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Abstract. Stochastic differential equations are investig- 
ated which reduce in the deterministic limit to the canoni- 
cal equations of motion of a Hamiltonian system with one 
degree of freedom. For  example, stochastic differential 
equations of this type describe synchrotron oscillations of 
particles in storage rings under the influence of external 
fluctuating electromagnetic fields. In the first part of the 
article new numerical integration algorithms are proposed 
which take into account the symplectic structure of the 
deterministic Hamiltonian system. It is demonstrated that 
in the case of small white noise the algorithm is more 
efficient than conventional schemes for the integration of 
stochastic differential equations. In the second part the 
algorithms are applied to synchrotron oscillations. Ana- 
lytical approximations for the expectation value of the 
squared longitudinal phase difference between the particle 
and the reference particle on the design orbit are derived. 
These approximations are tested by comparison with nu- 
merical results which are obtained by use of the symplectic 
integration algorithms. 

1 Introduction 

In this article we propose new algorithms for the numer- 
ical integration of a set of two stochastic differential equa- 
tions which reduce in the deterministic limit to the canoni- 
cal equations of motion of an autonomous Hamiltonian 
system with one degree of freedom. Equations of this type 
arise when synchrotron oscillations of a particle in a stor- 
age ring are investigated [1, 2]. Under the influence of 
fluctuating electromagnetic fields a particle performs 
stochastically perturbed oscillations with respect to a ref- 
erence particle which travels with fixed energy along the 
design orbit of the accelerator. The oscillations in the 
plane transverse to the design orbit are called betatron 
oscillations; the energy or phase oscillations with respect 
to the reference particle are referred to as synchrotron 
oscillations. To a first approximation the coupling be- 
tween these oscillatory degrees of freedom is negligible 

and the equations of motion governing synchrotron oscil- 
lations can be written as canonical equations of motion of 
an autonomous Hamiltonian function with one degree of 
freedom driven by random forces [3, 4, 5]. 

Let us consider the following set of stochastic differen- 
tial equations 

p(t) = F (x) + tr(x) ~(t), 

=p(t)). 
m 

F(x) %f- x V(x), 

(1) 

The variables p and x denote momentum and position of 
a particle with mass m. Random forces are described by 
the stochastic process ~(t) which is assumed to be either 
a Gaussian colored or white noise process. The function 
a(x) specifies the influence of the random forces on the 
motion of the particle. In the deterministic limit a = 0 the 
differential equations (1) reduce to a set of canonical 
equations of motion. Note that there is no 
Ito-Stratonovich interpretation problem [6, 7] since we 
assume that a(x) does not depend on momentum p and, 
therefore, both kinds of interpretation are equivalent. 

Given these equations, expectation values 
(M(p,  x))(t) of a function M(p, x) are of interest. For  
example when investigating synchrotron oscillations the 
second moment (x2)(t)  represents the mean of the 
squared longitudinal phase difference of particles with 
respect to the reference particle on the design orbit. Since 
these expectation values can be calculated analytically 
only in very few cases, numerical methods are required. 
The usual approach is as follows [8, 9]. An ensemble of 
approximate solutions of the set of stochastic differential 
equations is generated by use of an appropriate numerical 
integration algorithm; then the expectation value 
(M(p, x))(t) is estimated as an ensemble average. 

In this paper we suggest new algorithms for the nu- 
merical integration of system (1) in the case of Gaussian 
colored and white noise ~(t). Provided the influence of 
noise on the macroscopic variables p and x is small they 
allow a more efficient estimation of the expectation values 
(M(p,x))( t )  than conventional algorithms, e.g., the 
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stochastic Heun method [8, 9]. Our algorithms are parti- 
cularly well suited to the numerical integration of system 
(1) because in the deterministic limit a = 0  they become 
identical with symplectic integration algorithms. Conven- 
tional stochastic integration algorithms lack this property. 
In the case of a Gaussian white noise process ~(t) we 
demonstrate the efficiency of our algorithm. 

As an example we study synchrotron oscillations 
which may be described by the following equations of 
motion [3, 4] 

ib(t) =- -  (1)2 sin(x) + a(x) ~(t), 

2(t)=p. 

In this context p is proportional to the energy deviation of 
the particle from the reference particle travelling on the 
design orbit; x measures the longitudinal phase difference 
of both particles. We consider phase noise (a(x)=), cos(x)) 
and amplitude noise (a(x)=), sin(x)) with Gaussian white 
and colored noise processes ~(t). In accelerator physics the 
growth of the moment (x2)(t) with time and its depend- 
ence on statistical properties of the noise term a(x)~(t) is 
of interest. In order to obtain a general view of the behavi- 
our of (x 2) (t) this moment is determined analytically for 
an ensemble of harmonic oscillators driven by random 
forces. This approximation is expected to yield acceptable 
results for smalll values of x which is the typical situation 
in accelerator physics since small values of x correspond 
to small deviations of the particle from the reference 
particle. In order to demonstrate the validity of our ana- 
lytical approximations we estimate (x2)(t) by use of our 
symplectic algorithms and compare these results with the 
analytical approximations. 

This paper is divided into five sections. Section 2 con- 
tains a brief review of symplectic algorithms for the nu- 
merical integration of the canonical equations of motion 
of a deterministic Hamiltonian function with one degree 
of freedom. In Sect. 3 these algorithms are generalized to 
allow the integration of canonical equations of motion 
with Gaussian white or colored noise terms. We restrict 
ourselves to stochastic differential equations which reduce 
in the deterministic limit to the canonical equations of an 
autonomous Hamiltonian system with one degree of free- 
dom. In the white noise case, an example demonstrates the 
efficiency of our algorithm. Section 4 is devoted to the 
study of synchrotron oscillations. For Gaussian white and 
colored noise we evaluate approximations of the moment 
(x2)(t) and examine their validity by comparing with 
numerical estimations obtained with our algorithms. Sec- 
tion 5 contains a summary and a discussion of the results 
of the article. 

2 Symplectic integration of deterministic canonical 
equations of motion 

Difference schemes such as the well-known Runge-Kutta 
algorithms [113] are frequently used for the numerical 
integration of deterministic Hamiltonian equations of 
motion. These algorithms do not take into account the 
fact that the phase flow of the corresponding canonical 
equations of motion is a symplectic map. Therefore, some 

authors (e.g. [11-13]) proposed symplectic algorithms 
which are well suited for the integration of these equa- 
tions. In this section, we briefly summarize some facts 
concerning the symplectic integration of deterministic 
one-dimensional Hamiltonian systems. 

Let us consider a Hamilton function H(p, x) and the 
corresponding canonical equations 

c~H 2(t) = OH 
ax' 7 p  (2) 

Given initial values (pO x o) at time t =0  the state of the 
system (p(t), x(t)) is uniquely determined. If we introduce 
the phase flow f~} corresponding to Hamilton's function 
H(p, x) we may write 

t pO 
(P(t))=f~(x~ 

The phase flowf~} is a symplectic map which means in our 
case that the determinant of the corresponding Jacobi 
matrix Df~ is equal to one: 

det ( D f ~ ) =  1. (3) 

In order to solve numerically the system of differential 
equations (2) one proceeds as follows. We choose a small 
time step h and replace the exact phase flow f~ by an 
approximation f~. Then the recursion formula 

( /~h(k + 1) \ -a (fib(k) ~ . . . .  d~f o d~f 
_ ) =f~ \ ~h(k)/l' PhtUJ -= p ' xh(O) = x~ 2h(k + 1) 

is iterated. Supposing ~) is a good approximation of 
f~ then the quantities fib(k), xh(k) are good approximations 
of the state of the system p(t = kh), x(t= kh). 

Given a system of differential equations, an algorithm 
for its numerical solution yields an approximate phase 
flowf~. One expects an algorithm to be best suited for the 
approximation of Hamiltonian systems (2) if the approx- 
imationf~ is a symplectic map which obeys condition (3). 
These algorithms are referred to as symplectic algorithms. 
As mentioned above common integration schemes lack 
this property [12]. 

These considerations can be generalized to yield sym- 
plectic algorithms for the numerical integration of the 
canonical equations of motion of a time-dependent 
Hamiltonian function with several degrees of freedom. 
Efficient symplectic algorithms for a Hamilton function 
H(p, x, t) = T(p) + V(x, t) with kinetic energy T(p) and po- 
tential energy V(x, t) are investigated in reference [12]. 
Restricting ourselves to time-dependent Hamiltonian 
functions H(p, x, t)= T(p)+ V(x, t) with one degree of free- 
dom we introduce the force F(x, t)=-c~V/~x and the 
derivative of the kinetic energy P(p)= ~T/@. Then an n-th 
order scheme for an integration from time to=kh to 
t=(k+l )h  is given by the following recursion formula 
which must be iterated from i=  1 to i=  n: 

P h ( k + ~ ) = P h ( k + i - @ n l ) + b , h F ( 2 h ( k + i @ ) , t , - ~ ) ,  

ti = tl- 1 + aih. (4) 



The leapfrog algorithm is obtained by choosing n = 2. In 
this case the coefficients al, bi are [12] 

a l = a 2 = � 8 9  b l=0 ,  b2=l ,  

whereas in the case of the fourth order algorithm these 
coefficients are [12] 

al=a4=~(2 + 21/a + 2-U3), a2=aa=i6(1--2i/a--2-i/a), 

b i=0 ,  bE=b4=(2-2i/3) -1, ba=(1-22/a)  -1 

We will employ the second order leapfrog algorithm when 
Hamiltonian systems driven by white noise forces are 
investigated. The fourth order algorithm will form the 
basis for the integration of Hamiltonian systems under the 
influence of colored noise. 
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~h(k) of individual trajectories ~h(t = kh) are generated by 
iteration of the recursion formula 

"~h(k -I- 1) = ~a(k) exp (-~h) + tr v/hr/(k) 

where the symbol t/(k) denotes a sequence of equally 
distributed random numbers with zero mean and vari- 
ance 1. 

Thus, defining a time-dependent force F(x, t) as the 
sum of the deterministic force F(x) and the stochastic 
contribution o-(x) ~(t) 

F(x, t) = F (x) + a(x) ~(t), 

we can use the fourth order algorithm of Sect. 2 to obtain 
a realization of the stochastic differential equation (1) in 
the case of colored noise ~(t). 

3 Integration of canonical equations with noise 

This section deals with algorithms for the numerical integ- 
ration of the system of stochastic differential equations (1). 
The stochastic term ~(t) is assumed to be either a standard 
Gaussian white noise process with the expectation values 

(~( t ) )=0,  and (~(t)~(t '))=6(t-t ') ,  

or a Gaussian colored noise process. In this paper, for 
Gaussian colored noise we always use the Ornstein-Uh- 
lenbeck process [7] obeying 

1s 
(~(t))=O, and (~( t )~( t ' ) )=~exp(-~l t - t ' [ ) .  

The Ornstein-Uhlenbeck process is characterized by 
a correlation factor ~c; its reciprocal 1/~: is the correlation 
time. In the limit ~c~ oo the Ornstein-Uhlenbeck process 
becomes identical with Gaussian white noise. 

The essential difference between Gaussian white noise 
and the Ornstein-Uhlenbeck process is that realizations 
of Gaussian white noise are discontinuous at ach time 
t while those of the Ornstein-Uhlenbeck process are con- 
tinuous functions [-7]. Therefore, the deterministic integ- 
ration schemes of the previous section are easily generaliz- 
ed to cope with colored noise; for white noise the general- 
ization turns out to be more complicated. 

3.1 Colored noise 

Since realizations of colored noise are continuous func- 
tions the fourth order symplectic algorithm (4) is appro- 
priate for the integration of the stochastic system (1) 
provided that trajectories ~(t) of the Ornstein-Uhlenbeck 
process can be generated. This can easily be done by use of 
the following stochastic differential equation [7] 

~(t) = -  ~ ( t )  + ~ ( t ) ,  

~(t) standard Gaussian white noise, (5) 

where the initial value 4(0) is chosen as Gaussian random 
number with (4 (0 ) )=0  and (~(0) 2 ) = to/2. With the help 
of the stochastic Euler-algorithm [8, 9] approximations 

3.2 The stochastic leapfrog algorithm for white noise 

For the sake of clarity we will omit lengthy calculations at 
this point; in Appendix A we give a proof that the follow- 
ing algorithm is suited for the approximation of system (1) 
in the case of Gaussian white noise. The recursion formula 
reads 

fih(k+l)']=(fih(k) ) + h (  F(z(k)) "] 
2h(kd- 1) J \Xh(k) \fih(k)/m+hF(z(k))/(2m)J 

+a(2h(k))tl(k) ( x/~ 
ha/2 /(mx//3 ) ) 

where we have introduced the abbreviation 

(6) 

z(k) de__f 2h(k) + h ~h(k). 
2m 

q(k) denotes a sequence of random numbers with the 
moments 

( , (k ) )  = ( ,(k)  3) = ( , ( k ) ' )  =0. 

( , ( k ) 2 ) =  1. ( , ( k ) 4 ) =  3. 

This can be achieved by choosing Gaussian random num- 
bers as well as using 

4%/ /~x /~($(k) -0 .25) ,  if ~9(k)<0.5, 

q(k)=(4x/ /~_w/~($(k)_0.75)  ' if 8(k)>_0.5, (7) 

where 8(k) are equally distributed random numbers in 
[0, 1]. The generation of a sequence q(k) according to this 
definition is much faster than the generation of Gaussian 
random numbers; thus the CPU-time required for the 
iteration of recursion formula (6) is reduced. 

In Appendix A it is shown that the difference between 
the exact expectation value Jg(t) and its estimation ,[/lh(t) 
obeys 

(9(h), if a(x) is a function of x,  
~/[h(t)--~/[(t)= ~(9(h2), if a is constant, (8) 

where h denotes the time step and (9(h m) represents terms 
of order h m. 
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In the deterministic limit a = 0  the recursion formula 
(6) takes the form 

ph(k+l) 'x / fih(k)'~ h / F(x(k)) "~ 

This recursion formula is easily seen to be equivalent to 
that of the deterministic leapfrog algorithm (4). Therefore 
we designate recursion formula (6) as stochastic leapfrog 
algorithm. In the deterministic limit it is symplectic as its 
Jacobi matrix 

i)[hn= ( 1 +h2F'(z(k))/(2m) hF'(z(k)) 
\ him + haF'(z(k))/(4m 2) 1 + hZF'(x(k))/(2m) J 

fulfills the condition det (Df#)= 1 of a symplectic flow. 

3.3 Comparison of Heun's method with the stochastic 
leapfrog algorithm 

In order to illustrate the efficiency of the stochastic leap- 
frog algorithm we estimate the energy expectation value of 
a Hamiltonian system driven by Gaussian white noise 
with the stochastic leapfrog algorithm and Heun's 
method. Heun's method is a standard algorithm for the 
numerical integration of stochastic differential equations 
which is described in detail elsewhere (see, e.g. [8, 9]). In 
this subsection we treat system (1) when a is constant. By 
use of the corresponding Fokker-Planck equation we 
show in Appendix B that in this case the energy expecta- 
tion value g( t )=  <p2/2m + V(x)> can be evaluated analyti- 
cally. We obtain (see (26)) 

g (t) = ~ + a2 
V ( x ~  + 2 m  t . (9) 

As is to be expected in the deterministic limit a =0  the 
energy is constant. However, under the influence of Gaus- 
sian white noise the energy increases linearly with time. At 
a first glance the growth of energy may be surprising but it 
simply reflects the fact that the Fokker-Planck equation 
does not converge to a stationary solution because there is 
no damping force in the underlying system of stochastic 
differential equations [14]. Furthermore, the energy 
growth is independent of the potential V(x). 

Now we estimate numerically the energy expectation 
value of an ensemble of particles with potential energy 
V(x) = 7x 4 under the influence of Gaussian white noise: 

ib(t) = -- 47x (t) 3 + a~ (t), 

p(t) 
~ ( t ) -  . (lO) 

mp 

In this example mp is the proton mass. We choose initial 
values p ~  and x ~  10/ where l denotes the unit of 
length. The constants a and ~ are 7= 1 mf1-2s -2 and 
g = 2rap I s-  a/2. Then a period of oscillation takes approx- 
imately the time T =  0.37 s. From time t = 0 to t = 20 s we 
generated N=80000 approximate solutions for several 
values of the time step h with both Heun's method and the 
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Fig. 1. The energy expectation value g(t) of system (10) at time 
t=20s is estimated with different values of the time step h. Para- 
meters are 7=lmp1-2 s -2, a=2mfls -3/2, x(0)= 10l, p(0)=0. The 
triangles and squares represent estimations obtained by Heun's 
method and the stochastic leapfrog algorithm respectively. The full 
line shows the analytical result (9) which is o~(t=20s)= 
lO040mfl 2 s -2 

stochastic leapfrog algorithm (6). From these solutions we 
estimated the energy expectation value 8(t  = 20 s) and its 
standard error. The results are shown in Fig. 1: The 
triangles represent estimations by Heun's method, the 
squares show estimations obtained by the stochastic leap- 
frog algorithm (6). The continuous line is the analytical 
energy expectation value 8 ( t = 2 0  s)=10040 rnpl 2 s -2 
given by (9). The energy expectation value can be correctly 
estimated with both Heun's method and the stochastic 
leapfrog algorithm if the time step h is small. 

As one can see from Fig. 1 already for a time step 
h=0.00175 s the exact value o~(t=20s) lies within the 
error bars of the estimated energy expectation value when 
the stochastic leapfrog algorithm is employed. In order to 
obtain an estimation with Heun's method which is of the 
same accuracy one is forced to use the smaller time step 
h = 0.0006 s. This is the reason for the efficiency of the 
stochastic leapfrog algorithm. Using the same time step h, 
the generation of trajectories with both algorithms re- 
quires the same CPU-time. Since the CPU-time is inver- 
sely proportional to the time step h, we expect that in our 
example the estimation with the stochastic leapfrog algo- 
rithm using h=0.00175 s takes only about a third of the 
CPU-time required by Heun's method using h = 0.0006 s. 
Indeed, the estimation of the energy expectation value 
with the leapfrog algorithm using h=0.00175s took 121 
minutes CPU-time on an IBM Risc 6000/320 workstation 
whereas the estimation with Heun's method and 
h=0.0006 s required 352 minutes CPU-time on the same 
machine. 

Our example shows that the stochastic leapfrog algo- 
rithm is more efficient than the stochastic Heun method. 
Since (8) which describes the convergence of estimations 
~'n(t) obtained with the stochastic leapfrog algorithm 
is also valid for Heun's method [8, 9] both methods 
are of the same order. Therefore, the efficiency of the 
stochastic leapfrog algorithm is due to the fact that in 
the deterministic limit the approximate phase flow is 
a symplectic map. 



4 Synchrotron oscillations 

In this section we study synchrotron oscillations in par- 
ticle storage rings which can be described by a stochasti- 
cally perturbed Hamiltonian function of a pendulum [3] 

p2 
H(p, x, t) = ~---  co 2 (1 + ),a Ca(t)) COS (x) 

+ o~ 2 sin(x) J, ph ~eh(t). 

The stochastic terms 2a~a(t) and ,~ph~Ph(t) a r e  called am- 
plitude noise and phase noise respectively. The dimen- 
sionless variable x denotes the longitudinal phase differ- 
ence between the particle and the reference particle on the 
design orbit, p is measured in units of s-  x and is propor- 
ional to the energy deviation of the particle from the 
reference particle. 

In the case of pure phase noise (2 a = 0) the equations of 
motion are 

[~(O=--092sin(x)--~ph~O2COS(X)~ph(t), ~( t )=p ,  (11) 

whereas for pure amplitude noise (2ph = 0) we obtain 

[~(t)=--co2sin(x)--2ao92sin(x)~a(t), ~(t)=p.  (12) 

In the remainder of this paper we are concerned with the 
behaviour of the expectation value (x2)(t) in the case of 
colored and white phase and amplitude noise. Since the 
numerical estimation of the moment (x  2) (t) requires typi- 
cally more than one day of CPU-time we would like to 
have analytical approximations which enable us to obtain 
quickly a general view of the dependence of (x2)(t) on 
statistical properties of the stochastic terms 2a~a(t) and 
/~Ph ~ph(t) �9 We evaluate analytically the moment (x 2) (t) for 
an ensemble of stochastically driven harmonic oscillators. 
This approximation is expected to yield acceptable results 
for small vlaues of x, i.e., small deviations of the particle 
from the reference particle which is the typical situation in 
accelerator physics. We examine the range of validity of 
our approximation by comparison with numerical estima- 
tions of (x  2) (t). 

4.1 Synchrotron oscillations driven by white noise 

4.1.1 White phase noise. We develop an analytical ap- 
proximation of (x2)(t)  in the case of small white phase 
noise. For this purpose the equations of motion (11) are 
linearized around (p, x)=(0, 0). Then the system under 
consideration is a harmonic oscillator driven by Gaussian 
white noise; in full analogy to the calculation of the energy 
expectation value in Appendix B we obtain 

p2 0712 (DO)2 .2  2 4- 
g(t) d_-ef ( ~ - + y  X 2 ) (t) =-~--{- 2 (X0) 2 J t -~  ~-  t. 

Choosing initial values pO= xO= 0 the virial theorem [15] 
ensures that the expectation value (co 2 X2/2)(t) is equal to 
07(0/2. Thus we can write 

~2 .2 
(x2)(t)  = ~  - t. (13) 
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Fig. 2. The moment (xZ)(t) in the case of white phase noise. The 
error bars are estimations from N= 10000 approximate solutions 
obtained with the stochastic leapfrog algorithm. Parameters are 
~o=40ns -~, 2ph=10 -4 S ~/2, time step h=l/6000s, initial values 
x(0) = p(0)--0. The continuous line represents the analytical approx- 
imation (13) 

The approximation of the moment (x  2) (t) grows linearly 
with time. In Fig. 2, the full line represents the approxima- 
tion for the set of parameters m = 4 0 n s -  ~ and 
2eh= 10 -4 sa/2. 

To examine the validity of the above approximation 
we estimate numerically the moment (x2)(t) with 
the stochastic leapfrog algorithm from time t - -0  to 
time t = 250 s which corresponds to about 5000 periods 
of oscillation and to the root-mean-square of the 
phase difference ( X 2 ~  1/2 ~0.14. To that end we generated 
N = 10000 solutions of the stochastic differential equation 
(11) with the time step h=1/6000 s. This took about 
46 hours CPU-time on an IBM Rise 6000/320 worksta- 
tion. The error bars of Fig. 2 show our numerical 
results which confirm the validity of the aproximation 
(13). 

4.1.2 White amplitude noise. In order to obtain an ana- 
lytical approximation of (x2)( t)  in the case of white am- 
plitude noise, we evaluate this moment for an ensemble of 
harmonic oscillators driven by white noise forces by sub- 
stituting x for sin(x) in (12). Analogous to the procedure 
outlined in Appendix B, a set of linear ordinary differential 
equations for the quantities (x  2) (t), (px) (t) and @2)  (t) 
can be derived from the corresponding Fokker-Planck 
equation. Setting (px)(O)~ O, solving this system of ordi- 
nary differential equations in a straightforward way and 
performing a Taylor expansion around 2A = 0 we find up 
to terms of 22 

(x2)(t)=l((x2)(O)4 (P2)(O)'~exp(zt)o) 2 ] 

1 (p2)(0) +~ ((x2)(0) c~ z )exp(-~t)cos(vt)  

+ 0 ( 2  2 )exp - ~  t sin(vt), (14) 
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4 }1/3 0.0004 
z =  x/640)6 + 27240)s + 220) 4 

{4J _ 640)6 + 2724 cos _ 22 0)4 
--x 

1 2 2 6 A 0.0002 

*V/3 { 4 J640)6 + 27) 40)s + 22a0)4 }1/3 v=~-- 

= 20) + (9( ,~) .  

The approx imat ion  (x2)(t) undergoes a damped  fast os- 
cillation a round  an exponential ly growing term. Since the 
term propor t iona l  to sin (vt) is small we neglect it in the 
following. 

In order  to check the above approx imat ion  numer-  
ically we choose the paramete rs  0 ) = 4 0 n s  -~ and 
2 A = 1 0 - a s  1/1. The  equat ions of mot ion  (12) have the 
solution p - x - 0  which is s ta t ionary  even in the presence 
of noise. Therefore,  we choose the initial values pO= 0 and 
x ~ as a Gauss ian  r a n d o m  variable with zero mean  and o.ooo8 
variance 10-4. The  dashed lines of Fig. 3 show the envel- 
ope of the approx imat ion  of (x  2) (t) and the intermediate  
line represents the exponential ly growing term. In Fig. 0.o0o6 
4 the full line represents the approx imat ion  ( x  2) (t) where 
the initial values (x ~ pO) are chosen in such a way that  the c^ 
fast oscillating te rm vanishes: x ~ and pO are Gauss ian  ~ 0.0004 
r a n d o m  numbers  with zero mean and variances 
( x  2) (0) = 10 -4  and @ 2 )  (0) = 10 - 40)2. 

0.0002 
For  a compar i son  with numerical  results we integrated 

system (12) using the stochastic leapfrog algori thm; the 
error  bars of Figs. 3 and 4 represent  numerical  est imations 0.00o0 
of (x2)( t ) .  The generat ion of N =  10000 solutions with 
t ime step h-= 1/6000 s took  45 hours  of  CPU- t ime  for each 
figure. In Fig. 3, the m o m e n t  (x2 ) ( t )  seems to be oscillat- 
ing with low frequency. In fact, when (x2) ( t )  is plot ted at 
t ime t = At, 2At, . . .  with At much smaller than  the per iod 
2rc/0), one notes that  (x2 ) ( t )  oscillates rapidly with an 
approx imate  frequency 0)/n which is expected even in the 
deterministic limit. The apparen t  slow oscillation in Fig. 
3 is caused by interference of the fast frequency of ( x  2) (t) 
and the resolution time At = 2.5025 s between neighbour-  
ing error  bars. 

In bo th  Figs. 3 and 4, numerical  est imations and the 
analytical  approx imat ion  of (X 2) (t) agree well f rom time 
t = 0  to t ime t ~ 1 5 0 s  which corresponds  to abou t  3000 
periods of oscillation of the particle and a roo t -mean-  
square of the phase  difference (x2)1 /2~0 .013  in Fig. 3 
and ( x 2 ) U 2 ~ 0 . 0 1 8  in Fig. 4. Fo r  1 5 0 s < t < 2 5 0 s  the 
approx imat ion  (14) differs slightly from the numerical  
estimation. 

4.2 Synchrotron oscillations driven by colored noise 

4.2.1 Colored phase noise. In  the case of colored noise 
one obtains  an analytical approx ima t ion  of (x2) ( t )  
provided that  system (11) is linearized in x, i.e., ( x  2) (t) is 

/ 

50 1 O0 150 200 
time t [s] 

250 

Fig. 3. The moment (x2)(t) in the case of white amplitude noise. 
The error bars are estimations from N =  10000 approximate solu- 
tions obtained with the stochastic leapfrog algorithm. Parameters 
are o~=40n s -1, 2a= 10 -a s u2, time step h= 1/6000 s and p(0)=0. 
x(0) is a Gaussian random number with zero mean and variance 
10-*. The upper and lower curves represent the envelope of the 
analytical expression (14). The middle line shows the exponentially 
growing term of the analytic aproximation 

. . . . . . . . . . . . . . . . . . . . . . .  +t' 

50 1 O0 150 200 250 
time t [s] 

Fig. 4. The same as Fig. 3, except for the momentum initial value 
p(0) which is now a Gaussian random number with zero mean and 
variance 10-*to 2. The continuous line represents the analytical 
approximation (14) 

evaluated for an ensemble of harmonic  oscillators driven by 
colored noise. Together  with (5) for colored noise ~ph(t), 
these stochastic differential equations are equivalent 
to a F o k k e r - P l a n c k  equation governing the probabil i ty 
density w(p, x, ~Ph, t) of the r andom variables p(t), x(t) and 
~ph(t). Provided that  p(0) = x(0) = 0 and ~Ph (0) is a Gaussian 
r andom variable with zero mean variance/s a calculation 
analogous to the one presented in Appendix B yields 

/s 0)2 [e- , , ( /s  0)2) cos(0)t) (X 2) (t) = 2 (/s + 0)2)2 

- 2e -  ~' 0)k sin (cot) + co2 --/s ] + 
1 A2h0)2 K 2 

- - t  2 /s 

~ _ ~  2 ~ 0 )  2 
, ~ - -  t. ( 15 )  

The oscillating terms are strongly damped  and vanish 
after a short  t ime t. Since for x ~  ~ colored noise becomes 
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Fig. 5. The moment <x 2> (t) in the case of colored phase noise. The 
error bars are estimations from N= 10000 approximate solutions 
obtained with the algorithm given in Sect. 3.1. Parameters are 
~o=40n s-1, x=200 s-1, 2p h = 10-4 sU2, time step h= 1/1600 s, in- 
itial values x(0)=p(0)=0. The continuous line represents the ana- 
lytical approximation (15) 

Gaussian white noise, in this limit <x 2> (t) converges to the 
result (13) as expected. 

To check the validity of this approximation we integ- 
rated system (11) numerically with the algorithm for 
colored noise of Sect. 3.1. We choose the parameters 
09 = 40ns-  t, x = 200s-  1, /~Ph = 10-4 $ 1 / 2 ,  X ( 0 )  = 0 ,  p ( 0 )  = 0 ,  

time step h =  1/1600s and generated N =  10000 solutions 
which required 45 hours CPU-time. The error bars of 
Fig. 5 represent the numerical estimations of the moment  
(x2>(t) and the full line shows the approximation (15). 
The numerical results and the approximation agree from 
time t = 0  to t ~ 1 8 0 s  which corresponds to about 3600 
periods of oscillation and a root-mean-square of the phase 
difference < X 2 >  1 /2  ~0.1. 

In the deterministic limit / l a=0  we know that ((X2))(t) 
depends only on the initial values: 

<x2>(0) <p2>(o) 
<<x2>>(t)= 2 k 209~ 

Under the assumption that during the first period the 
influence of the noise is negligible we may write 

(x2>(0) + - -  exp(zt). (16) (( x2)>(t)= ~ 209 2 

In the limit x ~ o o  we obtain 

r--*oo) _1 , 2 3 2  
T 2 w ~ A ,  

and our result (16) becomes identical with the exponenti- 
ally growing term of (x2>(t) for white amplitude 
noise (14). 

We test the validity of approximation (16) by compari-  
son with numerical estimations of <x 2> (t) which belong to 
system (12) with colored amplitude noise {A(t), The es- 
timation was carried out with the methods of Sect. 2 for 
the parameters 09=40r~ s -1, x = 2 0 0  s -1, 2A=10 -3 S 1/2, 
time step h = 1/1600 s and N = 10000. We assumed x(0) to 
be a Gaussian random variable with zero mean and vari- 
ance 10 -4. The error bars of Fig. 6 show the results when 
p(0)=0; the error bars of Fig. 7 are obtained when p(0) is 
Gaussian with zero mean and variance 10-409 2. The es- 
timation of <xZ>(t) took 40 and 72 hours of CPU-t ime 
respectively. In each figure the full line represents the 
approximation (16). 

As in the case of white amplitude noise Fig. 6 exhibits 
a damped oscillation of <x2>(t) which turns out to be of 
approximate frequency 09/rc when plotted with higher 
resolution. In Fig. 6, numerical values agree with the 
approximation (16) until t ~ 3 5 0  s which is equivalent to 

4.2.2 Colored amplitude no&e. Finally we want to derive 
an analytical approximation of the moment  (x  2> (t) in the 
case of colored amplitude noise. For this purpose we again 
linearize the x-dependence in (12). By use of the stochastic 
differential equation (5) for colored noise {a(t) we set up the 
equivalent Fokker-Planck equation. Unfortunately, the 
calculation of (x  2> (t) analogous to Appendix B leads to an 
infinite set of ordinary differential equations. However, 
truncating this system of moment  equations by setting 
(px~2>=0,  one derives a closed set of seven ordinary 
differential equations for the quantities (x2>(t), <px>(t), 
<X2~A)(t), <p2)(t), <pX~A)(t), <X2~2)(t) and <p2~a)(t ). 
The analytical solution of this system requires the invest- 
igation of the eigensystem of a 7 x 7 matrix. When approx- 
imations of the eigenvalues for small values of 2A are 
analysed it can be shown that the moment  <x2> (t) oscillates 
with approximate frequency 09/rc around an exponentially 
growing term. Restricting ourselves to the nonoscillating 
part of <X2>(t) which we denote by ((x2))(t), we obtain 

((x2))(t)=cexp(zt), 

where c is constant and z is given by 

2 .0x10  - 4  

1 .5x10  4 

A 
~V ~ l.OxlO -4 

0 , , , l l r l . ~  . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i , , , ,  
0 1 O0 200 300 400 

t i m e  t [s]  

Fig. 6. The moment <x 2> (t) in the case of colored amplitude noise. 
The error bars are estimations from N= 10000 approximate solu- 
tions obtained with the algorithm given in section 3.1. Parameters 
are co = 40= s-*, x = 200 s-*, 2 A = 10-3 sU2, time step h = 1/1600 s 
and p(0)= 0. x(0) is a Gaussian random number with zero mean and 
variance 10-4. The continuous line represents the analytical approx- 
imation (16) 

~09222 -- ~c 2 _ 409 2 + N/K20)4/~ 4 -~- 3/r 2 -- 4~c0942 ] + K 4 + 8K2(.02 + 1609 4 

z---- K 4092 4- 5/r 2 
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2.0x10 -4  

/x 

1.5x10_4 

1"0 x 10-4 ~l~'- t 

0 1 O0 150 200 250 
t i m e  t [s]  

Fig. 7. The same as Fig. 6 except for the momentum initial value p(0) 
which is now a Gaussian random number with zero mean and 
variance 10-4w 2 

7000 periods of oscillation and a root-mean-square of the 
phase difference (x2)1/2~0.012. In Fig. 7, deviations of 
numerical values from the approximation appear for 
t >  150s which corresponds to 3000 periods and a root- 
mean-square of the phase difference (x2)  1/z ~0.013. 

5 Summary 

In this article stochastic differential equations are investig- 
ated which reduce in the deterministic limit to an auto- 
nomous Hamiltonian system with one degree of freedom. 
Although these systems are simply described by a set of 
two stochastic differential equations, they are of relevance 
to the study of synchrotron oscillations of particles in 
storage rings. Given such a set of stochastic equations for 
the momentum p and the position x, expectation values 
(M(p, x))(t) of a function M of p and x are important 
quantities. For  example in the case of synchrotron oscilla- 
tions the expectation value (x2)( t)  represents the magni- 
tude of the squared longitudinal phase difference of an 
ensemble of particles with respect to the reference particle 
travelling along the design orbit. Expectation values can 
be calculated analytically only in a few cases; therefore 
their estimation relies on numerical tools, e.g., the stochas- 
tic Euler algorithm or Heun's method. 

In Sect. 3, we suggested new algorithms suited for the 
numerical integration of the canonical equations of 
motion of a Hamiltonian function of one degree of free- 
dom with a small stochastic force term. The stochastic 
term is assumed to be Gaussian white or colored noise. 
Our basic idea is to set up an algorithm which reduces in 
the deterministic limit to a symplectic algorithm which is 
well suited for the integration of deterministic Hamiltonian 
systems. Conventional stochastic integration algorithms 
lack this property. In the white noise case we demon- 
strated the efficiency of our algorithm by estimating the 
energy expectation value of an ensemble of stochastically 
driven anharmonic oscillators with our algorithm and the 
stochastic Heun method. It turned out that the estimation 
with our method took only a third of the CPU-time which 
was required for an estimation of equal accuracy with 
Heun's method. 

Section 4 deals with the investigation of the equations 
of motion which describe synchrotron oscillations. They 
can be interpreted as the equations of motion of a stochas- 
tically driven pendulum. The stochastic term arises when 
fluctuations of external fields generated by rf cavities 
and various types of magnets of the storage ring are taken 
into consideration. Depending on the coupling of the 
stochastic term to the variables p and x one speaks of 
phase noise or amplitude noise respectively. In the four 
cases of Gaussian white or colored phase or amplitude 
noise, the behaviour of the expectation value (x2)( t)  is 
analysed which describes deviations of the motion of 
particles from the reference particle on the design orbit. 
Since the numerical evaluation of (x2)( t )  takes typically 
more than one day of CPU-time, analytical approxima- 
tions of this moment are of interest which yield a general 
view of the dependence of (x2)( t)  on the statistical prop- 
erties of the stochastic force for both phase and amplitude 
noise. Approximations of the moment (x  2) (t) are derived 
which are expected to be reasonable for small values of x. 
This is the situation one normally encounters in acceler- 
ator physics. The validity of the approximations is exam- 
ined by comparison with numerical results which are 
obtained by use of our algorithms; the approximations 
agree with numerical estimations of (x2)( t)  for times 
which correspond to several thousand periods of oscilla- 
tion. In the case of phase noise and for initial conditions 
x(0) = p(0)= 0 the expectation value (x  2) (t) grows linearly 
with time whereas in the case of amplitude noise (x  2) (t) 
performs damped fast oscillations around an exponenti- 
ally growing term. 

Appendix A 

In the following we give a proof that the stochastic leap- 
frog algorithm (6) is well suited for the approximation of 
the Hamiltonian system (1) driven by Gaussian white 
noise forces. For this purpose, we first summarize some 
facts concerning the numerical integration of arbitrary 
systems of ordinary stochastic differential equations. Sub- 
sequently the validity of the stochastic leapfrog algorithm 
is demonstrated. 

Integration of general stochastic differential equations 

We summarize results of the references [8, 9]. Starting 
point is the general system of stochastic differential equa- 
tions 

) r  . . . . .  Xn)Jt - f f i j (X1 . . . . .  X n ) ~ j ( t ) ,  i =  1 . . . . .  n, 

where ~i(t) is standard Gaussian white noise. In the fol- 
lowing h denotes a small time step. The exact solution 
xi(h) may be written as 

x,(h)=D~(h)+S~(h), 

where Di(h) and Si(h) denote the deterministic and 
stochastic contribution respectively. To simplify the nota- 
tion we drop arguments and write a u and f~ instead of 



f/(x(0)) and aij(x(0)). Then Di(h) is 

h z 2 8 
Di(h) = xi(O) + h fi + :~- ~ fk + (9(h3), 

Z (TX k 
(17) 

where the summation convention for the repeated indices 
j, k, 1 is employed and (9(h m) denotes terms of order h". In 
the case of additive noise, i.e., when au does not depend on 
x one obtains 

Si(h) = aij Wj(h) + ~ aktKz(h) 
OXk 

1 82fii . . . .  
q 2 8~kSXz O'kmfflntr'nntn)-t-(9(h5/2), (18) 

whereas in the case of multiplicative noise, i.e. when a0(x ) 
is a function of x, Si(h) is 

h OtTiJ Si(h) =aii Wj( )-I- ~Xk akt Co(h) + (9 (h3/2)- (19) 

The quantities Wj(h), K~(h), G~.(h) and Cu(h ) are random 
variables which can be written as stochastic integrals of 
the Gaussian white noise Cdt). The following expectation 
values of W~(h) and Kt(h) are important in our context: 

(W~(h)) = ((Wj(h)) a ) = ((Wj(h)) 5 ) =0, 

((Wj(h))2>=h, ((Wj(h))4)=3h 1, 

h 3 
(Kt(h))=O, (Kt (h )Km(h) )=3  5,~. (20) 

An algorithm for the numerical integration of stochastic 
differential equations replaces the exact functionals D~(h), 
S,(h) by approximations/)dh), ~(i(h). Then approximations 
2i, h(1) of exact solutions xi(h) are obtained by 

xi,h(1) = Di(h) + Si(h). 

If the equations 

D,(h) - / ) ,  (h) = (9 (hq), 

( (S, (h))P) - ( (S, (h))P) = (9 (hq), 

are valid with a fixed integer q for all integers p then the 
difference of the numerically estimated expectation value 
J[h(mh) of a function M(xl  . . . . .  x.) at time t = mh and the 
corresponding exact value Jc'(t) is a term of order h q- 1: 

Jib(t) --  J [ ( t )  --  ( M ( x 1 ,  h(m) . . . . .  Xn, h(m) ) > 

-- (M(xl(mh), ... ,  x.(mh)) ) 

= (9 (h q- 1 ). 

Thus, the quality of an algorithm is characterized by the 
value of q. A proper numerical method demands q > 2. 
Then the algorithm is said to have convergence of mo- 
ments. 
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Next we give expressions for Di(h) and expectation 
values of Si(h) for the stochastically driven Hamiltonian 
system (1) which may be written as 

) (21) 
22(t) J \ xx/m ] \ ~2(t) /" 

The deterministic contributions Ddh) can be evaluated by 
use of (17) 

h 2 @F x_~0) + (9(h3), 
D1 (h) = X l (0) + h f  (12 (0)) +~-  ~212 (12 (0)) 

X 2 
Dz(h)=x2(O)+h l~(mO) + ~-- ~ F(xz(O))+(9(h3). 

Using (18, 19) we obtain for the stochastic contributions 
Si(h) 

$1 (h) = a(x2) W1 (h) + (9(h 5/2, h3/2), 

{ffKx31)!/m+(9(hS/2), if a is constant, 
SE(h)= 

tjtn ), if a(x) is a function of x. 

The symbol (9(h", h") denotes terms of the order h m for 
additive noise and terms of the order h" in the case of 
multiplicative noise. The expectation values (Sdh)) are 

(Sl(h)>=(9(h 3, h2), and (S2(h))=(9(h 3, h2), 

because the term proportional to h s/2 or h 3/2 of  S 1 (h) is an 
odd moment of Gaussian white noise with vanishing ex- 
pectation value. Furthermore, using (20) we get 

( (S1  (h))2> = htT(x2) 2 -t- (9(h 3, h2), 

(($1 (h)) 3 ) = (9(h a, h2), 

(($1 (h)) 4) = 3h2a(x2) 4 + (9(h3), 

((Sx(h))P)=(9(h3), p=5,  6,. . .  

((S2(h))P)=(9(h3), p=2 ,  3, . . . .  

These expressions become important when the stochastic 
leapfrog algorithm is investigated. 

Proof of  the validity of  the stochastic leapfrog algorithm 

The stochastic leapfrog algorithm for the numerical integ- 
ration of the stochastic Hamiltonian system (21) consists 
of the following recursion formula for approximations 

1, h(k), 22,h(k) of the exact solution x 1 (kh), x2 (kh) 

( 21,h(k + 1) 

X2,h(k + 1) J 

= h ( F('~2'h(k) + hxl'h(k)/(2m)) "] 
\ x 1,h (k)/m + hF (22,h (k) + h21, h (k)/(2m))/(2m) ] 

) 
+ \ 22, h(k) h3/Z/(mx/~) 
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where 21,h(0) and X2,h(O) a r e  identical with the initial 
values xl(O), x2(O) respectively, t/(k) denotes a series of 
random numbers with the moments 

(t/(k)) = (t/(k) 3 ) = (r/(k) s ) = O, ( r / (k )  2 ) = 1, (r/(k) 4) = 3. 

This can be achieved by choosing Gaussian random num- 
bers as well as using the sequence of random numbers (7). 
Through the substitution of Gaussian random numbers 
a substantial amount of CPU-time is saved. 

Deterministic and stochastic contributions of the 
above recursion formula are 

Dl (h)= 21,h(O)+ hF ( 22,h(O)+ 2~ 21,h(O) ) 

= 21,h(O)+ hF (X2,h(0)) 

h 2 OF 
-t- (22, h(0)) 21, h(0) + (9 (h3), 

2m 022, h 

D2(h)=22'h(O)-l---2"h(O)-b F 22,h(0)+ Xl,h(0) 

= 22, h(O) ..[_ h h2 21,h(0) + ~m F ( 22,h(O) ) + (9(h3), 

& (h) = 0- (22, h(0)) x/hi/(k), 

_ h3/2 
S2(h) = 0-(22,h(0)) ~ q(k). (22) 

With the results above we obtain for the differences of 
approximate and exact functionals 

/)1 (h)-  D1 (h) = (9 (h3), D2 (h)-  D2 (h) = (9(h3), 

((Sl(h))P)-((Sl(h))P)=(9(h 3, h2), peN, 

((S2(h))P)-((SE(h))P)=(9(h 3, h2), peN.  

Thus, the value of q is 3 or 2 in the case of additive or 
multiplicative noise respectively; therefore the stochastic 
leapfrog algorithm is suited for the numerical integration 
of system (21). The order of convergence of expectation 
values obtained with this algorithm is 

d/[h(t)__j#(t)=~(9(h2),, if a is constant, 
[ (9(h), if 0-(x) is a function of x. 

The substitution S2(h)=0 for (22) also yields a proper 
algorithm. It can be shown that in the case of additive 
noise this algorithm has a worse convergence in the mean 
square sense [8, 9] than the stochastic leapfrog algorithm. 
This kind of convergence becomes important for the es- 
timation of mean first passage times. A further investiga- 
tion of this topic lies beyond the scope of our article. 

Appendix B 

This Appendix deals with the analytical calculation 
of expectation values (M(p,x))(t) for the system of 

stochastic differential equations (1) in the cases of gaussian 
white noise when a is constant: 

[~(t)=F(x)+0-~(t), F(x) ~f--~ff~(x), 

p(t) 
2(t) = (23) 

m 

Initial values are assumed to be x(t=O)=x ~ and 
p(t = 0)=pO. As solutions of a stochastic differential equa- 
tion, momentum p(t) and position x(t) are random vari- 
ables. We replace the set of stochastic differential equa- 
tions (23) by an equivalent Fokker-Planck equation [7] 
for the corresponding probability denity w(p, x, t) which 
reads 

~(p ,x , t )=  m~x F(X)~pp+2a ~p 2 r 

The expectation value ~'(t)  of a function M(p, x) at time 
t can be written as 

JCl(t)=(M(p, x))(t)= +fo dp S dx M(p, x)w(p, x, t). 
o O  - -  o 0  

At least in principle J#(t) can be obtained directly if the 
solution w(p, x, t) of the Fokker-Planck equation is cal- 
culated which is usually a difficult task [14]. However, 
sometimes the calculation of J/g(t) can be reduced to the 
solution of a system of ordinary differential equations in 
the following way. The time derivative of Jr(t) is 

du// + oo 0w 
(t)= I dp S dxM(p,x)~[(p,x,t).  

- - o 0  - - ~  

In this expression we replace the time derivative of 
w(p, x, t) by the right hand side of (24). Assuming that the 
probability density w(p, x, t) as well as its derivatives van- 

S dp dx w (p, x, t) ~ (p, x) 
- -o0  - -o0  

1 2 02M 
+F(X)~p (P,X)+~a ~-p2 } 

= m~xx (p'x) (t)+ x) (t) 

+~ 0-2 / 02M 
I 

We are interested in the expectation value g(t) of the 
energy E(p, x)=p2/2m + V(x) which obeys 

dg / p 0 V  ) ( p )  0 -2 

d~- ( t )= \m0x(X)  (t)+ F(X)--m (t)+~m 

If we replace the deterministic force F(x) according to its 
definition by the derivative of the potential V(x) then the 

ish for p, x ~ ~ ,  partial integration yields 

d ~ '  
dt (t)= 
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expectation values on the right hand side cancel. We 
obtain 

d8 0 -2 
~7 (t) = ~ .  

Obviously the energy expectation value as a function of 
time t is 

O~ 0-2 
g(t) = + V(x~ + ~m t. (26) 

We want  to stress that in general the evaluation of  J / ( t )  by 
use of (25) is more  complicated than the calculation of  the 
energy expectation value in our  example since the expec- 
tation values 

/ ~?M (p, x) ) ~ ' 2  (t) ~r \ F (x) ~-p  (t), 

/ t~ZM x) ) (t) ~3(t )  %f \ ap ~ (p, 

are also unknown.  If  (25) is applied to calculate the time 
derivatives of  J/ll(t), J/12(t), J{a(t) and thus to obtain 
a closed set of  differential equations, even more  expecta- 
t ion values may  crop up. Nevertheless, at least for a linear 
force F(x) and M(p, x )=plx  j with integers i,j a closed set 
of  ordinary differential equat ions can be obtained which 
can be solved yielding J#(t). 
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