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Hydrodynamics of thin liquid films 
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Nomenclature 
A, maximum amplitude of the nth wave 
a Szyskowiski's conStant 
a, Fourrier-Bessel" s coefficients 
e local concentration 
co equilibrium concentration 
D bulk diffusion coefficient 
D.~ surface diffusion coefficient 
h film thickness 
he, critical thickness of rupture 
h 0 transition thickness 
Jo, J1,J2 Bessel's functions of first kind; zero, first 

and second order 
k~, wave number of the critical wave 
k, =~ 2,/R - wave number 
1.~ " critical wave length 
I, wave length 
P pressure 
P~ capillary pressure of the meniscus 
AP ~= P a - H  
P ': equilibrium film pressure 
q, c~k~ - 2dFt/dh 
R film radius 
r coordinate 
T temperature 
t time 
V = - dh/dt - velocity of film thinning 
Vo Reynold's velocity of thinning 
v,  v~ velocity components 
v~ tangential surface velocity 
v¢ = ~?~/& - velocity of local thinning 
z coordinate 

3D~ (1 2DAOFo/Oio)'] 
a '-=' Fo(Oao/OCo)\ + Dh j 

F local surface concentration 
Fo equilibrium surface concentration 
~, vertical displacement of the surface 
"~n nth root of the equation J0 (2,) --- 0 
p bulk viscosity 
u~ surface shear viscosity 
H disjoining pressure 
a local sm'face tension 
ao equilibrium surface tension 
co angular velocity 

With 4figures 
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Already Plateau (1) drew attention to the fact, 
that some surfactants strongly retard liquid 
drainage f rom foam films and showed, that in a 
number of cases this retardation of the draining 
rate is accompanied by an increase of the foam 
life-time. Boussinesq (2) made a quantitative 
theory of the effect of surfactant on the hydro- 
dynamic behaviour of dispersion systems, as- 
suming that the interface behaves as a bidimen- 
sional fluid with two viscosities: dilational 
viscosity and shear viscosity. 

Later on Levieh (3) has shown that dilational 
viscosity originates in Marangoni-Gibbs' effect: 
the moving liquid carries surfactant away, thus 
disturbing its equilibrium distribution. As a 
result surface tension gradient and surface- 
volume exchange of surfactant rise. These 
effects can be calculated, hence the use of the 
concept "surface dilational viscosity" becomes 
superfluous1). In his theory Levich neglects 
surface shear viscosity assuming that because 
of the small thickness of the monolayer, much 
more energy is dissipated in the volume than in 
the surface.On this base Levich (3) made a theory 
of the effect of surfactant on the capillary waves. 
The theory has been confirmed for a number of 
surfactants (4-6). Concurrently, numerous ex- 
perimental investigations [see e.g. (7-10)] have 
shown that in many a case surface shear viscos- 
ity can play a substantial role. 

Recently, several studies of the influence of the 
surfactant on the hydrodynamic behavior of 
thin liquid films have been published (11-16) but 
none of them takes into account surface shear 

1) A very clear exposition of this concept is given by 
Lucassen-Reynders and Lucassen (4). 
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viscosity2). However, some facts make us think 
that it can occasionally affect the foam film 
behaviour. In the first place, we must point out 
here the correlation between surface viscosity 
and foam life-time established in many cases. 
An effect of the same kind is also the so far un- 
explained dependence of the critical thickness 
of rupture of the foam films on the surfactant 
concentration (12). 

The theoretical analysis of this effect (12) 
based on Levich's ideas showed that, at least as 
a first approximation, the critical thickness 
should not depend on the surfactant concentra- 
tion. Over  the whole concentration interval it 
should have the same value as fo r  a film with 
tangentially immobile surface: 

In (12) it has been assumed that the discrepancy 
between theory and experiment can be due to a 
positive component of the disjoining pressure, 
not taken into account by the theory. Recently, 
Manev and Scheludko (17) have shown, however, 
that the rise of the critical thickness begins from 
surfactant concentrations corresponding to the 
inaximum of damping of the surface waves 3). 
This result made us think that the basic reason 
for the increase of the critical thickness of rup- 
ture must be sought in the properties of the 
adsorption monolayer. We show in the present 
paper that this effect can be due to the surface 
viscosity. 

Most of the initial equations and the methods 
of their solution used here are the same as in (12), 
where some questions related to the effect of 
surfactant on thinning and rupture of foam films 
are also discussed. Further in the expose we shall 
therefore consider in detail only the problems 
in which substantial differences with the pre- 
viously published results appear. 

The basic difference between the theory 
proposed here and the previously published 
theories of the kynetics of thinning and rupture 
of thin films (11-13) consists in the change of the 
condition for continuity of the tangential com- 
ponent of the stress tensor (see eq. [3c]). We shall 
calculate the distribution of surfactant and its 
effect on liquid motion according to Levi&. 

2) In Lee and Hodgson's paper (15) surface shear viscos- 
ity is taken into account in the initial equations but further 
on it is assumed to be zero. 

3) The latter concentration is approximately equal to 
the constant a in Szyskowski's equation [see for instance 
(18)] for the substances obeying this equation. 

Since in this manner the surface dilational viscos- 
ity is automatically taken into account, we shall 
only use explicitly the surface shear viscosity 
which (for the sake of brevity) is further called 
surface viscosity. 

The results obtained show that the effect of 
surface viscosity on the liquid flow strongly 
depends on the area of the film element on which 
the liquid motion occurs. Thus the influence of 
the surface viscosity on the rate of thinning of 
the film as a whole is substantially weaker than 
its influence on the velocity of growth of the 
local concavity caused by the fluctuational 
capillary waves (see section 3). As a result, for a 
certain interval of values, the surface viscosity 
can be simultaneously assumed equal to zero 
(when calculating the rate of thinning) and 
infinitely great (when considering the wave 
motion). This means that with respect to the 
film thinning only Marangoni-Gibbs' effect will 
be important while with respect to the wave 
motion the film surface will behave as tangen- 
tially immobile elastic membrane. In this way 
a new formula for the critical thickness is 
obtained which agrees much better with the 
experiment than the formulae obtained previous- 
ly (12) and allows, at least in principle, to explain 
the dependence of the critical thickness on the 
surfactant concentration. 

1. Rate of  film thinning 

We shall consider a microscopic thin liquid 
film, encircled by a meniscus, formed in a 
capillary (fig. 1)4). Because of the natural sym- 
metry of the object we shall use the cylindrical 
co-ordinate system shown in fig. 2, where R 
denotes film radius and h is film thickness. 
With small h/R the flow obeys the simplified 
Navier-Stokes' equations known from the lubri- 
cation theory: 

82Vr 1 8P 

8z 2 - p 8r [ l a ]  

8P 
- 0 [ l b ]  

8z 

8v~ 1 8 
8~- + V~w = O; % - r. [ l c ]  

r ~r 

4) The results obtained are also valid, of course, for a 
film formed by pressing two bubbles against each other. 
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vr and v= being the corresponding velocity 
components. The distribution of surfactant in the 
film volume for small values of Peclet's number 
is described by the second Fick's law: 

02c 1 0 0 
0z 2 + A  r c , = 0 ;  A , =  r 0 z r  Or [2] 

Fig. 1. Model of foam film, formed in a cylindrical capil- 
lary 

Z 

- R = 

- h  
F 

Fig. 2. Sketch of the film with the coordinate system 

where c is the bulk surfactant concentration. For 
a plane-parallel film the boundary conditions 
which the solution of the system of differential 
equations must obey are: 

v= = - V/2 at 

Vr(u,r) - D=ArF = - D(Oc/Oz) 

at 

~(Ovr/Oz) = ( & / & )  (&/&) 

+ ~s(~V~vA&) 

OvA& = o 

z = hi2 [3a] 

z = hi2 [3b] 

at z = h/2 [3c] 

at z = 0  [-3d] 

Oc/dz = 0  at z = 0  [3el  

c =c0  at r = R  [3f ]  

P =  P0 at r = R  [3g] 

Here V= -dh /d t  (t denotes time) is the velocity 
of film thinning, D and D= are the coefficients of 
bulk and surface diffusion respectively, F = F(r) 
is the surface concentration of surfactant (Gibbs' 
excess), Co is the equilibrium bulk concentration 
of surfactant, and P0 is the pressure in an equi- 
librium film of the same thickness. The film 
symmetry with respect to the plane z = 0 (see 
the conditions [3d] and [3e]) allows us to 
write the conditions [3a]-[3c]  only for the 
upper surface z = hi2. Eq. [3b] expresses the 
condition for surfactant conservation and eq. 
[3c] differs from the corresponding eq. [28a] 
in (12) by the presence of a second term on the 
right-hand side which takes into account surface 
viscosity [-see (19)]. When writing the first term 
on the right-hand side of [3 c] we have assumed 
that adsorption equilibrium exists between the 
surface and the liquid su, blayer - i.e. tha t  
a = cr [c(r ,z= h/2)]. Eqs. [3f] and [3g] follow 
from the assumption that the volume of the film 
is much smaller than that of the meniscus, so that 
the liquid drained out from the film does prac- 
tically not disturb the equilibrium in the menis- 
cus. All functions representing the solution of 
eqs. [1] and [-2] must obviously be finite at 
r =0 .  The surface concentration F can be 
represented as a sum of its equilibrium value 
Fo(co) and the perturbation F1, due to the flow: 

r =  ro + rl [-4] 

In (11) it has been shown that in practice 
F1 ~ F0 which allows c?a/Oc and OF/Oc to be 
replaced by their equilibrium values O % / &  o 

and OFo/OCo. 
From [-1] and the corresponding boundary 

conditions one easily obtains: 

Z 2 

and 
12# 

OP/~r = ~ 5 -  (Vr - 2Bh)  [-6] 

where B(r) is an integration constant. Since 
z 4 h/2 ~ R, the solution of [2] can be written 
in the form (see also [31]): 

c - c ° =  ~ a " [ l + ( k " ~ 2 ]  [-7] 



Ivano~ et aL, Hydrodynamics of thin liquid films 985 

Here Jo is Bessers function of  first kind, zero 
order, a .  are Fourier-Bessel's coefficients and 
k. = 2./R, where 2. is the nth root of the equa- 
tion Jo(2.) = 0. When [7] is not differentiated 
with respect to z the term k 2 zZ/2 can be neglected. 
From [3 b] and [7] we obtain: 

Vr v~ = ~ h (Oao/OCo) ~. a. k2. Jo (k. r) [83 
6# .=1 

where v~ = v~ (z = h/2) and 

3Dp [. 2G(?ro/aCo!] 
~ :  Fo(~o/aCo ) L +  Dh 3" [9] 

Eq. [5], [6], and [8] after integration on r allow 
us to determine the constant B: 

B = c~(~ao/~Co) h ~ a.J'o(k.r) - [10] 
12# .=1 

where f o = d J o / d r .  From [3c], [5]-'[8], and 
[10] after integration from r to R we obtain: 

2h 2 Oao 
V(R 2 - r 2) = 

3# ~Co ( +.2< 
× 1 ; 

n 1 

× a . Jo (k . r ) .  [11] 
Expanding the right-hand side of [11] in 
Fourier-Bessel's series we obtain expressions for 
the coefficients a.: 

VRZJ20 .n)  

( [12] 
×t_U  co ; ]  " 

The assumption that the film is plane-parallel 
does not allow us to use the condition for 
continuity of the normal component P= of the 
stress tensor on the film surface. So we shall 
replace this condition with the approximate 
integral condition for equality of the force Fy 
with which the film liquid acts upon the surface, 
and the external force Fo causing the drainage. 
Since at h/R ~ 1; P= ~ - P, from [3 f], [6], and 
[10] we obtain: 

R 

= 2re ~ P r d r  = 4rcR 2 . aao . Fy 
3 h OCo 

( 1 +  # , kZeh )  a .J  1 (2.) 
x ~  6# J 2. n = l  

+ rcR2Po • [13] 

The force Fo is calculated according to (20). If 
the gas pressure above the meniscus is Pg, the 
external force will be F o = ~ R 2 p a .  Taking 
into account that P~ = Po - I'm and Po =Pm + H 
[see (20)], where P,, is the pressure in the menis- 
cus and P~ and /7  are respectively capillary and 
disjoining pressure, from the condition Fo = F o 
we obtain: 

h3 A p  
V ~ - -  

24/~R 2 

xL . (6 # + #~ k. 2 ~ h) Jz (2.) q-1 
+ 6#a  + I~skZ.~h)23. J l (2 . ) l  

[14] 
where 

a P  = Po - n [ i 5 ]  

i s  the pressure difference causing the drainage. 
The velocity V can be compared to Reynolds' 
velocity Vo [see (21)] with which a film between 
two solid planes, under the same pressure differ- 
ence, would thin: 

2h3Ap 
V o = 3/~R 2 . [16] 

Taking into account [12], from [14] and [16] we 
obtain: 
V0 = ~ .  (6 kL + ps k2. ~ h) Jz (2.) 

1 6  ~1 2 3 V = (6/~ + 6#c¢ + #~k.~h)2~Jl(2.)  
t 

[17] 

Since with increasing n the roots 2, also rapidly 
increase, eq. [17] can be writen in a simpler 
form. Thus for low surface viscosity we obtain: 

V0 1 1 1  + 4,Us h 0~ 2 ] 
--V = 1 +---~ 3pR2(1 + a) 2 , [18] 

and for high surface viscosity: 

Vo 6#R 2 
- - =  1 - - - .  [19]  
V 5#~h 

2. Critical thickness of  film rupture 

According to Scheludko (14) the rupture of 
thin films is due to thermal fluctuations which 
lead to corrugation of the film surface. The 
shape of the surface at any moment can be pre- 
sented as a superposition of an infinite number 
of fluctuation waves with various lengths and 
amplitudes. Let us suppose for simplicity that 
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there is only 'one wave with wave-number k,. 
The vertical displacement of the film surface at 
a given point from its position in the absence 
of waves (i.e. in a plane-parallel film) we shall 
denote by f ,  (fig. 3). 

j r - - -  

-"...,._._.j 
2/? 

Fig. 3. Fluctuation waves on the film surface 

We shall only consider the case of symmetri- 
cally situated waves (see fig. 3) which are respon- 
sible for the rupture (16). Thus the local film 
thickness will be h + 2f , .  For  simplicity we 
shall assume that the wave has a cylindrical 
symmetry. 

The corrugation of the surface give rise to 
two forces: the first one caused by the local 
capillary pressure tends to smooth the film 
surface while the second one due to the increase 
of the negative disjoining pressure (with respect 
to its value in the plane-parallel film), tends to 
increase f, .  If h is large the first effect prevails, 
if it is small the second one, so that for a given 
wave a transition thickness ho exists at which the 
character of wave motion changes. While at 
h > ho the surface performs oscillations around 
the equilibrium position f ,  = 0, at h < ho the 
oscillations cease and liquid is transfered contin- 
uously into the thicker parts of the film. Thus f ,  
continuously grows until the film breaks or a 
black spot is formed (14). 

The mean thickness h at which the rupture 
occurs (critical thickness her) depends not only 
on the wave motion but also on the translational 
velocity V, with which the two surfaces approach 
each other. The latter effect has been taken into 
acount by Vrij (16), who has used an ingenious 
procedure for combining the two motions. 
However, Vrij's theory is only valid in the case 

where there is no tangential motion on the 
film surface (v~ = 0) and, besides, leads to a 
correct result for her because of a certain com- 
pensation of errors (22). Thus in (12) a more 
consistent and complete hydrodynamic theory 
of the phenomenon has been worked out which 
we shall use now. 

We shall assume that: 

f,  ~ h ~ k2 ~. [20] 

The first inequality [20] allows us to accept that 
all the quantities characterizing the flow in the 
film can be presented as a sum of two effects: the 
effect related to the drainage of the plane-par- 
allel film with a thickness h and the effect related 
to the wave motion in this film. Since at small 
Reynolds' number Navier-Stokes' equations are 
linear, in this case they split into two systems of 
equations. The first one describes the thinning 
of the plane-parallel film and at h/R ~ 1 coincides 
with eq. [11]. Since the boundary conditions are 
similarily transformed the first effect is des- 
cribed by the theory developed in section 1 of 
the present paper [see also (11)]. From the se- 
cond inequality [20] it follows that for the wave 
motion, equations analogous to [1] are also 
valid but in this case a term ~(~?v,/&) appears 
on the left-hand side of [1 a], However, setting 

~, = fo,(r) e mnt [21] 

(% is angular velocity) it is readily shown [see 
(12)] that at (v is kinematic viscosity) 

(.onhZ/v ,~ 1 [22] 

this term and the similar terms appearing in 
eqs. [2] and [3] can be dropped, so that the 
wave motion is also described by eqs. [1] and 
[2] and the boundary conditions [3]. The only 
difference is that the condition [3a] must be 
replaced by 

vz = v~ = c~/c~t at z = h/2. [23] 

Since the solution of [2] in this case has the form 

C - - C o = [ l + ~ ] l P , ( R )  [24] 

where 7J,(r) satisfies the equation 

• Ar 71, = -k,2 7t,. 7t,(R) = 0 [25] 

f,  must also satisfy a similar equation: 

Ar~, 2 . = - k, f , ,  f,(R) = 0. [26] 

On the other hand for the pressure in the film 
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at ~,, ~ h and 8P/Oz = 0 we can write (12): 

P = Po - oA,~.  + H(h) - 2H'(h)~. [27] 

where o- is surface tension and H ' =  dH/dh. ~. = ~o. exp 
From [la] ,  [3 d], [26], and [27] we obtain: 

q.z  2 c?~,, 
v~ = 2# Or + C.(r) [28] 

where 

q. = aokZ, - 2FI' [29] 

and C.(r) is integration constant, Eqs. [3b] 
and [24] yield: 

V,v~ = h2 &r_o k. 2 ~.. [30] 
6/* 0Co 

The last equation together with [3c] and [24] 
after integration on r gives 

q .h ( .  2 0a° 1 + _  h = g,,. [31] 
8Co 6# 

Eqs. [28], [30], and [31] allows us to elimi- 
nate C.(r): 

V~C. = k2"("q"h2 1 + 61~ 
8t 1 . ~ ~ k 2 h ~ ] .  [32] 

Eqs. [ lc] ,  [23], and [28] yield: 

- q"h---~3 k~ ~.. [33] 

Since at h = ho v; must be zero, from the last 
equation we can obtain an expression deter- 
mining the value of the transition thickness: 

q.(ho) = aok2. - 2H; = 0 [34] 

where Ho = II(ho). Since from [21] we have 

v~ = o ~ , / &  = o.~. [35] 

from [33] and [35] we can calculate the angular 
velocity: 

[ -] co. qnh3 k~ + [36] 
= - 24--7 6/t 7p,~-hJ" 

At oo, h2/v ~ 1, ~, depends' on t only through h. 
Therefore we can write in [33] v¢ = (c~,/Sh)dh/dt. 
Substituting here dh/dt = -  V from [18] and 
integrating the resulting equation on h we shall 
obtain the sought dependence of ~, on h. In 
order to simplify the formulae we shall put, 
however,/~ = 0 in the expression for V. This is 
possible because the effect of the surface viscos- 

ity on the film drainage is much weaker than on 
the wave motion (see section 3). Thus we obtain 

k. R 
i6 

ho 

+ 6 .  + 6 . . )  

h 

q" ] x - ~  dh [37] 

where ~o. = ~.(h0). Since the exponent in [37] 
is independent on r, from [26] and [37] it follows 

~o. = A.Jo(k.r) .  , [38] 

It has been shown in [12] and [14] that the 
constant A,, can be determined from Einstein's 
theorem (23) (see also [38]): 

R 

k T  = naok2~ I ~2. rdr 
0 

2 2 2 2 = rc ao k. A. R J1 (2.). [39] 

On the basis of eq. [37] an expression for her 
can be derived. Since at this, however, very 
complicated and inconvenient formulae are 
obtained, we prefer to consider here only one 
important case. In section 3 it will be shown that 

&hk~ 
in some cases ~ >> 1. This means that in 

such cases/~ = m can be set in [37] [~ is of the 
order of a unit-see (11)]. Thus from [37] we 
obtain the approximate expression: 

ho [ k "R f -q" dh] [40] ~ .=~0 .  exp ----]-6-- ( I + e )  AP ]" 
h 

In cases where the surface viscosity is great, 
instead of [18], eq. [19]  must be used for V 
and in [33] again #~ = cc must be assumed. 
Thus in the same way we have derived [40] in 
this case we obtain 

ho 

~ . = ~ o .  exp l  kZ"RZl6 f ( 1  6/~R25~h)~-ffd]q" h . 

h 

[4J] 

If the disjoining pressure is negative the film will 
break when its two surfaces touch. This will 
take place at a certain thickness h. at which 

h. = 21~.1. [423 
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If we consider a set of waves with various k,, 
the condition [42] will be realized at different 
thicknesses for the different waves and to a 
given wave with a wave-number km a maximum 
thickness h m will correspond. This wave will play, 
of course, a determining role for the film rupture 
and we shall call it critical wave. The value of 
k,, can be determined from the equation 

8h./dk. = 2(81~,1/8k.) = 0. [43] 

Together with [40] eq. [43] yields: 

her h ~  

k z l f ~ '  [ f d h ] - '  
a--£ (1 + )Apdh  (1 + e )  AP 

h0m hcr 
[44] 

(when deriving [44] the weak dependence of 
(o, on k. has been neglected). 

So far we have presumed that on the film 
surface there is only one wave with a wave- 
number k, while in fact the shape of the surface 
is determined by superposition of an infinite 
number of waves: 

= ~, "~ R ~ ~,dk,. [45] 
n = l  0 

Since the function ~,(k,) has a very sharp 
maximum at k, =km (16) the calculation of the 
integral in [45] can be carried out by the method 
of steepest descents. The condition [42] for the 
film rupture in this case will have the form 
h~ = 2[~] [46] 

where h~ is the looked-for critical thickness i.e. 
the mean thickness of the film at the moment of 
rupture. In order to minimize the error which 
we make with the assumption for cylindrical 
symmetry of the wave we shall substitute 
for ff in [46], ~2 being determined by 

~ = ~--si(2rdr. [47] 

With the aid of the described procedure we 
finally obtain 

horn 

F_R 2// '  (ho! ~ H' /1 
hZr = Nexp / 4ao h i  (1 + c~) Apdh [48] 

er 

where ho,, is the value of ho for the critical wave 
and 

horn 

N = ~ (17 ~j AP3 
hcr 

Eq. [48] must be solved together with eqs. [34] 
and [44] (at k, =km and h, = her) which give the 
dependence of ho,, on hoe). 

3. Discussion 

The theory developed above suffers from an 
essential and, unfortunately, hard to avoid 
defect. This is the assumption that the surface 
viscosity #, does not depend on the surfactant 
concentration and on the flow velocity. Because 
of the extreme difficulties connected with the 
solution of the hydrodynamic equations in the 
case of variable surface viscosity, in all theo- 
retical studies in which this effect is taken into 
account #~ is assumed constant [see e.g. (2) and 
(19)]. Still, in order to be able to take into 
account, although roughly, the change of the 
surface viscosity when the surfactant concen- 
tration changes, we shall admit t h a t  at high 
concentrations the surface viscosity has a finite 
constant value and at a certain concentration 
c~ it sharply drops to zero. Since the surface 
viscosity is due to molecular interactions in the 
adsorption monolayer, it is logical to presume 
that the concentration c~ is close to the bulk 
surfactant concentration corresponding to 
Fo/F~o = 1/2, F~ being the" maximum surface 
concentration. Therefore for surfactant obeying 
Szyskowski's equation c* is close to the constant a. 

The formulae derived in the present paper for 
the velocity of film thinning (see [18] and [19]) 
give as limiting cases the expressions obtained 
before: from [18] at #~=0,  V/Vo= 1 + ~  is 
obtained [see (11)], and at #, = m [19] trans- 
forms into Reynolds' formula. 

The effect of surface viscosity on the hydro- 
dynamic behaviour of the thin films strongly 
depends on the length scale of the flow (in [18] 
and [19] the term with #~ includes R 2 and in 
[37] -k,~(2r~/l,) 2, where I, is the wave- 
length). On the bases of [44] it can be shown that 
for aniline films l,,~2rc/k,,,~ 0,1R. So it is 

5) When calculating the dependence her vs. R the 
values of ho, . obtained from the combined numerical 
solution of [34] and [44] for a chosen value of her are 
used. Since the result is insensitive to N, an arbitrary, 
(but reasonable) value for R can be put in [49]. Thus, 
from [48] the film radius R corresponding to the chosen 
criterical thickness her is obtained. This value of R is 
then substituted in [49] and with the new value of N 
again R is calculated, etc. As a rule, one iteration is 
sufficient. 
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possible that #5 affects the behaviour of the fluc- 
tuation waves without changing significantly 
the rate of thinning. Thus for the ratio of the 
respective terms in [18] and [37] at lm= 0,1R 
we obtain 

Ysh . #,k~h 12 
#R a" 6 ~ -  ~ ~ 2 " 1 0  -3 . [50] 

For  instance, if h = 5" 10-6 cm and R = 5- 10-3 
cm [these are typical values in critical thickness 
measurements (12)] we obtain 

#sk2 h/6y ,~ 104/t5 

while 

I~sh/ItR 2 '~ 20#5. 

That is why, if p, = 10 -a s.p., it is possible to 
neglect its effect on the rate of thinning, while 
with respect to the fluctuation waves #~ can be 
assumed to be infinitely great and the surface 
considered as an infinitely elastic membrane. 
This, actually, allows to put #s = oe when 
deriving eq. [40]. The fact that surface viscosity 
can affect the velocity v¢ of the wave motion in a 
different way from the way it affects the velocity 
V of film thinning is the basic difference between 
the proposed here theory of the critical thickness 
and the theory published before. 

Since the velocity V of thinning of films 
stabilized with soluble surfactant is always 
higher than Reynolds' velocity Vo the theoretical 
critical thickness calculated according to eq. [48] 
is in better agreement with the experiment. In 
fig. 4 the dependence of her on the radius R of 
aniline films is shown. As a surfactant lauryl 
alcohol is used. Curves 1 and 4 [borrowed 
from (12)] give respectively the theoretical 
dependence, calculated on the basis of eqs. [26] 
from (12) and the experimental values measured 
in (12). Curves 2 and 3 are calculated on the 
basis of eq. [48] in the present paper at 
D 5 = 0 and DiD = 10 respectively. The com- 
parison of curves 2 and 3 shows that surface 
diffusion can substantially affect the film rup- 
ture. 

The experimental investigations show that 
the critical thickness of rupture increases when 
the surfactant concentration becomes small (12). 
This fact cannot be explained by the theory 
in (12) only the influence of Marangoni-Gibbs 
effect a t /~  = 0 has been studied, the theoretical 
result can be explained with the compensation 
of two reversely acting effects. The exchange of 
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Fig. 4. Dependence of the critical thickness her on the 
radius R for an aniline film stabilized with lauryl alcohol 
(T= 292°; D = 10 -5 cm2/sec; Co = a = 2.56.10 -~ tool/ 
cm3; Fo~ = 6.5" 10 -1~ mol/cm2; # = 4.4' 10 -2 g/cm. sec) 

surfactant between the surface and the film 
volume increases both the velocity of film thin- 
ning V and the velocity of wave m o t io n  v~. 
The first effect leads to reduction of the critical 
thickness and the second to its increase but 
within the limits of the employed linear theory 
of the waves the two effects cancel each other. As 
we have already seen, at certain values of the 
surface viscosity (#5~ 10-3s.p.) the second 
effect ceases to depend on Marangoni-Gibbs' 
effect. This excludes the possibility of compen- 
sation of the two effects, mentioned above and 
leads to reduction of the critical thickness. 
Since in this concentration region (Co > c~ ~ a) c~ 
slightly depends on Co [see (11)], hor will be 
practically independent on the surfactant con- 
centration. 

When the surfactant concentration drops 
under e~ the surface viscosity must vanish. 
Putting #5 = 0 in [37] we than obtain a formula 
for ~, which coincides with the analogous ex- 
pression [20] for ~, in (12). Thus, in this case 
her can be calculated from formula [26] of (12). 
(The values of her calculated in this way for 
aniline films are given by curve 1 in fig. 4.) 
Therefore, for an aniline film with a given radius 
advanced in (12) according to which the critical 
thickness should be constant at any surfactant 
concentration and have the same value as for a 
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film with tangentially immobile surface 6). Since 
R at Co-~ c~ ~ a, her steeply increases its value 
from this corresponding to curve 3 in fig. 4 (or 
a similar curve, depending on DiD ratio) to a 
value corresponding to curve 1 in the same figure. 
This is a possible explanation of the fact, 
established by Manev and Scheludko (17), that  
the concentra t ion of  surfactant at which the 
increase of the critical thickness starts coincides 
with the concentra t ion corresponding to the 
max imum of damping of  the capillary waves. 
The hypothesis put forward here needs, of 
course, a serious experimental verificationS)8). 

Summary 

The influence of surface viscosity on the rate of thinning 
and on the critical thickness of rupture of foam films has 
been studied. It is shown that this effect depends strongly 
on the length-scale of the flow. Therefore it is possible to 
neglect it when calculating the rate of thinning, but to 
assume for the wave motion, caused by the thermic 
fluctuations, that the surface viscosity is infinitely great. 
The expression for the critical thickness, obtained in this 
way, agrees relatively well with the experimental results. 
A possible explanation of the dependence of critical 
thickness on surfactant concentration is suggested. 

Zusammenfassung 

Der EinfluB der Oberfl~ichenviskositgt auf die Ver- 
diinnungsgeschwindigkeit und die kritische ZerreiB- 
dicke von Schaumfilmen wird untersucht. Es zeigt sich, 
dab dieser Effekt stark vonder charakteristischen Flug- 
gr6ge abhSmgt. Folglich kann man bei der Berechnung 
der Verdiinnungsgeschwindigkeit die Oberfl~chenvis- 
kositiit unberi~cksichtigt lassen und sie bei der von den 
thermischen Fluktuationen verursachten wellenartigen 
Bewegung als unendlich groB annehmen. Die auf diese 
Art erhaltenen Gleichungen flir die kritische Dicke 
stimmen verh~iltnism~igig gut mit den experlmentellen 
Daten iiberein. Eine mifgliche Erkl~irung der Abh/ingig- 
keit der kritischen Dicke yon der Konzentration des 
Tensids wird vorgeschlagen. 

6) In (12) the effect of surface diffusion has not been 
taken into account, however, it can easily be shown that 
with p, = 0 this effect does not influence hc~ as well. 

v) The present paper had already been prepared for 
printing when Manev et al. (24) completed another in- 
vestigation of the effect of surfactant on the critical 
thicknesses. In it they put forward the hypothesis that 
the effect is due to the damping of non-fluctuational non- 
uniformities of the film thickness. This hypothesis does 
not contradict the basic ideas of our work which con- 
siders a plane-parallel film, corrugated by fluetuational 
waves. However, the possibility of a phenomenon to be 
explained, though qualitatively, in several ways, shows 
that it needs further clarification. 

s) Recently two new theoretical investigations on the 
critical thicknesses of rupture of foam films have been 
completed (25, 26). In some aspects they are close to the 
ideas of the present paper. 
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