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Abstract. The temperature dependence of the kinetic 
coefficients is obtained in the nonperturbative region 
with the help of Green-Kubo-type formulae in the model 
of massive gluon gas motivated by numerical results from 
simulations of lattice QCD. The entropy production 
rate is estimated using scaling hydrodynamics. It is shown 
that the increase in the viscosity coefficients leads to 
entropy generation in heavy ion collision processes which 
could be big, especially for temperatures close to the 
critical one. 

The forthcoming projects for ultrarelativistic heavy ion 
collisions at RHIC and LHC require comprehensive esti- 
mates of the space-time development of these reactions. It 
is commonly believed that several stages are involved and 
it is natural to consider the preequilibrium one separately 
as most of the entropy is created at this stage [1, 2]. The 
subsequent hydrodynamic expansion has often been con- 
sidered as isentropic, but it is clear that the evolution of 
this stage will be complicated by dissipative processes 
generating entropy, and by the possible phase transition 
(or transitions) [3-5]. The aim of the present study is to 
explore the entropy generation at this hydrodynamic 
stage. We understand that the freeze-out stage, where the 
system is made up of free-streaming final particles, could 
also add to the entropy [6, 7]. 

In order to estimate properly the dissipative effects as 
well as the dynamics [8] of the QCD phase transition we 
need to know the behaviour of the kinetic coefficients 
(KC) over a wide range of temperatures, including the 
ones close to the phase transition point where non-pertur- 
bative effects are dominant. Many previous calculations 
extrapolated the asymptotic behaviour, found pertur- 
batively, to the critical region [9-11]. However, a recent 
estimate of the shear viscosity coefficient, using a model 
for the contribution of the nonperturbative region, has 
demonstrated that the behaviour in the critical region is 
very different from the standard T 3 o n e  and the amount 

of entropy generated in the region close to this temper- 
ature appears to be substantial [12, 13]. 

In those calculations we exploited the so-called mo- 
mentum "cut-off model" motivated by an analysis of the 
numerical results of lattice Yang-Mills field thermo- 
dynamics [14, 15], This model provides a good fit to the 
data, but it is of course very much ad hoc and does not 
explain why the low-momentum modes are removed. 
Here we deal with an ideal gas where the effect of interac- 
tions in the plasma is provided by the temperature de- 
pendence of the effective mass [16]. In a sense it is rather 
similar to the "cut-off model" as now the medium (plasma) 
properties suppress low momentum excitations since for 
M (T) increasing e x p ( - - ~ / T ) ~ e x p ( - - m / T )  at 
small momenta p~0 ,  but it has more advantages as was 
argued in a recent analysis [17], the most important of 
them is that it leads to a very good description of high 
precision SU(2) pure gluodynamics lattice data. As to the 
KC calculations, this model is more involved since w e  
need to deal with massive scalar 2q~ 4 theory. This latter 
approximation is also in line with the model of "massive" 
gluons where these waves are nevertheless considered to 
be only transversal [18]. Combining our calculations of 
KC's in 2q~4-theory with the temperature dependence of 
the gluon mass extracted from lattice Monte Carlo data, 
in particular for the mass gap in pure gluodynamics [19], 
we are able to estimate the entropy generated based on 
linear hydrodynamics and to explore the applicability of 
this approach to the evolution of gluon systems. 

As our basic starting point we take the hydrodynami- 
cal equation including a viscosity term as 

de e+p  ~ = 0 ,  (1) 
dz -~ 

with Bjorken initial conditions [20]. We fix the equation 
of state (p = p(%) and e = e(Zo) are the initial pressure and 
energy density respectively), and, taking the initial condi- 
tions at a time Zo "~ 1 fm. The dissipative term in (1) con- 
tains the factor g = (4/3qs + qv) with qs and qv as transport 
coefficients of shear and bulk viscosities. Note that the 
inequality z >)~/(e + p) must hold, otherwise we would be 
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Fig. 1. Dependence of the scaled energy density and pressure on the 
temperature 

dealing with the unrealistic case of gluon gas contraction 
(see [5, 11]). 

The total entropy of the system is defined as [5, 10] 

S = I dcr Us u = I d y s (z)z, (2) 

where sU=su ", s(z)=[e(~)+p(z)]/T is the local entropy 
density and y is the hydrodynamic rapidity (tanh y--x/t).  
Equations (1) and (2) give us a simple formula to estimate 
the entropy production in an expanding gluon gas 

dS dzz(z ) 
dy - I  zT(z) ' (3) 

here 2(~)= Z IT (z)], r (z) being the solution of (1). In order 
to solve (2) we need the temperature dependence of the 
KC's and the equation of state in the whole temperature 
interval, including the nonperturbative critical region. 

For pressure and energy density calculations we use 
the standard expressions [21] 

k4 
p ( T ) = 6 q  5 S dk ~)n(E(k)),  (4) 

0 

e ( T ) = ~ 5  S dk k2E(k)n(E(k)), (5) 
0 

where E(k)=w/~+m 2 is the relativistic energy; 
n(x) = [exp(f lx)-  1] - x is Bose's distribution function; fl is 
the inverse temperature and 9 is the degeneracy factor. In 
the ultrarelativistic case (T~mo) it leads to the Stephan- 
Boltzmann (SB) law (see Fig. 1). However, if the temper- 
ature is close to T~, the gluon mass m o is increasing, (at 
least for SU(2)-gluodynamics) and becomes too large to 
be negligible and Bose's distribution function may be 

replaced by Boltzmann's (n(x)=exp(-Bx)). Then (6), (7) 
may be integrated and written in the following form 

_ T 4 co T* 
p ( T ) = Y - ~  - j" dz[z2-az]3/Ze-'=92rc2 a2Kz(~ ). (6) 

13/1; 

- T 4 | T 4 
e ( T ) - ~ z  ! d z z2~e- ' -~ - zaZ(3Kz(oO+eK, (oO) ,  

(7) 
where Ki(e) are modified Bessel function and e-moB.  The 
asymptotic expansion of the modified Bessel functions is 
given by K(c0 ~ e x p ( -  a)x/~/2a for large ~, i.e. for T ~  T~, 
both pressure and energy become small close to T~. In the 
case when ~ 0  we recover the Stephan-Boltzmann law. 
This temperature dependence can fit the SU(3) 
Monte-Carlo lattice data if one uses a constant gluon 
mass [18] or if one includes a finite jump in mass around 
T~. As to SU(2)-gluodynamics, for which a very elaborated 
Monte Carlo analysis exists [17], we used the following 
parametrization 

mo=moTc\T_ TJ , 

with mo=1.83 and q=0.4. The difference reflects our 
understanding in behaviours of first- and second order 
phase transitions as seen in lattice Monte-Carlo simula- 
tions [19]. To calculate the KC's of shear and bulk vis- 
cosities we use well-known relations obtained within 
a formalism based on Kubo-type formulae for the 2~b 4- 
thermofield theory [10, 11] (the analogous expression for 
r/~ was also obtained for the case of vector fields [22]) 

B rl~ = ~  Iz, t, (8) 

B 
1--6cs I1,0+ -1 qv=~ {I2, 2 %41o , }, (9) 

2 = 8p/& is the square of sound velocity, and the where c~ 
integrals lm,, are defined as 

d 3 f i p  2m 

Ira,. = 2 S E ~ p )  n(p) [1 + n(p)],  (10) 

here F(p) is the damping rate of quasiparticle excitation (it 
is assumed that FB ~ 1). In the scalar theory one obtains in 
one-loop approximation 

22(2~)4 f d3pld3p2dap36(P+Pl-Pz-P3) F(P)=24E(p)n(p) J 

x (1 +nl)nzn3 (11) 

with the following notations d3/~= [2(2n)3E(p)]-ld3p, in 
both (10) and (11), ni = [exp(flE(pl))-- 1] - 1. 

The gluon gas viscosities may be obtained from 
(8)-(11) by the standard procedure of changing [11, 23] 

22--.c'32~2c%Zlnc~s -1, c*=20+60 ,  (12) 

where (for the value of c*, see also [ 2 4 ] )  

es = 6re [11/2N ln(M 2/A2)]  - 1, (13) 



and N is a number of colours, M 2 =~(p2  ) and (p25 is the 
thermodynamically averaged squared momentum of the 
gluon field [21]. The degeneracy factor is absent in the 
final result, since the numerator of (11) must contain it as 
well as the damping rate in the denominator. This phe- 
nomenological estimate can be justified by the fact that to 
lowest order in the interaction the cross sections for 
gluons and scalar particles have similar momentum de- 
pendences. This procedure (13) is fair only for small 
coupling constant. The model under consideration brings 
us to the following temperature dependence for the M 2 
factor 

M2_ 3 I d3pp2n(E(P))=4T z ~ K3(e) (14) 
4 ~d3pn(E(p)) K2(00" 

In the ultrarelativistic case where e--*0 we obtain the 
conventional result M~4T. When T~T~, and e--oe we 
have M z ,,~ 4T2cc This means that the coupling constant ~ 
remains small even when the temperature is close to T~. 
This lucky fact has been met already in the so-called 
cut-off model [14, 15] that interprets the Monte-Carlo 
data as well as the present model does. It can be explained 
by the fact that both models take the contribution of long 
wavelength excitations away. 

2z(2~0 -4 ed 2 (1 +na) i 
F(p) = 1 9 2 ~ ( p ) )  j Pa ~ 1, (15) 

where 

11 = 2/~f1-1 y dy e x p ( -  fl~2) O (z o (y) - 1)O (Z o (y) + 1), 

K 2 - - ~ 2  +2f2y 
z o ( y )  = 

2 K ~  " ~ / y  "~g  

(16) 

where 

f2 = x / ~  + rn~ + p x / ~ g  2 (17) 

and K = 4 p  2 + p 2 + 2pp i COS (0), 0 being the angle between 
p and Pa. Here we need to solve the inequality 

- 1 ~ z o ( y )  ~ 1, (18)  

It leads us to 

t2 KA / 4m 2 
y_<_y<_y+; y+=~- _ ~ - ;  A = ~ /  1 Q2 K2, (19) 

with the values of Q and K satisfying the inequality 

f21 -- K z > 4m02. (20) 

After analysis of (19) and (20) we obtain for (15) 

2z(2z)-3 S dx xz[1 + e x p ( - - ~ ) ]  
F(P)=f12192E(p) o e x p ( - x / ~ + ~ 2 ) ~ a  2 

x i dO sin(O)KA. 
o 

(21) 
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In order to get an approximate analytical form we can 
calculate the angular integral in (21) for the p = 0  case. 
This gives a minimal value for the damping rate and 
a maximum one for the kinetic coefficients. Here we also 
take into account that the main contribution in (8)-(10) is 
connected with long wavelength excitations. Thus, in this 
approximation the damping rate looks as 

,~2(2/I:)-3 fl 2 ~ dz(z--~)4 z~-~2(e-~+e-2~)" (22) 
F(p) 96E(p) 

It is evident that the momentum dependence is very 
simple in this equation. This allows us to represent the 
integral I~,, from (10) in the following form 

T2("-")- 2 

I , , , ,= 2~rZ~(T) J . . . .  (23) 

with 

d~, dzz2-2"(z2-e2)~[exp(-z)+exp(-2z)].  (24) 

After integration we obtain, for some specific cases 

J2,1 = ~ [(200 3 K3 (~ + (x3 K3 (2~)], (25) 

3 5 oc 
J , , o =  30~ [gKs(200+5Ks(00+~Kz(2a)+0:K2(o: )j, (26) 

, 2 [ a  15 27 
Jo - 1 = ~ [~0K2(~ +'~- KE(2e) + 27~K1 (~) + ~ - K I  (2~) 

0~ 3 
2 3 2 3 +~_K1 (2c0]. +6c~ K o ( c 0 + ~  Ko(2C0+a KI(~) 

(27) 

The result for the damping increment can be written as 

F(T)=E(p)T2r(p) 

~ 2 ~ - 3  

- 329 ~2( T)[2KE(~)-2K~(~ 

(28) 

For the calculation of the bulk viscosity we also need to 
know the expression for the velocity of sound. With the 
help of (6) and (7) we obtain 

1 
2 (29) C s 

3+A '  

with 

4KI (~) + T ~ [Ke(~)-- 2Ko(~)] 
A =~ (30) 

4K2 (a)- T ~ K1 (~) 

Here we see that, for c~ small, A ,-~ ~, and the sound velocity, 
cs vanishes. In the c ~ 0  case (29) gives the value ofc 2 = 1/3, 
A ~ 0  (see Fig. 2). 

Equation (24-28) together with (8, 9, 10, 12-14) deter- 
mine the temperature dependence of the KC of the gluon 
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Fig. 2. Dependence of the speed of sound on the temperature 
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Fig. 5. Entropy generation as a function of proper time 

gas. The asymptotic behaviour c ~ 0  gives an over-esti- 
mate, in analogy with [11], (see comment below (21)). 
The temperature dependences of the KC are presented 
in Fig. 3. It is evident that the KC increase considerably 
in the temperature region close to T~. This leads to a 
large deviation of the solution of (1) from the scaling one, 
and to a critical delay for the evolution of the system near 
T~. This is clearly seen in Fig. 4, the full line takes 
into account the dissipative terms while the dashed line 
does not. 

The rate of entropy production as a function of proper 
time is depicted in Fig. 5. It is evident that the entropy 
increases rapidly. Analogous calculations for entropy pro- 
duction rate based on the Ta-dependency of KC leads to 
a 20 per cent increase in the cooling process of the gluon 
gas. 

The authors are aware of the fact that the obtained 
results are model dependent. The increase of the kinetic 
coefficients makes the application of linear hydrodynam- 
ics for the description of quark gluon gas questionable. 
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Evidently,  t ak ing  into  account  o ther  diss ipat ive mechan-  
isms will lead  to finite values for the K C  and  d iminish  
somehow the en t ropy  produc t ion .  However  the results 
ob ta ined  indicate  tha t  a realist ic pic ture  of the evolu t ion  
of  the system under  cons idera t ion  can differ a lot  from the 
scaling one, especial ly in the phase  t rans i t ion  region. 
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