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1. Introduction 

The description of the nonlinear viscoelastic 
behaviour of polymer melts by means of an 
appropriate and mathematically simple con- 
stitutive equation is very helpful for the rheolog- 
ical characterization of polymer melts. The 
rheologist has to choose a set of tests which is 
sufficient to eharacterize the flow behaviour of 
a material rather ¢ompletely. From these meas- 
urements he wants to predict the rheological 
behaviour of the melt at quite different flow 
situations. The ¢onstitutive equation is a 
guidance for the selection of the most suitable 
experiments for this characterization and makes 
is possible to ealculate the material functions 
for a great variety of deformation histories. 

During the last years many e×periments have 
been performed to examine the appli¢ability of 
a single integral constitutive equation given by 
Lodge (1, 2): 

co 

~(0 + p  1 = ~~(~-t')c-%t')d(t-t'). [1] 
0 

Here ~ is the extra-stress tensor at the current 
time t, p the hydrostatic pressure, C -1 the 
Finger relative strain tensor between the states t 

*) Paper presented at the Jahrestagung der DRG, 
Dortmund 1977. 
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and t', and /~ is the memory function specific 
for the material. The zero superposed on 
symbols is used to distinguish the material 
functions describing the linear viscoelastic be- 
haviour from those describing the nonlinear 
behaviour. 

Recently a straightforward generalization of 
the rubberlike-liquid constitutive equation was 
proposed by Wagner (3, 4), where the memory 
function for the nonlinear behaviour # ( t -  t'; 
I1; I2) is expressed as a product of the memory 
function for the linear behaviour ~ ( t -  t') and 
a so-called damping function h(I1; 12) depend- 
ing on the first and second invariants of the 
Finger tensor: 

#(t -- t'; 11; 12) = f l ( t  - -  t') h(I1; 12). [2J 

The aim of this paper is to give an experimental 
justification for assumption [2] and to show 
how the complete memory function describing 
the shear behaviour can directly be determined 
by rheological measurements. The predictions 
of the constitutive equation making use of the 
experimentally determined memory function 
are compared with measurements. It is im- 
portant to test the predictions by means Of 
quite different measuring quantities, as some 
material functions are rather insensitive to 
the special form of the memory function. 

1 
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2. Experimental 

The shear flow data reported in this paper 
were obtained using a Weissenberg Rheogonio- 
meter Model R 12/15 modified by M e i s s n e r .  

Details of the apparatus can be found in (5, 6). 
A cone angle of 8 ° was used. The plate diameters 
were 24 mm, 50 mm, and 72 mm. All meas- 
urements have been carried out on a stabilized 
LDPE melt formerly called 'Melt I' (7). The 
zero shear viscosity at T =  150°C is qo = 
5.0 x 104 Pa s. An extensive series of rheological 
measurements on Melt I has been performed by 
M e i s s n e r  (5, 6, 8, 12). The data already available 
from these measurements have been completed 
by additional experiments. 

3. Linear viseoelastic behaviour 

3.1. T i m e  d e p e n d e n c e  

For simple shear flow the weil known relations 
for the shear stress Pa 2 and the primary normal- 
stress difference Ps I - P22 

~3 

p12(t) = ~ fl(t  --  t') 7t,,' d( t  - t ' ) ,  [3] 
0 

oo 

[Ps l - Pzz] (t) = ~ fl(t - t') 72« d(t  - t') [4] 
0 

are obtained from eq. [1] (1). Here 7t,« is the 
relative shear strain between the states t' and t. 
It is convenient to approximate the memory 
function by a sum of exponential functions with 
time constants zi and coefficients ai (9, 2): 

[~(t _ t,) = ~ t - " [5] 

Using [5], for oscillatory shear flow of angular 
frequency co the following expressions for the 
storage modulus G'(co) and the loss modulus 
G"(e)) are derived from [3]: 

(1)2 T2 
G' (¢o) = Z ai z, , [6] 

1 + 602 z 2 

i 1 + co 2 z~ ' [7] 

To each relaxation time z~ a relaxation strength 
fli = a~.z~ is attributed. Figure 1 shows meas- 
urements of G'(¢o) and ~"(co) performed by 
Z o s e l  (10). The moduli measured at different 
temperatures are plotted as functions of the 
reduced angular frequency arco to get toaster 
curves at a reference temperature of To = 150°C 
(11), aT being the shift factor. For  the approxima- 
tion of the memory function eight relaxation 
times z~ between 10 - 4  S and 103 s with decimal 
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Fig. 1. Shear moduli of LDPE Melt I as functions of the reduced angular ffequency. Reference temperature To = 
150°C. The full lines were calculated according to [6] and [7] using the constants of table 1 
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Fig, 2. Frequency dependence of the shear moduli at T = 150°C as represented by a sum of eight terms with 
decimal spacing of the time constants ~. The contribution of the term with z~ = 103 s is not seen in the diagramm 

Table 1. Set of constants used to describe the time 
dependence of the linear viscoelastic behaviour of 
Melt I at To = 150°C according to eq. [5] 

i z~[s] a i [ N m - Z s  -1] 

1 103 1.00 × 10 -3 
2 102 1.80 × 100 
3 101 1.89 × 102 
4 10 o 9.80 × 103 
5 10-1 2.67 × 105 
6 10 -2 5.86 x 106 
7 10 -3 9.48 X 107 
8 10-* 1.29 × 109 

spacing have  been chosen,  The  coefficients a~ 
were de t e rmined  by  a fit of  [6] and  [7] to the 
da t a  in fig. 1 ~). Table  1 gives the set of  cons tan ts  
which was used to descr ibe  / ~ ( t -  t') at  T o = 
150°C. The  modu l i  ca lcu la ted  with these con- 
s tants  are  d r a w n  as full lines in figure 1. I t  is 
seen tha t  the choice of  a discrete  r e laxa t ion  
spec t rum with  dec imal  spacing of  the  re laxa t ion  

1) From G'(co) and G"(o)) separate sets of coefficients 
can be obtained which should be identical within 
experimental error. 

i* 
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times may lead to non-monotonous  material 
functions. This is illustrated by figure 2 where 
the contributions of each term of the series to 
the moduli are shown. Another disadvantage 
of the series representation of the memory  
function is the fact that the relaxation strengths 
9~ have no direct physical meaning, because the 
choice of ,:the ~i is arbitrary. However, this 
representation makes it possible to describe 
the linear viscoelastic behaviour over a wide 
range of time scale by means of only a few 
constants. The integration of eqs. [3] and [4] 
is simplified and the contribution of each 
relaxation time to the material functions can 
easily be surveyed. 

In the linear viscoelastic range the shear 
relaxation modulus (~(t) after a step in shear 
strain ?o is given by 

G ( t ) =  P12( t )=  ~ a ~ z i e x p ~ -  t ~  [-8] 
7o i L "ciJ 

A comparison of the shear relaxation modulus 
calculated by means of [8] using the coefficients 
of table 1 with measurements of Meissner  (5) 
is shown in figure 3. The weak oscillation of the 
predicted G(t) is caused by the use of a discrete 
relaxation spectrum, as discussed above. It is 
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obvious that the experimental behaviour is well 
described by the calculated function if these 
oscillations are smoothed. 

In figure 4 the calculated and measured stress 
growth at the onset of steady shear flow are 
compared. The stressing viscosity O(t) for a 
shear rate 3o in the linear viscoelastic range 
was calculated by 

3o • - Z " [-9] 

For  t > 0.5 s the agreement between the cal- 
culated curve and the experimental data is 
convincing. However, at short times the meas- 
ured values show a delay in time compared 
with the predicted behaviour 2). 

z) The rotation of the upper plate of the rheogonio- 
meter was taken into account by the servo control of 
the apparatus (6). The discrepancy is probably due 
to the limited performance of the apparatus at short 
times. This is why measurements of the stress growth 
in the linear viscoelastic range are not recommendable 
for the determination of the coefficients at for relaxa- 
tion times vi < 0.5 s. Furthermore, only a paar ac- 
curacy of the coefficients can be expected for the lang 
relaxation times because the stressing viscosity reaches 
a steady-state value as function of time. 

IC 
1o -3 1o - 2 io-I IO o IO I IO 2 IO 3 

time t Es ] 
Fig. 3. Time dependence of the shear relaxation modulus in the linear viscoelastic range at T = 150°C. (O D) 
measured after a step in shear strain of 7o = 0.1, (0  l )  calculated from the relaxation of shear stress after stop 
of steady shear flow at a shear rate of ?o = 10- 3 s- 1 aCcording to the formula in the figure (5). ( ) calculated 
according to eq. [8] using the constants of table 1 
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Fig. 4. Time dependence of the stressing viscosity in the linear viscoelastic range at T = 150°C measured at a 
shear rate of ~)o = 10- a s- 1. The full line was calculated according to eq. [9] using the constants of table 1 

3.2. Temperature dependence 

Polyethylene melts are thermo-rheologically 
simple fluids. This means that a variation of 
temperature corresponds to a shift in time scale 
(13,11,19). Accordingly all relaxation times 
change with temperature proportional to the 
shift factor aT 

z~(r) = arzi(To). [10] 

The relaxation strengths 9~ remain constant (i 1), 
from which it follows that 

1 
ai( r )  = - -  ai( Wo) . [11] 

a T  

The shift factor is determined by the temperature 
dependence of the zero shear viscosity ~/o : 

q-~o)rl°(T) FE° f l Tol ) l  aT(T) = = exPl--k-[- . [12] 

For the LDPE melt investigated the activation 
energy is E o =  13kca l /Mol=54kJ /Mol  (12). 
By the set of constants ai(To), zi(To) for the 
reference temperature To (table 1) and the 
temperature dependence aT(7) of the shift factor 
(eq. [12]) the memory function of Melt I for 
the linear viscoelastic behaviour is completely 
determined. 

4. Memory function for the nonlinear 
viscoelastic behaviour 

4.1. Strain and time dependence 

According to Wagner (3, 4) for simple shear 
flow the generalized memory function is expres- 
sed by 

#(t -- t' ; 7t,t') = ~(t -- t') h(Tt,,, ) . [13] 

As only the shear behaviour is regarded the 
invariants of the Finger relative strain tensor 
It  = Ia = 7,2t, + 3 are replaced by 7~,,,. Eq. [13] 
represents a special case of the BKZ model (24). 
The nonlinearity of the rheological behaviour is 
only characterized by the damping function 
h(Tt,t,). For h(7,,t,)= 1 the melt behaves linear 
viscoelastic. In this case the memory function 
is only time dependent. In the nonlinear visco- 
elastic range h(yt,,, ) < 1 is valid, and the memory 
function becomes strain dependent. 

Eq. [13] can experimentally be checked by 
applying a step 70 in shear strain defined by 

0 for t -  t' < t [14] 
7t,t '  : t '  70 for t -  --> t 

and measuring the resulting stresses. Using [13], 
[14], and [3] one gets for the shear relaxation 
modulus G(t; 7o) which describes the relaxation 
of the shear stress P12 
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Fig. 5. Time dependence of the shear relaxation moduli determined from the relaxation of the shear stress and 
primary normal stress difference at T = 150°C and different shear strains ~o. The rise time for the step was At. 
The influence of the non-zero rise time was taken into account as described in the appendix 

P12(t) 
G(t; 70) = - -  

7o 

1 
~( t  -- t') h(7o) 76 d(t  t') 

7o t 

= G(t) h(7o) • [15] 

The relaxation of the pr imary normal stress 
difference is described by the modulus Go(t; 70)- 
Using [13], [14], and [4] one obtains 

Go(t;70)  = [Pll  - P22] (t) 
7ô 

,] 
72 t ) ( t  -- t') h(7o) 72 d(t - t') 

= G(t) h(7o) • [16] 

According to [15] the time dependence of 
G(t; 70) remains uneffected by a variation of 70 
but the amount  of the modulus decreases 
proport ional  to h(7o ). This relation has been 
used by Osaki  (14, 15) to determine the damping 
functions of polymer solutions. By comparing 
[15] and [16] it is seen that the moduli deter- 
mined from the relaxation of the shear stress 

and from the relaxation of the pr imary normal  
stress difference are identical: Go(t; 70) -- G(t; 70). 

Measurements of the relaxation moduli 3) 
were performed up to a shear strain of 7o -- 30.9- 
where the melt behaves strongly nonlinear 
(fig. 5). The shear relaxation modulus d(t) for 
the linear viscoelastic behaviour which is rep- 
resented in figure 5 as full line corresponds to 
eq. [8] and figure 3 after smoothing of the 
oszillations. The full lines connecting the points 
measured at different shear strains 7o have 
been obtained by shifting the curve d(t) along 
the modulus axis. This means that the time 
dependence of the relaxation moduli remains 
unaffected by 7o although their absolute values 
decrease by two decades. Moreover,  figure 5 
shows the agreement between Go(t;7o)  and 
G(t; 70). 

3) It has been tried to minimize the rise time At 
for the step ~o but to accomplish it at a constant shear 
rate ~)0 = Vo/At. The reason for this is that the error 
in G(t; ~o) and Ga(t; 7o) due to the non-zero rise time 
can then be estimated by means of the eonstitutive 
equation. The error has been taken into account as 
described in detail in the appendix. 
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A plot of G(t; 7o)/G(t) as a function of 7o for 
an arbitrarily chosen time t = t* directly rep- 
resents the strain dependence of the relaxation 
modulus or as a consequence of [15] the damp- 
ing function h(7o). This analysis was carried out 
for t* = 3 s (fig. 6). For  the approximation of the 
damping function a single exponential function 

h(7o) = exp [ - n  7o] [17] 

with only one parameter n--0.143 has been 
proposed by Wagner (13) for Melt I. We have 
determined n = 0.18 by a best fit of the viscosity 
function (see eq. [27]) using the constants of 
table 1. In figure 6 function [17] for n = 0.18 is 
represented by a broken line. The single ex- 
ponential damping function gives a good de- 
scription of the experimental results up to 
7 o ~  13. 

For  higher shear strains the predicted values 
are too small compared with the measurements. 

A better description of the experimental 
data in figure 6 is obtained by a damping 
function, as proposed by Osaki (14), which is 
represented by a sum of two exponential 
functions 

h(701 = f l  e x P l - n 1 7 0 ]  + f2 e x p l - n 2 7 0 ]  • [18]. 

This damping function is characterized by three 
parameters nl, n2, and f l  as f2 = 1 -  f l .  A fit 

of the parameters to the data in figure 6 yields the 
full line. The constants obtained are listed in 
table 2. It is seen ffom figure 6 that the de- 
scription of the experimentally determined 
damping function by eq. [18] is very satisfactory. 

Table 2. Set of constants used to describe the damping 
functions according to eqs. [17] and [18] 

damping function f~ nl f2 n2 

exp[ -  n7~,t,] 1 0.18 - - 
flexp[-nlT~,t,] 0.57 0.310 0.43 0.106 

+ f2 exp [ -  n27~,«] 

4.2. Temperature dependence 

It has been found by several authors that 
temperature invariant toaster curves can be 
obtained even for nonlinear material functions, 
e.g. the viscosity function (16, 17). This requires 
that the damping function is independent of 
temperature, i. e. 

h(7o ; T) = h(7o; To). [19] 

From the temperature invariance of the damp- 
ing function it follows that the influence of the 
temperature on the nonlinear shear behaviour 
can be described by the shift factor ar like it 
has been found for the linear viscoelastic 
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Fig. 6. Shear strain dependence of the damping function as determined by shear relaxation modulus measurements 
at T = 150°C and t* = 3 s. The full line corresponds to eq. [18] using the constants of table 2. The broken line 
represents the single exponential damping function [17] 
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behaviour. Table 3 gives a comparison of the 
values h(yo; T) measured at three different 

Table 3. Temperature dependence of the damping 
function as determined by shear relaxation modulus 
measurements - 

T[°C] 120 150 210 

Yo h(7o) 

5 
10 
15 
20 

0.31 0.37 0.29 
0.14 0.17 0.16 
0.066 0.093 0.090 
0.034 0.052 0.056 

temperatures. The data at 150°C are taken from 
figure 6, the data at 120°C and 210°C are 
preliminary results. The values for small 7o 
are quite similar whereas the results obtained 
at 120°C and high ~o differ considerably from 
those measured at 150 °C 4). 

Knowing the damping function at the refer- 
ence temperature To the complete memory func- 
tion for the shear behaviour of Melt I is deter- 
mined. The time dependence of the memory 
function fs described by/~(t - t'), the temperature 
dependence by at(T), and the strain dependence 
by h(Tt,t,). Each of these functions is approxi- 
mated by exponential functions characterized 
by a set of constants which were experimentally 
determined. The constitutive equation can now 
beapplied to predict the nonlinear shear behav- 
iour of Melt I for quite different shear histories. 
This is shown for some important material 
functions which can be calculated by closed 
integration 5). The predicted material functions, 
valid at the reference temperature of To = 150°C, 
are compared with measurements. The tem- 
perature dependence of the rheological behav- 
iour is taken into account by temperature 
invariant plots of the measured material func- 
tions. 

5. Calculation of nonlinear material functions 

For Wagner's damping function h(7~,«)= 
exp [--nT~«,] the following relations are ob- 
tained 6): 

~) The discrepancy at 120°C is probably due to 
edge effects in the cone-and-plate gap and an adiabatic 
heating of the melt as the shear rates 7o/At at this 
temperature were the highest compared with the 
strain rates at which the melt behaves linear viscoelastic. 

5) A comparison of the predicted shear creep and 
recovery behaviour of Melt I with measurements 
may be found in (19). 

• exp [ -  n 7t,c] 7t,c d(t - t'), [20] 

[Pl~-P22](t)=Zai, t-t,=o~ e x P l  t-t']zi 

• exp [-n7t ,«] 7t2, , d ( t -  t'). 
[21] 

The time dependence of the shear stress and 
primary normal stress difference calculated 
for the single exponential damping function 
can easily be generalized for a damping function 
represented by a sum of exponential functions 
h(Tr,t') = A exp [ - n l  7t,«] + f2 exp I - n 2  7t,t,] 
simply by a linear superposition. For the shear 
stress we get 

pa2(t; n ) ~  flPl2(t; nl) + f2Pl2(t; n2). [22] 

The same is true for the primary normal stress 
difference. Thus we can restrict the calculations 
to the single exponential damping function. 

5.1. Stress 9rowth after the sudden imposition of  
a constant shear rate ~o 

The shear history is defined by 

f ~ 0 ( t  - t ') f o r  t - c < 
[ 2 3 ]  

7~,c=4-1.7ot for t - t ' > t .  

On substituting 7t,« in [20] and [21] we can 
calculate the stressing viscosity q(t; %) and the 
primary normal stress coefficient O(t;°)o) by 
closed integration: 

Pl2(t; ])o) aiz 2 
~(t;%) = % ,. (1 + n%~,) 2 

• {1 - exp[- t r , , ]  (1 - n;"o~,t,.,)}, [24] 

o( t ;  %) = [pl ,  - p22] (t %) 

ai z 3 
2+x-" (1 + n~OZi) 3 

• t i  - exp [ -  t~ä] 

6) Eqs. [20] and [21] are equivalent to those ob- 
tained by Phillips (22) by introducing a new strain 
measure Vt.t, exp [ - n  Vr,c] instead of a strain dependent 
memory function. 
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The reduced time t~,z stands for 

t~,i = t/~i + m)o t .  [26] 

It is noteworthy that the time dependent terms 
on the right hand sides of eqs. [24] and [25] 
are multiplied by the factors exp [-t~,z]. From 
this it follows that a steady-state shear viscosity 
q~ and a steady-state primary normal-stress 
coefficient O,, respectively, 

a,z~ , [27] q~(7o) F 

ai "r 3 
0~(~o) 2+x" 1 + n~oz~ [28] 

are obtained for t~,~ » 1. At small shear rates 
this is only true for t » z~ . . . . .  z~ . . . .  being the 
longest relaxation time of the memory function 
) ( t  - t'), whereas at high shear rates even for 
t « z~ . . . .  a steady-state is reached if for the 
magnitude of shear % t >> 1/n is valid. 

The viscosity function r/~(~)0) and the primary 
normal-stress function Os(To) as calculated ac- 
cording to eqs. [27] and [28] are compared 

,o z 

10 6 

°O • 

~k 10 5 

to ~ 

~s 7Is T E°C J 

115 

10 3 - _ _  • ~ 130 
~, : i e  o I 50 
.~ m 170 

zx t90 
0 210 

with experimental data in figure 7. The reduced 
viscosities and primary normal stress coefficients 
tl~/ar and O~/a2r, respectively, are plotted as 
functions of the reduced shear rate ar~o. The 
material functions calculated by using the 
experimentally determined damping function 
are represented by full lines, those calculated 
by using the single exponential damping func- 

t i o n  by broken lines. The viscosity functions 
predicted by means of both damping functions 
cannot be distinguished within the accuracy of 
the graph. The values for O~ are more sensitive 
to the special form of the damping function. 

The agreement between the calculated ma- 
terial functions and the measurements is very 
satisfactory. It should be pointed out that r h 
and Os are predicted by means of a memory 
function which has been determined by measur- 
ing quite different quantities, namely the fre- 
quency dependenc e of the complex shear 
modulus G*(co) and the strain dependence of 
the shear relaxation modulus G(t; ~o). In order 
to compute the viscosity function for a wide 
range of shear rates it is necessary according to 

,o;~ 
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I 
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Fig. 7. Temperature invariant representation of the steady-state viscosity (12) and steady-state primary normal 
stress coefficient as functions of the reduced shear rate. Reference temperature To = 150°C. The viscosities at 
high shear rates were obtained by a capillary rheometer. The tic denotes measurements with a modified gap geome- 
try similar to that used in (23). ( ) prediction of [27] and [28] using the experimentally determined damping 
function. (- - -) calculated by means of the single exponential damping function 
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of shear strain in stressing tests. The shear rate was i* = i s -a at the reference temperature of To = 150°C. 
( ) predietion using [18], ( - - - )  prediction using the single exponential damping function 

[27] to determine the memory function fz(t - t') 
over a correspondingly large range of time scale. 

The time dependence of the shear stress and 
the primary normal-stress difference in stressing 
tests as given by [24] and [25], respectively, 
are compared with measurements in figure 8. 
Both quantities are plotted versus shear strain 

= 9ot in order to obtain a temperature in- 
variant representation of the predicted be- 
haviour. The shear rate is ~o = ~~ = 1 s-1 at 
the reference temperature of To = 150°C. As 
discussed above, a variation of temperature 
corresponds to a shift in time scale. Therefore, 
the measurements at different temperatures 
were performed at corresponding shear rates 
7o = 9~/ar. It can easily be shown from eqs. 
[24] and [25] that under these conditions plots 
of P12 and Pll  - P22 as functions of the shear 
strain 7 are temperature invariant. 

Both, the shear stress and the primary normal- 
stress difference run through a maximum before 
they reach a steady-state. The prediction of the 
shear stress by using the single exponential 
damping function (broken line) and by using 
the experimentally determined damping func- 
tion (full line) is quite satisfactory. There is 
only a slight difference between both curves. 

In the case of P,1-~P22 the position of the 
maximum as well as the steady-state value 
depend on the special form of the damping 
function 7). 

From eqs. [24] and [25] the position of the 
maximum of P12 and p~l - P22 as well can be 
obtained. A comparison of the predicted posi- 
tions and heights of the mäxima witb the 
measured quantities is an additional test for the 
validity of the theory. By differentiating [24] 
with respect to the time t and using [22] we 
obtain the following equation for the time t* 
of the P12 maximum: 

f l  exp [ -  nl 9o t*] (1 - n190 t*) 

+ f2 exp [ -  nz 9o t*] (1 - n2 90 t*) = 0. [29] 

From [25] the corresponding equation for the 
time t$ of the Pa a - P22 maximum is derived' 

7) The measured values of Pa l -  P22 show a delay 
in time at the beginning of steady shear flow compared 
with the predicted behaviour. This delay is mainly 
caused by an increase of the cone-and-plate gap due 
to normal forces which must be compensated by a 
radial flow of the melt (21). To avoid this difficulty the 
short time behaviour of pl ~ - P2z should be compared 
with flow birefringence measurements (18). 
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+ f2 exp[-n2  ~ot~] ( 1 -  - ~  ~ot*) = O . [30] 

According to the theory independent of the 
shear rate ~)o the maximum of P12 is expected at 
a constant shear strain 7*, while the maximum 
of p~~-  P22 is expected at a constant shear 
strain 75- Using the constants of table 2 the 
solutions of [29] and [30] are 

~)0t* = 7* ~ 6.12 and ~ot* = 7* ~ 17.7. [31] 

For the single exponential damping function the 
predicted positions of the maxima (3) are 

7* 7* 1 = - ~ 5.56. [32] 
2 n 

The experimentally determined damping func- 
tion predicts the positions of the maxima of 
P12 and P I 1 -  P22 to differ by about a factor 
of 3, whereas a factor of 2 should be found 
according to [32] for the single exponential 
damping function. As is seen from figure 8 the 
maxima of the stresses are rather fiat. This is 
why 7* and 75 can only be determined with 
poor accuracy. Yet it can be said that the 
description of the measured behaviour by [31] 
is more realistic compared with [32]. 

A comparison of the predicted heights of the 
maxima with measurements is shown in figure 9. 
By substituting t* and t$ for t in [24] and [25], 
respectively, the viscosity r/mùx(~0) and the 
primary normal stress coefficient O~ù~(3)0) in the 
maxima of the time dependent stresses were 
calculated. Although the predicted positions of 
the maxima are sensitive to the special form 
of the damping function the computed values 
t/mù ~ and Ornax are  only slightly different. It is 
also seen from figure 9 that the predicted 
heights of the maxima agree well with the 
experimental data. 

5.2. Stress relaxation after stop of steady shear 
flow 

In stressing tests the shear stress and the 
primary normal stress difference reach constant 
values with time (see fig. 8). If the shear rate is 
set to zero after the measuring quantities have 
reached their steady-state, the stresses gradually 
decrease to zero. The time dependence of the 
relaxation is denoted by Pa2(t;~0) and 
[Pl~ -/522] (t; ~)o). The shear history is defined 
by 

: ~ 0  for t - - t ' < t  [33] 
7 , '  ( ? )o ( t - t ' ) -~ )o t  for t - t ' > _ t .  

, o , ~ ;  . . . . . . . . .  ,o, 

1 o o _ _  rJ " ,oS ". 

~- "~_  ,o » B to 

~ to z , ~'~° ~, 

. ~ o 112 

,o ! - -  • o , o  I \ .  " , o »  

• ~ I '9° I ~. 

,o ~ . . . . . . . .  J . . . . . . . .  I t \ ù ,o~ 
, o ,  ,o ~ , o »  , o ,  ù ,o~ "o 

reduced  s h e o r  r o t e  a T Po [ s - I  2 

Fig. 9. Temperature invariant representation of the viscosity and primary normal stress coefficient as determined 
from the maxima of the time dependent stresses in stressing tests. ( ) prediction using [17], (---)  prediction 
using [18]. The tic denotes steady-state values measured at low shear rates where no maxima occur z 
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In [33] t stands for the time after stop of steady 
shear flow. By substituting ?t,t, in [20] and [21] 
one obtains 

~(t;  %) - ?~~(t;  %) 
~o 

= Z a, z~ exp [ -  tlzi] [34] 
i (1 "4- / ' / ])OTi) 2 ' 

O(t; %) = [~1~ - ~~2]  (/; %) 
~0 ~ 

2 W ai z 3 exp [ -  t/zi] 
[3»] 

• (1 + n~o'Cl) 3 

The relaxation of the shear stress and the 
primary normal stress difference measured after 
the stressing tests represented in tigure 8 is 
shown in figure 10. 

The stress decay is plotted as a function of the 
reduced time t/a~ to get temperature invariant 
curves. The relaxation behaviour as calculated 
by means of the single exponential damping 
function (eq. [17]) and the experimentally 
determined damping function (eq. [18]) is 
represented in figure 10 by broken and full 
lines, respectively. The predicted time depend- 
ence of the primary normal stress is more 
sensitive to the special form of the damping 
function than that of the shear stress. There is 
a deviation of the experimental data from the 

calculated behaviour at long times which might 
be due to experimental error. The oscillations 
of the calculated curves are caused by the 
chosen decimal spacing of the %, as discussed 
above. 

6. Conclusion 

The comparison of some calculated and 
measured material functions of Melt I shows 
that the transient and steady-state shear be- 
haviour is predicted correctly by the theory. 
The applicability of the constitutive equation 
to a description of creep and retardation 
measurements is discussed in (19). The rhe- 
ological behaviour of the melt in shear is 
completely characterized by the generalized 
memory function. The nonlinearity of the rhe- 
ological behaviour is introduced by the so- 
called damping function (3, 4) which can directly 
be determined from measurements of the shear 
relaxation modulus. 

To simplify mathematics the generalized 
memory function has been approximated by 
exponential functions. This representation has 
the advantage that important material functions 
such as the viscosity function and the primary 
normal stress function can be calculated by 
closed integration. Moreover, the derivation 
of general relätions between the different material 
functions is simplified. 

10 5 . . . .  , . . . . . . .  , . . . . . . . . . . . . . . .  , , , ,  

"-, p, 
» 

b ~ 

b 

.~  ,o ' i  ~ , , , I ,  . . . . . . .  I , . . . . . .  
,o -» ,o" ,o ° ,o'  , Il 

r e d u c e d  t i r n e  t / a T E $ 3  

~,~ 2~ 
10 2 10 3 

Fig. 10. Time dependence of the relaxation behaviour of the shear stress and the primary normal stress difference 
from the steady-state of the stressing tests represented in figure 8. ( ) prediction using the experimentally 
determined damping function, (- - -) calculated by means of the single exponential damping function 
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The constitutive equation presented in this 
paper gives a realistic description of the linear 
and nonlinear viscoelastic behaviour of the 
melt which is mathematically simple enough for 
use in engineering applications. In plastics 
processing not only shear deformations but 
also an elongation of the melt has to be con- 
sidered. A preliminary application of the theory 
to the elongational behaviour of Melt I appears 
very encouraging (3, 20). 

Appendix:  Relaxat ion behaviour after steady 
shear f low of  duration At 

A generalized shear history for relaxation measure- 
ments as shown in figure 11 is defined by 

{ 0 for t - t' < t 

7t , ,= 9o(t -- t') -- 9ot for t < t - t' < t + At 

7o = 9oAt for t - t' > t + d t .  

[36] 

By substituting 7,« in [20] one obtains by closed 
integration 

plŒ(t) = 9o exp [ngo t] ~ 
i 1 + n g o  

• {1- exp[- (@ +ù9o)*] 

• e x p [ - t / z , ] e x p [ - ( ~ + n ~ o ) A t  1, [37] 

which may be written in the form 

r a l  z~ exp [ - t / z i ]  
pf2(/) % 

• (1 q- n9oZi) 2 

• { 1 - - e x P l - ( 1 +  no)oZi)-~it ] 

• [ I  - ngoAt(1 + ngoz,)]/.  [38] 
J 

Eq• [38] is valid for the relaxation of the shear stress 
after a stressing test at a shear rate 9o and duration At. 
The limiting case of [38] for A t ~ 0% which corresponds 
to the relaxation from the steady-state of shear flow, 
is given by [34]. 

From eq. [38] one derives the expression 

[ t+Atl-~i A p12(t) = 70 exp[-nTo]  ~. aiziexp - 

• 1 + ~ 7 4 + ~ ~ ~ ~ ~ ~ ~ + ~ 7 o  

[39] 

$ h e a r  s t r a i n  ~, 

yo  = l,'o / 4 t . 

~ß t ~  tim • t 
I I 

---6 . 
t i m e  t » 

Fig. 11. Shear history for a generalized relaxation 
experiment 

which makes it possible to describe the relaxation 
modulus for a non-zero rise time At. The limiting 
case for At-+O is given by [15]. 

By substituting [36] in [21] one obtains 

[p ,~  - p=] (t) 
= %22~ ' aiz~ exp [ -  t/zi] 

i (1 + n~0~~) 3 

• { 1 - e x p l - ( 1 +  ngo'ci) --~-/t ] 

• [ l + ( l + n g o z , )  At n9°zi(l+ngozi)2At-ff-21~ 
"ci 2 "ci A) 

[40] 
which may be written in the form 

[ps ~ - p=] (t) 

=,o~oxpE-< =a,~,oxp[- ~+~, ~'l - 

3-~-q + 2 z, «=4 ~-.T ~-~T/+ nTo ) • [41] 

The limiting case of [40] for At --, oo is given by [35], 
the limiting case of [41] for At ~ 0 by [16]. 

The influence of a non-zero rise time on the measure- 
ments of the shear relaxation modulus is demonstrated 
in figure 12 for a constant shear strain 7o'Plz, which 
for 7o = 1 is equal to the modulus, is plotted as a 
function of the total time of test .t*=At + t. The time 
dependence of P12 during the step'was calculated by 
means of [24] using 90 = 7o/At. The relaxation behav- 
iour of P12 after stop of steady shear was calculated by 
means of [38]. It is clearly seen from figure 12 that the 
shear stress increases with At if its value is compared 
at a constant time t*. For t * »  At, however, the 
influence of the non-zero rise time becomes negligible. 

This effect may be taken into account by introducing 
factors f(t*; Yo; At) and fo(t*; 7o; At): 

G(t*; 70; At) = f(t*; 70; At) G(t*; 7o), [42] 

Go(t * ; 7o; A t) = fo (t* ; 70; A t) Go (t*; 70). [43] 
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Fig. 12. Calculated time dependence of the shear stress in relaxation measurements at a constant shear strain of 
?o = 1 and T = 150°C as òbtained for different rise times At 

The quantities on the left hand sides ofeqs. [42] and [43] 
are the directly measured uncorrected moduli G(t*; 
70; At) and Ge(t*; 70; At). By means of [39], [41], and 
[16] the factors f and )co can be calculated as 

the description of the nonlinear shear behaviour of a 
LDPE melt is examined. The generalized memory func- 
tion is expressed as a product of Lodge's rubberlike- 
liquid memory function fi(t - t') and a damping function 

•aizlexp[-t*/zl] l+-~-~-q + zi k=3"-~. \'-~~ + nTo 
f(t*;7o;At)= i 

ai zi exp [ -  t*/Zi" ] 

{ At A t ~  1 ( A t  
Z a~qexp[-t*/zi] 1 + ~ + 2--z~ k=~--~. 

fo(t*;7o;At)- i 

-F nyo) k-3} 

ai'q exp [ -- t*/'q] 

[44] 

[451 

The directly measured uncorrected moduli were used 
to determine a first approximation of the damping 
function h(?o). By means of relations [42], [44], and 
[43], respectively, the influence of st ~ 0 was taken 
into account. From the corrected moduli which are 
plotted in figure 5 the damping function of figure 6 
was obtained. 
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Summary 
The applicability of a single integral constitutive 

equation with strain dependent memory function for 

h(?t,t,). /~ characterizes the time dependence of the 
linear viscoelastic behaviour and is determined by 
measurements of the frequency dependence of the 
complex shear modulus. The damping function de- 
scribes the nonlinearity of the shear behaviour and 
can directly be determined by measurements of the 
shear relaxation modulus. From the temperature 
invariance of the damping function it follows that 
also in the nonlinear range a variation of temperature 
only corresponds to a shift in time scale which can be 
described by the shift factor aT(T). 

By means of the experimentally determined memory 
function the shear viscosity and the primary normal 
stress coefficient as functions of shear rate and tem- 
perature can be predicted. The time dependence of 
the shear stress and of the primary normal stress 
difference in stressing tests and the relaxation be- 
haviour is described correctly. 
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Zusammenfassung 

Es wird die Anwendbarkeit einer Zustandsgleichung 
vom Integraltyp nach Lodge mit einer deformations- 
abhängigen Gedächtnisfunktion zur Beschreibung des 
nichtlinearen Scherfließens einer LDPE-Schmelze un- 
tersucht. Die verallgemeinerte Gedächtnisfunktion wird 
als Produkt der Gedächtnisfunktion des linearen 
Verhaltens ~ ( t -  t') und einer Dämpfungsfunktion 
h(Tt,«) dargestellt./~ charakterisiert die Zeitabhängigkeit 
des viskoelastischen Verhaltens und wird aus Mes- 
sungen der Frequenzabhängigkeit des komplexen 
Schubmoduls bestimmt. Die Dämpfungsfunktion be- 
schreibt die Nichtlinearität des Scherverhaltens und 
ist über Messungen des Relaxationsmoduls direkt 
meßbar. Die Temperaturunabhängigkeit der Dämp- 
fungsfunktion hat zur Folge, daß auch im nichtlinearen 
Fließbereich eine Temperaturänderung nur einer Ver- 
schiebung der Zeitskala entspricht, die durch den 
Verschiebungsfaktor at(T) beschrieben werden kann. 

Die experimentell ermittelte Gedächtnisfunktion er- 
laubt die Voraussage des Verlaufs der Viskosität und 
des ersten Normalspannungskoeffizienten in Abhängig- 
keit von der Schergeschwindigkeit und der Temperatur. 
Ebenso werden die Zeitabhängigkeit der Schubspan- 
nung und der ersten Normalspannungsdifferenz im 
Spannversuch und das Relaxationsverhalten richtig 
beschrieben. 
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