48382(82--8,)k(82--83) k i/a2\ k X(n) 
- I I- + - -  (29)  Q(n) (8, + 82) k+' (82 + 83) k+' \a , , ]  Q(n)' 

where the remainder polymial X(n) is of degree 2k + 1. 
Each k = 0, 1, 2 . . . .  will produce a delta function of diffe- 
rent amplitude and location according to Eq. (24). Fur- 
thermore, X(n) can be decomposed into partial fractions 
of two repeated linear factors as follows: 

X ( n )  8283(82- e,) k (82- 83) k (ada,)  k 

Q(n) (8,-'[-82) k+' (82"t-83) k+l 

Ak ) (  X ~. Bk,__[i , ]  
' i +  82 \ ,  _ �9 (30)  

i=1 8, n+ n+y;sqj 
81 + C2 

Coefficients Ak,i and Bk,~ can be evaluated from the fol- 
lowing recursion formulas involving differentiations 

1 d k+l-i r ( 2 n + l ) 2 ( n 2 + n ) ~ 7  
Ak'i- ( k + l - - i ) !  dnk+'-i [ ( - - - - - - - k + ~  + 82_.'~ (31) 

1 d k+'-i F(2n+l)2(n2+n)k] 

Bk,, - (k + 1 - i) l dn k+'-i l / -  - - i -9 l 
H - t - - - - -  

L ~ 81+82) Jn=-e2l(e2+e3) 
(32) 

where i = 1, 2 .....  k + 1. Note that in the special case of 
82 = ,le,e3, both &,i and Bk,~ are singular, implying that the 
fractional expansion must involve only one repeated fac- 
tor. 

Applying the idently [15] 
x o 

if 
(p - 1)! 

0 
0 < x o < l ,  

x i a-I x n dx - - -  

(33) 

xo n§ 

(n + a y  

the complete image line charge function for the sphere 
with two interfaces becomes 

8182q Y~176 [ ( e i _ e i ) ( e 2 _ e 3 ) ]  k 
~)dz) 

(8, + 82) (82 + 831 [(8, + 821 (82 + 83)J 

\a,/ \a,/ / 

+ ~ . ( a , 2 , ] k  In - -  k+, \ \a , /  
i=, \ a2 / d ( i -  1)! 

x 
[ z P? ]ljj. 

X]-[ 0, -~, \ ~  ] (34) 

The first part of Oi(z) consists of delta functions whose 
amplitudes decrease with increasing k while their loca- 
tions approach the center of the sphere. The second 
part is a series of continuous functions extending from 
the center to the location of the k th delta function. 
The adequate number of terms in the series depends 
on the ratio of the radii so that when the layer is very 
thick (a21a, ~ 1), only a few terms are needed. The same 
applies when the permittivities of adjacent regions are 
close to each other. On the other hand, for thin layers 
(a2 --~ aO, the series converges slowly, and therefore, the 
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0 .5  

; x 

i , \  . . . .  %=2 
t ' , \  . . . . . . .  ~=ao 
t ,', 

' F ,  " 

'< ', k i 

0.1 0 .2  0 .3  0 .4  
z / a l  

Fig. 2. Normalized image line charge density function Oi(z) corre- 
sponding to a two-interface sphere for varying e3. The normalized 
permittivities are e~ = 1, e2 = 5, and e2 = 0.7ab (Delta functions are 
not shows.) The original charge lies at d = 0.4al. In the case e3 = 5 the 
curve is smooth and resembles the image for the homogeneous sphe- 
re of Er = 5 

0 .3  
~" ', ~ %=100 
~ ',~', ~ ............ 80 
~i ',,u, . . . . . .  60 
\~  ,,1', ~ . . . .  40 
~\ ',1'~ - - - 20 
\ ~ . ' ,  ',~ - - 1 

0.2 " "! , 
" \ ~ \1 

\" \~[' '~ 
' \ k ' ,  

,.["! 

0 L I  t i i 1 [ , i  i ~ l l ~ , l t l l [  i t t t I I ~ I t J L I  . . . .  --i ~- , , 

0 0.1 0 .2  0 .3  0 .4  
Z / a l  

Fig. 4. Normal ized  image  line charge  dens i ty  func t ion  ~oi(z) with 
el = 1, s = 100, and  a2=0.7a1 ,  d=0 .4a~ .  The curves  are calcula ted for 
vary ing  e3 

Q. 

0.1 
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1.0 

c~ 

0 .5  

!~ - -  d / a ~ = 0 . 3  

. . . .  0.45 

L 

i i , l l l l l t l  , 1 ~  i , 1 ~ 1 1 1 1 1  , , , l l l l l k l l b l l ~ , l l l l l  

0 0.1 0 .2  0 .3  0 .4  
z / a t  

Fig. 3. Normal ized  image  l ine charge  dens i ty  func t ion  9i(z) corre-  
s p o n d i n g  to a two-interface  sphere  wi th  the  no rm a l i zed  permi t t iv i t i es  
r = 1, e2=  10, e3 = 5  and  e2 =0.7al. The locat ion of the  or iginal  sour-  
ces are d = 0.3ai and  d = 0.45al 

image must  be approximated,  as shown in the following 
section. Some examples of  the continuous part  of  the image 
line charge function are depicted in Figs. 2 - 4  when some 
of the parameters  are varied. Note that although the image 
is singular at the origin its integral (33) is finite valued. 

2.2.2 
Special cases 
Approximate expresssions can be obtained for certain spe- 
cial cases such as thin layers or for the case when the per- 
mitivity ratio across an interface is nearly unity (low 
constrast). A possible application for the thin-layer appro- 
ximation is offered by the human  head in the analysis of  
electroencephalography, where the layers in question are 
the skull and the scalp. 

Thin layer: When the layer is thin, Eq. 09) can be ap- 

proximated as 

T21T32R3 n l n ~ t /  
B~ ~ (35/ 

1 - -  ~n]l~ 2 3  ~:121~'n + a~(2n + 1) ~-~]1~ 231!~ 21~-n  ' 

where ar = a2/al "~ 1. Letting ar ---~ O, i.e., approaching the 
limit of  no layer, 

T21T32R3 (2n + 1) e3 qd" 
B I . ~  - ~  - (36) 

1 -- 1~23~21--n ~-n n(E1 "{- E3) "}- e 1 4Ot'e3'  

from which the dependence of e2 has vanished. In fact, 
this expression contains the t ransmission coefficient T3~ ~ 
for a homogeneous sphere of relative permitt ivity e3/el. 
This agress with the result for e~ = e2, whence the reflec- 
tion and transmission coefficients at the interface a2 beco- 
me R 23= 0 and T 32= 1, respectively. The corresponding 
transmission image source is known to be of  the form 
(27). 

Approximating Eq. (35) further, we obtain 

 21 32 [ ~176 } 
- -  =.  ~ ,  =-.--n (2n + 1) aT B~ Bn-- ( l -  p23j~21"l*-n *-n J 1 (1  _ R23palh..n *-n / 

= (T3, ' - ar~) B 3. (37) 

It must  be pointed out that this approximation will limit 
not only the thickness but also the value of e2. In fact, for 
the number  of  terms, n to be sufficient, the condition 

aT< n(n+ 1)(e2- ~3) @~- e,)' (38) 

must  hold. The conditions ar ~ 0, e2-~ %and  ate2 constant, 
characterize a dielectric sheet. 

In expression (37), T~ I is the t ransmission coefficient 
for a sphere, whereas ~ represents the perturbation due to 
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the layer. Writing ~ in partial fractions, 

~= 83(82-83) (82-<)  
8,(e, + 83) 2 

3 8 3 - 8 1  (81+83)2  (81+83)3  / 
• 2n + + + - - - -  , 

8 1 + 8 3  el g l  2 
17+ 8 1 7 8 1  17+ ~3 

(39) 

we are able to apply the finite Mellin transform (18) using 
Eqs. (24) and (33) plus the following transformation iden- 
tity 

Xn6'_(X - 1) dx = - n x  n-' = -17, (40) 
0 X=I 

which follows from the definition of the derivatives of the 
delta function. Note that (40) holds only for the 6_ func- 
tion because of the upper limit of the integral. Hence, the 
image charge density function can be written as 

O{(z)- 281 
- - -  q 6 ( z  - d )  

83 + 81 

8 1 ( e 3 - e , )  q I-[(O, z, d) 

-arq --  ~16 ' (d - z )  + ~26(z-  d) 
83 

where 

z, d ) ] ,  

(41) 

83(82- 83) ( < -  8,) 
~1 = 2 (42) 

e2(ea + 83) '~ 

e3(e 2 - 83) (e 2 - 8,) (3e  3 -- 81) 
~2 = 82(e I + 83)3 (43) 

e3(e 2 - 83) (e 2 - e ,)  ((83 -']- 8,)  2 - 68,83) 
~3 = (44) 82(e, + 83) 4 

< e l ( < -  e3) ( < -  8,) (e, - e,) 
~4 = (45) 

e2(e, + 83) ~ 

In addition to the usually appearing combination of point 
line sources, expression (41) also contains a dipolar (6') 
term. This can be understood to result from two image 
line charges of opposite polarity which do not totally over- 
lap. From the above coefficients it can easily be establis- 
hed that if the permittivities of adjacent regions are the 
same, the perturbational part of the image charge function 
vanishes. 

Low contrast: When the permittivity ratio between the 
layer and the homogeneous sphere is close to unity, 

Eq. (19) can be simplified. Defining the dimensionless 
number A~ by 

Ae = 8ff82 - 1, (46) 

the reflection and transmission coefficients corresponding 
to the interface r = a2 can be written as 

-nA~  (A~ + 1) (2n + 1) 2 3  R. - T3. 2 = (47) 
(217 + 1) + A~17' (217 + 1) + A~17 

Assuming A~ ~ 1, expression (19) can be approximated: 

, ~ qd ~ 
B, ~ (T2~ 1 - A ~ )  , (48) 

4~82 
with the perturbational term 

r = n28~ + (n 2 + n) [8,82 + (82 - 8182) (a21a,) 2"+1] 
(8217 + 8,(n + 1)) 2 (49) 

When A~-~ 0, the contribution of the layer disappears in 
(48), leaving the term with the transmission coefficient 
T2k The image source corresponding to this term is ob- 
viously of the form (27). 

Writing (49) in partial fractions, 

_ 82 8162 

8, + 82 ( <  + 82) (n82 + < n  + 1)) 

..~ ( a 2 ~  2n+' [ 8 2 ( 8 2 - - ~ )  e 2 ( e 2 - e , )  2 

\aq [(<+<2) + (<+<)2(~<+<(17+1)) 

<82(< - <) 7 
-{- (e,"{- 82) 2 (1782 + 8,(r/  + 1)) 2]  ' (50) 

and applying the finite Mellin transformation with 
Eqs. (24) and (33), the complete image source correspon- 
ding to Eq. (48) becomes 

281 
O~(z) - q6(z - d) 

82 + 6,1 

8 1 8 2  - -  82 q ]--[ (0, z, d) 
+ (82 + 81) ~ 2  d 

- A ~ q { r  ] 
\ a l l  j 

+ 2 1-[(0, z, d) + 

~5 ( dal'~ ( za2 '~ -82, (e' +e2, ] [ O, z, d (a2~2~'1(, 
+ -d ln ~ za2j  k, da2j j I - [  \ ~ / d J  

(51 ) 
where 

81 
r - (52) 

el -'{- e2 

81(82 -- 81) a2 (53) 
~2 - (81 -{- 82)2 al 

82 
~3 - (54) 

(el + e2) 2 
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C4= /3,(/32--/31)2 (a2/(e2-e')/(e2+e') 
- (55) 

(8 , - t -82)  3 \ a , /  

82/32(8,--/32) ( a21(e2-q)l(e2+q)" 

r (/3, + <)~ ~ a , /  (56) 

The first part of the image function is obviously due to 
the homogeneous sphere as if there were no layer present, 
whereas the rest of the terms are caused by the low-con- 
trast layer. This result can also obtained using approxima- 
tion (46) directly with (34). 

2.3 
Approximation for a three-interface sphere 
For the sphere that has more than two interfaces, the rou- 
tine of solving for B~ becomes more involved and labo- 
rious. For example, considering a sphere with three inter- 
faces of radii a, => a2 => a3 (N=4;  Fig. lb), we obtain 

{ (T (T  , -- T21T32T43F~4 /~34#32 a3 /?23#2, a2 
B n -  - n  - n  - n  ~n  1 - - . . n . . n  - -  - - * ' n * ' n  - -  \aq \a,/ 

.u # 23~ 2,#  34# 32 #34#21T32T23]("312n+'~-I 
. . . . . . . . . .  - . . . . . . .  n - n , - -  (57) \a,/ j "  

R, - 0 and This is seen to agree with expression (19) when 34_ 
43 T~ = 1, as well as when two interfaces coincide. Due to the 

complexity, there is no advantage in writing this expres- 
sion as a sum as was done in the previous case. There are, 

When ar -+ O, i.e. when the thickness of layers shrinks to 
zero, Eq. (59) reduces to the transmission coefficient T 4' 
for a homogeneous sphere of permittivity/34, as can be 
verified by inserting for the reflection and transmisssion 
coefficients. Notice that accomplishing the above approxi- 
mation also implies restrictions on the permittivities/32 
and 83. 

By further algebra, Eq. (59) can be written explicitly in 
partial fractions 

' ~ T41R 4 
Bn ~ --n ~n  -- ar  

X I n / l ,  +/12 + 

where 

rl 3 + rl_4~ ] 
( ; 81 el  

r l +  - -  r l +  
/31 -[- E4 el  "[- /34/ J 

B~, 

(60) 

(/33--82) (E1/33--/32/34)+ ( /33--84)( /32-- /31)(82+/33)  
q, = 2/34 

/3283(E, + 84) 2 
(61) 

84 
82/33(/32 '~ 83) (e l  '~/34) 3 

X {(E 1 --[-/34) 2 2 [(e, - E3) (8,/34 - 2/3,83 +/32/3~) 

+ 2(82 - e,) (83 -- 84) (82 "[- 83) 2 -[- 282(83 --/32) (/3,83 -- 82/34)] 

+ 2[(/33 -- 82) (8,/33 --/3284) 

"{-(82--8,)  (82"{-/33)(83--/34)] (8384--8,(2/32+83))} (62) 
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/34 I 2 [ ( 8 3 - - 8 2 )  (E1/33--E2/34)-J-(/32--E,) (82+/33) (E3--/34)1 
V3= e2e~(e2+e3) (< +/302 

k 

(/3,(< + 83) ((82 +/33) (2E,-  (81 + 84) (E2- 83)) - 82/3 (8, +/34) 2) 
X 

(82"]-83) (/31+84) 2 

( 8 3 8 4 - 2 8 ~ / 3 2 - < 8 3 )  ( ( / 3 ~ _ / 3 ~ ) ( / 3 1 E 4 - - 2 E , E 3 + 8 2 E 3 ) + 2 ( E 2 - - 8 1 ) ( / 3 3 - - E 4 ) ( / 3 2 + E 3 ) 2 + 2 / 3 2 ( 8 3 - - / 3 2 ) ( < / 3 3 - - / 3 2 / 3 4 ) )  
+ (E2+83)(/3,+E4) 

-[- (83 -- 84) (83 -- /32) /3'82 "}- (82 -- 81) 8283(82 -{- 83 -- 2/34)} (63) 

however, many possibilities to approximate, e.g., by as- 
suming an equal ratio of the radii of adjacent interfaces in 
terms of the parameter ar: 

a31a2 = a21a, = 1 - a~. (58) 

When ar ~ 1, i.e., with thin layers, a31al ~ 1 - 2ar, and the 
approximation for Eq. (57) reads 

T2, T32 T43 itS4 n --n --n ~n 
B n ~  #34#32 #23#2,  4- #23#21#34#32 _ #34#2,T32T23 

x { 1  - a~ (2n  + 1) 

R34#32 . n23n21 n23rh21n34n32 . /?34#21T32T23 
n*.n  t l ~ n ~ ( n  - - l ~ n l ~ n l ~ n l ~ n  t * - n * - n - - n - - n  

X ~34#32 #23#2,  , n23r~2,n34n32 #34#2,T32T23~ ' 1--*-n*-n - - * - n * . n  t I ~ n l ~ n ~ n ~ ( n  - - * ' n ~ ' n - - n - - n  

(59) 

T]4 
/34 E , 

<e3(<+83) (<+/3~)3 

X{2[(82--83) ( E 1 8 3 - - 8 2 8 4 ) - - ( 8 2 - - E 1 )  (82"{-83) (83--/34) ] 

(81/32(8182--8384)--818384(/32-~83)--828384(/3,"I-/34)) X 
(82 + 83) (< + 84) 2 

(e2/31 - 83/34) + 
(82 + 83) (/3, + 84) 

82 E 2 X ( (  2 - -  3) (w~1E4 - -  2 E I E 3  -i t- 82E3) 

+ 2(/32 -- < )  (83 -- E4) ( <  + 83) 2 + 282(E3 --/32) (</33 -- </34)) 

-- -- 284)!. --(/33 -- 84) (/33 -- /32) /31/32 -- (82 /31) 82/33(82 + 83 

( 6 )  
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Checking the result by letting 83 = 84 or 81 = 82, all coeffi- 
cients will simplify to the respective coefficients (47) - (45) 
of the corresponding two-interface problem. On the other 
hand, with/72 =/?3, the relative thickness of the layer of the 
sphere becomes 2ar, whence we obtain from the above for- 
mulae two times the value given by Eqs. (47)-(45). Fur- 
thermore, it is interesting to note the symmetry in the 
sense that when 81 = 83 and 82 = 84, all coefficients are 
equal to zero and, consequently, the layers have no effect 
on the image or on the field. This occurs only for the 
thin-layer sphere. 

At this stage, the image source corresponding to 
Eq. (6o) can be written as the image due to the homoge- 
neous sphere (coefficient T 4~) plus the perturbational 
part with a dipole, point charge, and line sources be- 
tween z = 0 and z = d: 

2/71 
~oi(z) ~ - q6(z - d) 

84+cl 

81(/74-/71) q ( z x~ -841(82+el) 

-a~q -- r h d ' ( d - z )  + q 2 6 ( z - d )  
84 

Evidently, when a~ = 0 the layers do not affect the image 
and, generally, the above image expression is the better 
thinner are the layers. Note also the resemblance with 
Eq. (41). 

There also exist other possibilities to find approximate 
images from Eq. (57). For example, we may require that 
the outermost layer is very thick and the other layer is 
very thin, or vice versa, or assume that both layers are 
very thick, i.e., a3 "~ 12 "~ al. In the latter case the approxi- 
mation for the image source may be constructed from the 
term T43T32T21 of (57) in a similar manner as for two-inter- 
face sphere. It appears that adding more layers makes the 
analytical expressions for B~ grow so that some restric- 
tions concerning the thicknesses and/or permittivities of 
the layers will be necessary. 

3 
Point-source approximations 
To compute potentials from the image source without in- 
tegration the image charge density function must be ap- 
proximated with point sources. These can be either iso- 
lated point charges on the image line or multipoles at a 
suitable expansion point. The isolated-point-charge appro- 
ximation is performed by dividing the image line into seg- 
ments and by replacing the original image charge distribu- 
tion by a point charge at the center of gravity of the dis- 
tribution on each segment. Below, we will compute the 
center of a gravity for the whole image line in the case of 
a two-layer sphere. If a multipole source is used, the ex- 
pansion point should be chosen so that the number of 
terms is reduced to a minimum. 

The general multipole source of amplitude Mp at the 
point z = Zo satisfies 

a 1 

Mp = f Qi(z) (z-Zo) p dz. (66) 
0 

For p = 0, Eq. (66) gives the integral of the image source, 
which, provided that the function Oi(z) is exact, gives the 
total charge q. 

Let us, for example, find the image multipoles corres- 
ponding to Eq. (41). By requiring the first moment of (66) 
to be zero (M1 = 0), the location of the multipoles becomes 

3~71 [1 _ 2ar (82-- 81) (g3 --/72)] (67) 
z0 = d 281 +/?3 /72(281 +/?3) J 

This expansion point corresponds to the center of gravity 
of the image charge. If the line image is approximated by 
a single point charge, this should be placed at z = z0. The 
position is seen to shift from z = d towards the origin for 
83 > 81 and outwards in the opposite case. Expanding the 
polynomials in (66) and evaluating the integrals analytical- 
ly, we get 

[ 281 + /71(83-/71) ] 
M, qcg 

L8-~-33 (/71 +/?3) ((p + 1) 81 +P/?3) 

/?3 ~(p + 1) el+pC3] 

( e l + e 3  ,~2] (68) 
"1- ~4 i p + l-)-el~+ p/?3J ]" 

It turns out that M, ~ 0 faster for smaller values of d than 
for larger ones, which means that the calculation of poten- 
tial is slower for eccentric sources. Notice that if the ex- 
pansion point is chosen to be at the origin, we will actual- 
ly retrieve the original multipole solution for the problem. 

4 
Conclusion 
We have developed an electrostatic image theory for the 
layered sphere containing a point source. Static reflection 
and transmission coefficients were used when handling 
complicated expressions for the potentials. Our emphasis 
was on developing analytical image expressions and fin- 
ding methods to allow calculation of potentials from these 
sources. Because the exact image expression for the two- 
interface sphere turned out to be complicated to handle, 
some special cases, including a thin layer and a low-cont- 
rast layer, were treated approximatively. All of the presen- 
ted image expressions, especially the continuous parts, can 
be approximated by sets of point charges. The approxima- 
tions might be utilized in the analysis of the electroence- 
phalograms, in which the potential on the scalp caused by 
sources in the brain must be computed. Existing algo- 
rithms for doing this are generally quite slow; substitution 
of a source in a multishell sphere by a few point sources 
in a homogeneous medium would greatly improve the 
speed of forward computations, which would be useful in 
simulations and in the numerical solution of the inverse 
problem of EEG. 
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