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Abstract. We present a new simple 75 regularization 
scheme. We discuss its use in the standard radiative cor- 
rection calculations including the anomaly contributions. 
The new scheme features an anticommuting 75 which 
leads to great simplifications in practical calculations. We 
carefully discuss the underlying mathematics of our 75- 
scheme which is formulated in terms of simple projection 
operations. 

1 Introduction 

Local quantum field theories are plagued with infinities. 
Often all the infinites can be absorbed into the parameters 
(couplings and masses) of the Lagrangian-we then speak 
of renormizable theories. Before the process of renormal- 
ization can be started the divergent Feynman integrals 
must be regulated. If possible the regularization should 
respect all symmetries of the bare theory, such as gauge 
invariance, Bose symmetry, and Ward identities. An opti- 
mal scheme in this respect is regularization through di- 
mensional continuation [1]. For parity conserving ampli- 
tudes the scheme is extremely efficient: one evaluates the 
Feynman graphs in D dimensions only at the end of the 
calculation. If traces over Dirac matrices are involved 
D must be even to preserve the usual Clifford algebra of 
7-matrices. To fully preserve gauge invariance a physical 
renormalization scheme should be used, such as on shell 
renormalization, and infrared divergences must also be 
evaluated in D dimensions. Then even the wave function 
renormalization is gauge invariant [2]. 

This beautiful and practical scheme, however, fails for 
parity violating amplitudes involving the Dirac matrix 75 
because one cannot continue to D :/: 4 dimensions traces of 
the form 

tr(757u,-.. 7u2)=4ie~ .... ~4, (1) 

as the totally antisymmetric e-tensor is a purely 4-dimen- 
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sional object. To over-come this difficulty one of us pro- 
posed to redefine the trace operation using a projection on 
four dimensional subspace (which agrees with the usual 
trace operation for D =4) [3]. The price to pay for this 
definition of 'trace' is that cyclicity is no longer valid in 
75-odd traces. This scheme can be used consistently to 
regularize UV-divergences. We show in this paper how 
the scheme may be extended to also regularize infrared 
(IR) and collinear (M) divergences. Since a practical and 
consistent regularization scheme of divergences in parity 
conserving and parity violating amplitudes is desirable for 
the radiative correction calculations in all sections of the 
Standard Model we present a practical list of rules in 
Sect. 2, which, when adhered to scrupulously, will guaran- 
tee correct results. The rules are simple and can easily be 
implemented in algebraic programs such as REDUCE. 
The only other consistent 75-regularization schemes, at 
present, are the schemes favouring a non-vanishing an- 
ticommutator {75, 7,} #0.  This class of schemes is dis- 
cussed in general in I-4] and [5]. An explicit version is the 
well-known scheme of ' t  Hooft and Veltman and Breiten- 
lohner and Maison [1,6]. This scheme distinguishes 
4-dimensional and (D-4)-dimensional objects, creates 
spurious anomalies and quite generally constitutes 
a nightmare to anybody involved in practical Standard 
Model calculations. 

An example in point is the calculation of the one-loop 
flavour changing neutral current (FCNC) vertices in the 
Standard Model [7]. Here the BM scheme does not satisfy 
the naive Ward identities and a FCNC counterterm must 
be introduced by hand into the Lagrangian. 

In the third section we present non-trivial examples of 
practical calculations and demonstrate how the rules are 
applied. We recommend these examples (including their 
evaluation by an algebraic computer program such as 
REDUCE) as a benchmark for future schemes of dimen- 
sional regularization. 

In Sect. 4 we discuss the use of our 75-scheme in the 
context of IR/M singularities where we emphasize that 
one has to choose the same reading point when one 
evaluates IR/M singular tree and loop graph contribu- 
tions. We present an explicit sample calculation, namely 
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the calculation of the C(cq) radiative corrections to the 
par i ty-odd asymmet ry  in e+e- -ann ih i l a t ion  into two 
massless jets (partons). Section 5, finally, contains our 
conclusions. In an Appendix we present the theoretical 
underpinnings of our  ys-scheme. We discuss in part icular  
the behaviour  of an action S = 5 t~/]iO under local infini- 
tesimal chiral gauge t ransformat ions  ~ '  = (1 - iO (x)75 ) ~, 
~ b ' = O ( 1 - O ( x ) T s )  in order  to pinpoint  the origin of 
anomalies  in the context  of our  ys-scheme. 

2 The rules 

For  the convenience of the reader we present in this 
section the rules for handling Dirac  matrices in our  di- 
mensional  regularization scheme: 

Rule I. (1) Ant i commuta t ion  relations 

{Yu, Yv} = 2gu~, (2) 

G ,  =0. (3) 
F r o m  these follow the usual contract ion rules, e.g. 

Y.Y~Y" = (2 - O)y,, (4) 

YuY,Y~Y" = (D - 4)y~y~ + 4g~.  (5) 

Rule II. Algebraic relations for traces of strings of Dirac  
matrices 

Tr(yu, �9 �9 Yl, . . . .  ) = 0, 

T r ( y ~ , . . . y , ~ , ) = 4  ~ ( - -1 )a lpe rmIg , , , ,~ . .  "gl',,,aj~ (6) 
p e r m  

l = i l  < . . . < i , ,  ik < J k ,  

where perm means permuta t ion  of i~ j~ . . .  i , j ,  

and 

Tr(y~,l . . .  y,2~ ~75)=0, (7) 

Yr(y.l . . .  Yu475) = 4it .  . . . .  .4 (8) 

Tr(yul �9 �9 . 7,2nY5)=4i ~ ( -  l)~(perm)t,ui,,+~#i..~#j.+,#j..2 X 
p e r m  

x g~,,,,, . . . g,,,,+~,j., (9) 

1 = i 1 <  . . .  K i n + z ,  ik<jk, 
where perm means  permuta t ion  of i~ j l  . .  �9 i, + 2 jn + Z 

traces of reversed strings of 7-matrices: 

Tr(Y,1 �9 �9 �9 7..) = Tr(y,,. �9 �9 �9 "~Ul ) ,  (1O) 

Tr(y,~ . . .  yu, y s ) = T r ( y , , . . .  Y, lYs), (11) 

where su~ua,3,4 is the 4-dimensional  t- tensor,  in more  ex- 
plicit nota t ion  t _ t0,1, z, 3 

~ 1 ] / 2 / / 3 ] / 4  - -  ~1 l f l 2 f l  3L/4 �9 

Rule I I I .  It is forbidden to use cyclicity in traces involving 
odd number of 75 matrices. 

Rule IV.  If there are several d iagrams contr ibuting to 
a given process all traces must  be read start ing at the same 
vertex, called the reading point. This rule applies also to 
traces resulting from squared fermionic amplitudes.  

Rule V. In theories with anomalous  axial currents the 
trace of an anomalous  graph must  be read starting from 
an axial vector  vertex in order to fulfill the usual conven- 

tion of conserved vector  currents. In the case of several 
axial vector  vertices a symmetr ic  choice of the reading 
prescript ion must  be used. 

3 Some comments and examples 

In this section we would like to present some comments  
and examples  to the rules given in the previous section. 

Rule II. We distinguish two cases: 

Case i. traces not  including 75 or, equivalently, because of 
an t icommuta t iv i ty  (3), an even number  of Ys. 

Case ii. traces including one Y5 or, equivalently, an odd 
number  of Ys. 

Using the language of the calculus of forms we expand 
every string of Dirac matrices in terms of a complete set 
consisting of the unit matr ix  and ant i -symmetr ic  (wedge) 
products  of Dirac  matrices (exterior expansion). As an 
example consider the exterior expansion for strings of two 
and four Dirac  matrices. One has 

?uTv =guv 1 +�89 [TuY~-Y~Yu] =gu~ 1 + 7 ,  A y~, (12) 

and 

?u, �9 �9 �9 ?u4 = (gu,uzgu3u,- gu~u3guzu4 + gu,u, guzu~) 1 

+gu~ua?u, A ?u~--gu~u4Yul A Yu3 

+guzu3Yul A 7u.--gu,u~Yu~ A 7u4 

-gu,u37.~ A Yu,--gulu, Yu2 A Yu3 

+Yu~ A 7.~ A 7~3 A Yu4' (13) 

The wedge product  A is defined in the Appendix. 

Case i. The D-dimensional  trace is defined as the projec- 
tion on the unit matrix times the trace of the unit matrix 
which can be chosen to be four without  loss of generality. 
This agrees with the usual definition of the trace and 
cyclicity holds. With the help of this definition one finds 
immediately  for the examples  (12) and (13) 

Tr(y.yv) = 4 g.~, (14) 

and 

Tr(yu, �9 �9 �9 Yu4)=4(guluzgu~u4--gulu3guzu4 +gu,u4gu~,3). 
(15) 

The trace of an odd number  of Dirac  matrices is zero 
because the corresponding string contains no unit matr ix  
in its exterior expansion. 

Case ii. To mot ivate  our  trace definition in this case let us 
first discuss the corresponding D = 4 situation: 

In the trace of 75 with a string of Dirac matrices 
expand the string according to the exterior basis to see 
that  the surviving term is not the term ~ 1, but the term of 
maximal  ant isymmetry,  which is propor t iona l  to 75. So 
the string itself contains a 75 matr ix  which, together  with 
the Y5 in the trace, gives a term with a nonvanishing trace 
because of 72 = 1. This justifies to regard the trace opera-  
tion in this case as a project ion on the 7 5 = - i 7 o  A Yl 

i 
A 7 2 A y 3 = - ~ . e ~  .... m7 u l . . . 7  "4 content  of the string. 
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For the example of four 7-matrices one has explicitly 

tr(? 57.17.2?u3?.4) = tr(y 5((9.1.29.3.4 - 9.t.~g.~u4 

+ gut .49.~u3) 1 

-~-9.3/ /4~)Ul  A ~).2 - -  9 .2 .4  7 .  t k '~u3 

+g.:.3YUl A y.4+gut.~yu3 A 7u4 

- -9 .1 .371 '2  A Y,, +9,, ,4Yu: A 7u3 

+7.t A 7.~ A 7.3 A y..)) 

=tr(ys(Y,t A 7,: A 7,3 A 7,4)) 

=ie u .... mtr(ysYs) 

=ien .... mtr(1), 

where we used the definition of the Levi-Civita tensor 
eu .... u4 and the definition of the A-product (defined in the 
Appendix) to make the replacement Y,1 A y,: A 7,3 A 
Yu~ = ieulU2.3.. 7s. 

Turning to D:#4 we take the same projection as the 
definition of the D-dimensional trace. We then arrive at 
Rule II immediately. 

Note that (9) can also be written as 

Tr(Tut �9 �9 �9 7~,, ?s) = - 4iem"+'m"+~J"~'~"+~ x 

x tr(Y,1 �9 �9 �9 7m,.+~,)- (16) 

This gives the following simple prescription for calculating 
such traces in a symbolic math program as REDUCE. 
One only has to contract an e-tensor with a trace not 
involving 75, which is possible even away from 4 dimen- 
sions ('vecdim = D'). See the Appendix for further details. 

As a consequence of this projection the e-tensor is 
a 4-dimensional object which in contraction identities 
gives only 4-dimensional metric tensors, e.g. 

e Ut~t~ a -2(,.~4) ,.~) _,a4) ,.~4) ~ (17) 

(where (4)_ �9 9,~ - d l a g [ 1 , -  1 , -  1 , -  1]) and 

9(4)t~9~ ~ = -~"~4)' 9~ 41~' = 4. (18) 

Rule III .  According to Rule II the trace of 75 multiplied 
by four 7-matrices is cyclic. The first example where the 
non-cyclicity of the D-dimensional trace enters is in strings 
of six 7-matrices and one 7s, 

T r (ysY, l . . .  7u~)-Yr(7,67,~Tut.. .  7us)=:A~ . . . .  ~/6' (19) 

According to (9) 

- -  9 .4 .6  e.t.2.3t~s "l- 9 . 5 .0  e .  1"203"4 )" (20) 

Evidently A~ .... .~ is a tensor which is antisymmetric in five 
of its indices and consequently vanishes in four dimen- 
sions but not in D :# 4 dimensions. The contraction 

9/16~'Aul~2.../z6 = 8i(D-4)e~ .... us (21) 

underscores the above assertion that the D-dimensional 
trace cannot be taken to be cyclic. 

Contracting the above tensor A with a pair of indices 
which does not involve/~6 gives a vanishing result. 

Incidentally these arguments show that in a n-dimen- 
sional field theory (n even) the first anomalous diagram 
must involve 75 and a string of (n+2) 7-matrices. This 

1) implies that the -point function is the first candi- 

date for an anomalous Greens function. 

Rule IV. This rule is contingent to the generation of 
anomaly structures with respect to the convention of 
conserved vector currents. Starting the trace at the axial- 
vector current allocates the anomaly at the axial-vector 
current and conserves vector currents. The non-locality of 
the anomaly finds it counterpart in other choices of the 
reading point. This ambiguity is a typical property of 
anomalies and is (and must be) present in all regulariz- 
ation prescriptions. A unique result for anomalous graphs 
can only be obtained by physical conditions (e.g. vector- 
current conservation) and not by the chosen regulariz- 
ation [8]. 

The A V V  anomaly of the triangle graph IQuv of Fig. 1 
is given (for a single flavor) by 

&l Tr(75(p+Cl)f7~(f+r 
(p + q)oI ou~= f 

J(2g) 4 12(l+q) 2 ( l + p + q )  2 

+ [/~*--, v, p.--~q], (22) 

where the notation is explained in the figure. Note that if 
one erroneously assumes cyclicity of the trace and an 
anticommuting Ys the trace and thereby the anomaly in 
(22) obviously vanishes. Without cyclicity as in our 
scheme the trace can be evaluated directly by Rule II 
above, yielding 

(P + q) o l ~ =--  16 A j, l,O~t~ pO q ~ • 

d" l 1~I p 
x ~ (2rt)412(p + l)2 (1 + p + q)2 

+ [#*-w, p,--+q] (23) 

where the six-component tensor A,,,o,~/~ is defined in (19). 
Only the coefficient of g,z in the above integral is UV 

divergent and with the help of this and (19) we obtain the 
well known result [9] 

i 
(P + q)o I o,~ = ~ em, oopQ q ~. (24) 

Choosing one of the vector vertices as the reading 
point the anomaly can be shifted to that vertex. Rule IV 
(reading a trace starting with the axial vertex as the 
reading point) can be ignored in the standard model 
because of anomaly cancellation after fermion summa- 
tion. Rule III  (reading all diagrams starting at the same 

P" l+q+p "13 

Fig. 1. The triangle VVA anomaly graph. The reading point where 
the trace reading is started is denoted by a cross 
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vertex) must be followed scrupulously, however. Other- 
wise wrong results may be obtained in the full 
SU(3) x SU(2)• U(1) sector. An example in case is the 
decay Zo~GG7 (Fig. 2). The axial vector contribution 
should vanish because of Bose symmetry. Starting the 
trace at different vertices in the various graphs results in 
general in a violation of Bose symmetry and leads to 
a false anomaly (which would destroy renormalizability) 
even after fermion summation. 

Rule V. As an example for the case of several axial vector 
vertices let us discuss the AAA triangle anomaly. In the 
following we indicate the reading point by typing an 
underlined letter for the corresponding vertex. Then 
a Bose symmetric reading prescription is given by 
�89 and gives the well-known result 
for this anomaly (13 of the A VV anomaly). 

To see this note that each of the readings involves the 
A-tensor. The three reading possibilities differ by permu- 
tations of this tensor. Only one of the permutations does 
not vanish after contracting with the metrical tensor 
coming from integration (see the comments to Rule III 
above). 

Calculating the AAA anomaly just by choosing one of 
its vertices as the reading point, for example AAA, breaks 
Bose symmetry and gives three times the usual result for 
the anomaly at the reading point vertex and no anomaly 
at the other two vertices. 

The Rules IV and V are ad hoc rules. This is a consequ- 
ence of the fact that anomalous Green functions cannot be 

: u.d quark 

Y~ Y~ 

Pl 

P2 YsY~ 

P2 

Pl 

Pl• p2 
z Y 

-Pl- 

P2•1 
-Pl - ~  

-Pl _ Z ~  
YsY~ T~ 

P, ~ ~ P2 

-Pl Z _ ~  
Y5 Y~ " % 7  
P2 ~-~Pl 

Fig. 2. Anomaly graphs contributing to the decay Zo~ffffT. 
Gluons are the curly lines, -~. = u, d quark 

uniquely obtained by a regularization procedure. So some 
physical input is unavoidably necessary [8]. In the case of 
several axial vector vertices the choice of one reading 
point may break a permutation symmetry between these 
axial vector vertices (see the above example). But a sym- 
metrized combination of reading points defines a unique 
reading prescription respecting this symmetry. This gives 
Rule V for the case of several axial vertices. 

Finally we would like to point out that in practical 
Feynman diagram calculations one can expand the ampli- 
tude (even if divergent) into the usual set of covariants and 
project out the invariants as usual. This is guaranteed by 
the orthogonality of the four dimensional subspace and its 
complement, see the appendix. 

4 An application to IR/M singularities 

Most of the previous discussions on the 75-problem in 
dimensional regularization in the literature have been 
concerned with the UV divergent sector. It goes without 
saying that it is of immense practical interest* to give 
a consistent 75-prescription also in the IR/M sector when 
doing radiative correction calculations. 

In fact, it is well known that the 75-anomalies that 
appear in connection with UV singularities have their 
direct analogues in the appearance of 75-anomalies in the 
IR/M sector [10, 11]. The spurious IR/M anomalies are 
expected to cancel among loop and tree contributions just 
as the true IR/M singularities do. For this cancellation to 
be effected the tree and loop contributions have to be read 
starting from the same vertex in the fermion loops. 

It is the purpose of this section to illustrate the use of 
our 75-scheme in a simple example involving the (~(~s) 
radiative corrections to the parity-odd asymmetry in e+e - 
annihilation into 2 massless jets (or partons). This simple 
radiative correction calculation serves to exemplify what 
happens when IR/M singularities appear in conjunction 
with D-dimensional 75 manipulations.** 

The relevant parity violating (p.v.) hadron tensor 
~uP; v' is defined as 
~ / O  p .v .  _ _ I ( ~ A V  VA ~v -2v '~ ~v +Hi,~ ), (25) 

where 

Yfu TM = ~ ( f l  jv(0) l 0)  ( f l J ~ ( 0 )  10)*, (26) 
s p i n s  

and correspondingly for av ~ 9 / / v  . 

Due to using an anticommuting 75 the p.v. hadron 
tensor simplifies to (jt~uAv = j t ~  va) 

~ g ~ p . v .  = , ~  VA (27) uv  v ~  #v  �9 

Let us first list the e+e-~q(px)~(p2)g(p3) four point tree 
graph contribution that enters the phase space integration 
in the C(as) radiative correction. The Feynman diagrams 
are read starting with the left vertex as indicated in Fig. 3 

* e.g. to supply masses to IR-divergent propagators is full of difficul- 
ties beyond the one-loop level 
** It is well-known that the sum of the (9(c~s) one-loop contributions 
are UV convergent 
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Fig. 3a~t. C(cq) tree graphs contributing to e+e-~q(19. The reading 
point of the trace is indicated by a cross 

by a cross. One finds (in units of gZNcCF) 

Wp;v.=Tr@upz@,,ysP~+P3 P z + P 3 )  
--7#--7# Y~75 x 

S13 $23 

j~ 1 "l-~3 )_1_ Tr  (~# ~2+3~3 #~2 X 

( ,2+,3 )) x - ~ 7 5 r  + ~ - - ~ , 5  Pz , (28) 
S13 $23 

where we have defined s u = (p~ + pfl2 = 2p~" pj. 
Using our  trace rules (no cyclicity!) one finds 

p . . . .  -8iq2 \( Xl 
j~r ~ _ ( l_x~ l_x2)  e(#vqpt)-(l~-*2) 

( 4 - D )  
2 [(1 lx-l+l 1---~2)(2e(~vp~p2) 

+ e(#vqpl ) -- e(Itvqp2)) 

1 1 e(#qplpz)4p3f] ' (29) A q2 ( 1 - - x t ) ( 1 - - x 2 )  

where q2x i=2p~'q, q=Px  +P2 +P3 and e(l~vp~pj)= 
e,~,#p~p] etc.. 

No te  that  the 4-dimensional  contr ibut ion in (29) obeys 
current  conservat ion ,u~p.v. _ a~ gfp.v. = 0. Also one has 
the charge conjugat ion relations ~ p . v . = _ ~ p . v .  and 

p.v. p.v. ~ufu~ (pl,pz)=_jt~ (p : ,pa)  for the 4-dimensional  
piece. The terms propor t iona l  to ( D - 4 )  show an anomal -  

a v ;lgf  P .  V. ous behaviour  in so far as ~ ~ u ~  :~0 and there is no 
an t i symmet ry  under  # ~ v. Depending on where the trace 
reading is started anomalous  features can show up also on 
the other  current  index v or  in the violation of the Pl ~ P2 
ant isymmetry.  

Let us now integrate the tree graph cont r ibut ion  over  
the complete  x t ,  x2 phase space region. The relevant D- 
dimensional  integrat ion measure  can be found in [12]. 
One has 

P q2 t/4gfl2 ~e 1 ~ 

0 l -x 1 
x [(1 - x~)(1 - x2)(1 - x 3 ) ]  -~ x 

p,v. x ~ u ~  (Pl, P2,P3), (30) 

where P :  and P2 (Px+Pe=q) are the quark  and anti- 
quark  m o m e n t a  for the three point  process e+e---*  
q(Px )gI(P:) and e = ( D -  4)/2. 
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The integrat ions in (30) are per formed by first extract-  
ing the e-tensor f rom the integrand. Then one integrates 
the remaining tensor integrand by s tandard  D-dimen- 
sional techniques. By proceeding in this manner  one never 
has to pay  at tent ion to the four-dimensional  project ion 
implied by the e~...6-contraction in intermediate  steps of 
the calculation. 

The nested integrat ion in (30) can be factored into two 
pieces by the substi tut ion (1 - x 2 ) =  VXl. One can orient Pl 
a long P~ without  loss of generali ty such that  Pl =xiP1. 
The first contr ibut ion in (29) can then easily be integrated 
to give 

1 1 1 

" Pg ! dx, 0I d xl- 
X1 

x ( 1 - - x a ) - ~ v - ~ ( 1 - - v )  ~(1 
~ X 1 ~ ~ 

1 17 71"2 "~ 
- F ( 1 - ~ ) I  ~2+51 3.+~_T)e(l~vqp1)" (31) 

For  the second contr ibut ion in (29) one has 

1 1 1 

-- euv~#q ~ F ( 1 -  e)!dx~! dvxl-2~(1-x~)-%-~(1-v)-~ 

1-VXl # _  1 _ , [ ~  g - [ 1  3 1 11 rc 2 )  

x(1-Xl)vxxP~-F(1-e)\~+z'~-~ 4 2 X 

/ 

x e(#vqP1) (32) 

The tensor integral in (32) has been done by expanding the 
integral as usual a long the outer  m o m e n t u m  P~ and q, i.e.. 

1 1 1 

F(l_e)!dxl!dVxl-2~(1-xl)-%-~x 

1 -vxl 
x (1 - v)-~ (1-- x 1-~x ~ p~ = APf + B~q. (33) 

For  our purpose  the coefficient A is of interest. It  can be 
projected out by contract ion with 2(q~-2Pl#)/q 2. The 
integrand is thereby scalarized. One  obtains the scalar 
products p2"q=x2q2/2 and p2"Pl=x2(l--cosOt2) �9 
qZ/4=-(1-Xa+VX2-1)q2/2Xl where c o s O i /  is the 
polar  angle between Pl and P2. 

The  remaining integrals in (29) can be done a long 
similar lines. No te  that  the last term in (29) involving 
a second rank tensor  integrand has no finite cont r ibut ion  
to # f  uv;v' (tree, P1 P2). Adding all contr ibut ions  one has (in 
units of g2CFNc)* 

- -1(4rc#2 ' ]~ 1 
~f,P;v-(tree, P 1 , P 2 ) = ~ , ~ T - ]  ~ x 

x(-~+~+8-rc2)e(t~vqP1). (34) 

* If the trace (28) would have been started at one of the outer 
fermion lines the resulting integrated tree graph contribution would 
be the same as in (34) except for the replacement 8--+7. The loop 
resnl[ with the corresponding trace reading is obtained from (35) by 
the replacement -8--*-7.  Such a trace reading cannot be advo- 
cated, though, as it entails an unnecessary complication in the 
calculation of the fermionic self energy parts in the loop contribu- 
tions because these loop contributions would become 'cut open' 
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One notes that the anomalous terms in (29) have vanished 
after integration. The result (34) is #*--,v and quark +--, anti- 
quark antisymmetric as well as conserved in both current 
indices/~ and v. 

Note though, that the vanishing of the anomalous 
pieces after I R / M  integration is specific to this simple 
example. The 75-odd tree graph contributions to higher 
n-point functions retain an anomaly structure even after 
IR/M integration as will be discussed later on. 

The C(es) one loop contribution to the three point 
function e+e ---*q(P1)(l(P2) can be done using standard 
loop integrals (see e.g. [11]). Note that the loop contribu- 
tion corresponding to cutting Fig. 3 to the right of the 
gluon line may not be simply obtained from the well- 
known three point loop amplitude as the fermion string is 
'cut open' at the vertex by the given trace reading pre- 
scripion as Fig. 4a shows. One finally obtains* 

1 / 4 ~ #  2 "~ 1 
~ff~;V'(loop, e l , P 2 ) = 2 ~ a  [ ~ )  ~ x 

Thus the sum of the one-loop and tree level radiative 
corrections (34) and (35) exactly cancel. This proves the 
absence of (9'(~s) radiative corrections to the p.v. asym- 
metry in e+e ~qO for mass zero quarks. This result was 
derived before in [11] using BM ?s-scheme. The same 
result can be found in [13, 14] although the authors of 
[ 13, 14] never specify their 7 s rules despite of using dimen- 
sional regularization. An incorrect result in quoted in 
[153. 

The tree-level C(~s) contribution can be written in 
a more symmetric way by taking the mean of the two trace 
results starting the reading of the trace at the left (#) and 
right (v) vertex as drawn in Fig. 5. In this way the corres- 

(al (b) 

(c} (d) 

(e) (f) 

Fig. 4a L 6(~) loop contributions to e+e -~qq,q. The reading point 
of the trace is indicated by a cross 

* A different result is obtained for the p.v. one-loop contribution in 
the BM 75 regularization scheme. In fact the vector current and axial 
vector current one-loop amplitudes are not simply related in the BM 
75-scheme and one has to introduce an explicit counterterm to 
restore the chiral invariance of the theory [11] 

ponding loop contributions can be taken directly from the 
well-known loop amplitudes. 

It is not difficult to see that the 75-odd radiative 
correction calculation done in [11] within the BM 7s- 
scheme corresponds exactly to latter symmetrized version 
of our reading prescritption. The authors of [10] cal- 
culated the (9(~ff) radiative corrections to the p.v. meas- 
ures in the four point process e+e - -~3 jets (or partons). 
Differing from the above example the resulting p.v. t r ee  
graph and one-loop 3-jet hadron tensors turn out to have 
an anomaly structure even after IR/M integration (at 
CO/e) and in the finite contributions!). The anomalous 
pieces do, however, cancel among loop and tree contribu- 
tions. 

5 Conclusions 

The 75-scheme presented here belongs to the class of 
non-cyclicity-schemes. With respect to recent criticism 
[16] let us make some clarifying remarks. 

�9 It is possible to derive all our results for traces without 
using cyclicity just by Clifford algebra rules. In particular 
the traces not involving a 75 turn out to be cyclic by this 
derivation. Non-cyclic traces always appear together with 
calculations involving anomalies in the wider sense, that is 
including infrared anomalies as discussed in the previous 
section. Calculations avoiding such anomalous terms can 
make use of the 'naive' 75 as in four dimensions. This 
applies to most of the Standard Model calculations. 
�9 Our scheme does not need infinite-dimensional repres- 
entations for 7-matrices but allows a straightforward gen- 
eralization to this case without any modifications. This 
may be regarded as a conceptual advantage. 
�9 Bose symmetry for non-anomalous graphs is obvious. 
Bose symmetry in anomalous graphs is not violated in our 
scheme as long as the reading prescription is chosen not to 
break this symmetry. For instance in the usual A VV 
triangle anomaly the two vector vertices must be treated 
symmetrically. The reading Rule IV is chosen to respect 
Bose symmetry. 
�9 Concerning UV-singularities the question arises if di- 
mensional regularization with our 73 prescription is in 
agreement with the requirements of renormalization. For 

+ 1/2 t 

< t4 
§ . . . .  

Fig. 5, Symmetrical choice of the reading point for (9(~s) radiative 
correction calculations. The fermion string of the 3-point loop am- 
plitudes is not 'cut open'. The symmetrized graphs corresponding to 
Figs. 3c, 3d and 4c, 4f are not shown as they are trivially symmetric 
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example, in dimensional regularization together with 
a BM-scheme this is discussed in [6]. 

In a renormalizable (by power-counting) theory this 
question can be traced back to the question of possible 
violations of Ward-Identities. 

It is clear that for the case of closed fermion-loops (on 
the amplitude level) the BM-scheme and our scheme give 
identical results on the one-loop level (see the Appendix). 
This agrees with a comparison of the anomaly calculation 
done in [17] for the chiral and Bardeen anomalies. It is 
only a matter of patience to check that the traces giving 
rise to anomalous contributions that originate from 
a non-vanishing anticommutator {Tu, 75 } # 0  correspond 
to the non-cyclicity of the graphs contributing to the 
involved anomalous 3-, 4- and 5-point Greens functions. 

Thus the only difference may come from contributions 
originating from the non-vanishing anti-commutator 
{75, 7,} # 0  outside of traces. Such contributions ident- 
ically vanish in our scheme but are commonly regarded as 
spurious anomalies in the context of BM-like schemes 
[16]. As a consequence they have to be compensated by 
appropriate (finite) counterterms. Similar problems arise 
on the multi-loop level in BM-like schemes. That the 
Ward-Identities may be restored in any loop-order by 
appropriate counterterms is an assumption which has to 
be proven [18]. 

In our scheme also on the multi-loop level there is no 
possible graph violating the Ward-Identities in an anom- 
aly-free theory. This follows from a simple power-count- 
ing argument (see the Appendix). 

So for the UV sector our scheme might be regarded as 
equivalent to a BM-scheme with the additional advantage 
of suppressing spurious anomalies. 
�9 KLN-type cancellations of IR and collinear diver- 
gences between virtual and bremsstrahlung diagrams will 
always take place in our scheme for the following reason. 
Every loop contribution has its appropiate counterpart in 
the squared (tree) amplitudes which can be seen just by 
cutting the loop (see Fig. 3 for an example). Both the loop 
terms and the terms from squared amplitudes have the 
structure trace (algebraic part)| infrared divergent inte- 
grals (analytic part). In both cases the first factor is a poly- 
nomial in (D-4) ,  the second factor a Laurent series in 
(D-4) .  The cancellations will not be destroyed in any 
order ( D - 4 )  as long as a 75-scheme treats the algebraic 
part for loops and squared amplitudes in the same man- 
ner. This is one of the reasons for rule IV) in our scheme. 
�9 In our scheme every trace evaluation results in a sum of 
products of metrical tensors guy and Levi-Civita tensors 
e~vo~. Higher antisymmetric tensors e~ ..... ,~ ,k>4 (evan- 
escent operators) which belong also to the expansion of 
big enough strings of Dirac-matrices vanish by the projec- 
tion included in our D-dimensional trace. That it is pos- 
sible to have a 75-scheme avoiding these evanescent oper- 
ators supports the result in [19] that only four-dimen- 
sional covariants are necessary in the expansion of prod- 
ucts of bilinear spinor densities. But this evanescent con- 
tent may still have an implicit effect as discussed just there. 
In our scheme this reflects the fact that the contraction of 
two evanescent operators, each one vanishing in four 
dimensions may not vanish in four dimensions and so 
survives our trace projection, e.g. e"1""6~ ,  . . . .  ,6~ 1. 

In conclusion, we have developed an unambigous and 
viable 75-scheme within dimensional regularized quantum 
field theory. This 75-scheme is both simple and mathe- 
matically rigorous. Bearing practical applications in mind 
we have provided a comprehensive discussion of how our 
75-scheme applies to the standard pertubative settings 
involving both the UV and IR/M sectors. 

Our scheme features an anticommuting 75 which leads 
to great calculational simplifications. In addition it avoids 
the tedium of having to remove spurious anomalous con- 
tributions which arise in other 75-schemes. The price to 
pay for an anticommuting 75 is that one has to give up 
cyclicity of 75-odd traces in divergent contributions. How- 
ever, we have demonstrated that the computational com- 
plications introduced by the noncyclicity of 75-odd traces 
is minimal. 

The anticommuting 75 and the result that the 
anomalies are the only consequence of the 75-problem 
confirms the results of the scheme presented in [20]. The 
authors of [20] use the anomaly to 'normalize' their 
scheme. They do so because they do not give a mathemat- 
ical rigorous definition of their scheme. In doing so we end 
with the correct anomaly and a well-defined prescription 
for handling 75 in dimensional regularization. 

Our 75-scheme should alleviate the bad conscience of 
the practitioners of radiative corrections in the elec- 
troweak sector of the Standard Model who have tradi- 
tionally employed an anticommuting 75 to dimensionally 
regularize UV singularities. 

Acknowledgement. We would like to thank G. Thompson for very 
helpful discussions. 

Appendix 

It is a common property of different realizations of dimen- 
sional regularization schemes to use higher dimensional 
finite or infinite Clifford Algebras. The 75-scheme pres- 
ented in this paper agrees with the one presented in [3] 
which was formulated for the case of infinite dimensional 
Clifford Algebras. In our approach we need not specify the 
dimension of the algebra. In the following n denotes the 
dimension of such an algebra where n is not necessarily 
finite but chosen to be even. 

In order to distinguish between our trace functional 
and the conventional trace definition we use the notation 
T r ( . . . )  for our trace functional and t r ( . . . )  for the 
conventional trace. 

Consider a n-dimensional complexified Clifford alge- 
bra ~c(1, n - 1 )  with the defining relation 

7uTv + 7~7u = 2g~. (36) 

The algebra contains an element 75 with the property 

{ 7 5 , 7 , } : 0  ( p = 0  . . . .  , n -  1). (37) 

The existence of such a fully anticommuting element is 
guaranteed by the theory of Clifford algebras. We keep the 
notation 75 for this element for arbitrary n. 
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Every element of the Clifford algebra fie(l, n -  1) can 
be expanded according to a exterior (Grassmann) basis 
1-21] 

4 -  ,uv, ,u < v A ~ f f ~ ( 1 , n - 1 ) = ~ A = a o l + a ~ T u - a 2  7u A 7 . . . .  

�9 . . a , 7 o A  . . .  A7._1.  (38) 

The wedge product A is defined by 

1 
7i, A Yi~ . . -  A 7 i = ~  ~ sign(perm)Tp~rm{h) . . . 7perm(ik), 

" "  p e r m  

(39) 

where the sum runs over all permutations from i~ . . . . .  ik. 
For example 7,~ A 7,~=~(7,, 7~-7,~7~,). 

For an anticommuting ?s one has to distinguish be- 
tween two cases of traces of strings of y-matrices 

Case i. traces not including 75. 

Case ii. traces including one 7s- 

In both cases the trace in four dimension can be regarded 
as a projection on one of the terms in the expansion (38). 

In Case i all terms in the expansion are traceless except 
the first one, so the trace acts as a projection on the first 
term ~ 1 

tr(A) = aotr(1) = 4ao. (40) 

For Case ii the last term (in four dimensions) in the 
expansion (38) is a470 A 7~ A 72 A 73=a475 . Expanding 

7u~...Tuk=(ao)~ .... , , l + . . . ( a 4 ) ,  .... . J s ,  (41) 

one finds 

tr(757., �9 �9 �9 7~,~)= tr(Ts(a4)~ .... ~.Ts) 

=(a~)~ .... ~tr(ys?5) 

=(a4), .... ~,tr(1). (42) 

--i ~0, 1,~,43. Thus the trace acts as a projection on the 75 =~-.T ' .... 

y "~ . . . y ~ element. 
This gives a very simple solution to the 7s-problem in 

dimensional regularization. Instead of taking the con- 
ventional trace in n > 4  dimensions and operating with 
a purely four-dimensional, i.e. not fully anticommuting 
7~M-as in BM-type schemes-take the fully anticommuting 
75 but replace the trace by the functional defined with the 
help of the above mentioned projections for the Cases 
i and ii. In four dimensions this is identical to taking the 
trace. However, for arbitrary n this is simply a linear 
functional T r ( . . .  ) acting on strings of 7-matrices (ex- 
panded according to (38): 

Tr(aol +a~Tu+ �9 �9 �9 ):=4ao, (43) 

Tr@5 (ao l  +a~7~+ �9 �9 - 

+.a 0123i 7u44 - ) ) ' - - 4 a  ~ (44) 4~e, . . . .  l / k 7  ]/1 " . . . . .  - -  " 

Rule II follows immediately. Note that the expansion (38) 
involves only a finite number of terms for a string contain- 
ing only a finite number of 7-matrices. Equation (6) is 

obviously the usual result�9 Equation (9) is most easily 
obtained by projecting out the coefficient a ~ by multi- 
plying the string with e" . . . .  "~7~ . . .  7~. 

These projection properties of Tr( . . .  ) can be easily 
defined also with the help of a projection operator ~ such 
that 

Tr (?sT,~ . . .  y ~ )  = : t r (~(75?Ul. . .  7,~)), (45) 

d D l  , ~ - -  - - 1 o 0 , 1 , 2 , 3 ~ , # 1  7 / ~ 4  where ~- w s J - ~ - ,  ou .... u,r . . . .  :74 and this defini- 

tion (45) makes the action of N unique. 
As a consequence for any element M e (#~(1, n - 1) one 

has 

Tr({T,, ~Ts }M)= tr(Tu~TsM)+ tr(~TsyuM) 

= tr(~Ts MT.) + tr(~TsvuM) 

= tr(74 MT.)+ tr(7~TuM) 

= tr(Tu?~ M) + tr(7~T, M) 

=tr({Tu,74}M), (46) 

where cyclicity of the trace t r ( . . .  ) and (45) have been 
used. 

This shows the equivalence of the BM scheme and our 
scheme for the case of closed fermion loops. For example 
by applying the above calculation to an action: 

Sclassical = ~ d4x ~a(D"Tu)abl~b = ~ d4x(D"7,)au(r174 ~)b, 

= Id'xtr((DUTu)(O| 

~Sregu,ari~a = I d~174 (47) 

(where ( 0 |  f#c(1, n - 1 )  by its very definition of being 
a tensor product of spinors) one finds in both schemes the 
same breaking of the chiral invariance under infinitesimal 
chiral gauge transformations of the kind 

O-*O' =(1 - iO(x)75)r  

O - O = O ( 1 - i O ( x ) T s ) .  

Also one has immediately 

Tr(?5) = Tr(TsT,) = Tr(Tsy,7~) = Tr(757,7,7,) = 0, (48) 

because the strings 1, 7,, 7,7~, 7,7~7Q do not contain terms 
/ ~ 0 , 1 , 2 , 3  . . . . . .  .47., . . -  7.o in the expansion according to (38). 

Checking the consequences of this trace definition one 
finds that the first strings that really violate cyclicity are 
strings of 75 with six or more 7-matrices. 

The reversal symmetries (10, 11) follow easily from the 
fact that our trace functional still commutes with transpo- 
sition as the four-dimensional trace does. 

Our trace functional respects the inner orthogonality 
of four-dimensional covariants which means that the 
sixteen matrices 1, 7,, 7, A 7~, 757,, 75 which are ortho- 
gonal with respect to tr( . . .  ) are also orthogonal with 
respect to T r ( . . . ) .  All other covariants belong to its 
kernel. This justifies Rule V. 

Using the equivalence between non-cyclic effects and 
effects coming from a non-vanishing anti-commutator 
{75,7,} # 0  in traces one can translate both schemes as in 
the following example. 
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in our scheme 

Tr(TsT,~ . . .  7uk)--Tr(TukTsT, l . . .  7~k 1) 

= Tr(Ts 7u~ �9 - �9 7,k)-- Tr(Ts 7 u ~ T u ,  �9 �9 �9 7 ~ , ~ - 1 )  

k - 1  

= 2  Z (-1)igu,u~Tr(TsTu, . . .  7u"~-.. 7~k-1), 
i = 1  

(where the hat symbol A above a 7-matrix means that this 
matrix has to be omitted) 

while in BM-type schemes 

tr(?~MT,~ . . . tr BM . . .  

= tr( { 7~ M, 7,k } ?u, - - -  7~k ,) (49) 

In this way any non-cyclic trace can be translated to the 
corresponding terms in a BM scheme. 

There is the question of renormalizability. In our 
scheme it is the question of the construction of a graph 
which violates its Ward-Identities. The only candidates 
for such graphs are closed fermion loops including an odd 
number of ?s'S. For an anomaly free theory the only case 
which has to be considered is the case of an arbitrary 
n-point Green's-function (n>4) with j exterior vertices 
involving ?s (J odd) and k exterior parity even vertices 
(n = k +j) .  Such a Green's-function is finite at the one-loop 
level by power-counting. What has to be discussed is such 
a n-point fermion-loop with arbitrary sub-divergencies. 
To renormalize this Green's-function we have to add the 
corresponding counterterm graphs of all 1PI sub-diver- 
gencies, that is, we need the lower-rank Z-factors. The 
sub-divergencies defining these Z-factors are graphs with 
open fermion lines. As a consequence they can be defined 
without problems in our scheme. 

Do these Z-factors compensate the sub-divergencies of 
the full Green's function? The problem lies in our reading- 
prescription. There may be sub-divergencies in the graph 
which are sensible to the reading-prescription. We have to 
prove that they are still countertermed by the unique 
Z-factors. 

Consider the fermion-loop (Fig. 6). To construct diver- 
gent sub-graphs which are sensible to reading prescrip- 
tions we have to construct divergent vertex corrections, 
that is subgraphs of the type of Fig. 7. Note that addi- 
tional loops overlapping these subgraphs do not generate 
further problems because they are finite by power-count- 
ing. Now there are reading-prescriptions which renormal- 
ize the Green's function. Any reading point choosen to be 

v 

Fig. 6. A n-point Green's function with parity even (V) and parity 
odd (A) vertices 

Fig. 7. The n-point Green's function with big black bubbles repres- 
enting divergent vertex-subgraphs sensible to reading prescriptions 

outside the divergent subgraphs will do. There is no over- 
all degree of divergence in our n-point Green's function 
(n > 4). So with one of the above mentioned reading pre- 
scriptions we have a finite result after counterterming. Let 
us denote traces calculated with a reading prescription 
starting outside divergent sub-graphs by Trout ( . . .  ) and 
the other traces calculated with a reading prescription 
starting inside divergent subgraphs by Trin( . . .  ). Let us 
further denote the full Green's function by G and the set of 
all graphs containing relevant counterterms by C. Then 
we have 

Trout(G) - Trout(C) = finite. 

For the 'in'-prescription we have 

Trin (G) -Tr in  (C)=Trout (G)-Trout (C)+ C ( D  - 4 ) .  

The only difference might come from the different way of 
evaluating the trace but this is at least an operator of 
order D - 4 .  There is no overall divergence so this oper- 
ator does not give any contribution. For the case of 
several axial vector vertices the same argument goes 
through with a symmetrized reading-prescription for the 
graph and its counterterm-graphs. 

The above argument can be summarized as that: there 
is no problem with divergent subgraphs because they all 
represent graphs with open fermion lines. This is also 
equivalent to the statement that our scheme fulfills Ward- 
Identities (apply again the open fermion line argument). 
So we do not have a chance to violate Ward-Identities in 
our scheme and as a consequence there is no problem with 
renormalization. 

For the case of anomalies we have fermion loops with 
a non-vanishing degree of divergence by itself. But still the 
anomaly is a one-loop affair in our scheme for the follow- 
ing reasons. The anomaly can be written as an alternating 
sum of current divergencies [8]. This gives to the anomaly 
an 'effective superficial degree of divergence' vanishing 
beyond the one-loop level. After counterterming one has 
a finite expression from the integrals. The trace evaluation 
gives an C ( d - 4 )  operator. Without superficial degree of 
divergence we have a vanishing result. Equivalently one 
can state that (again the open fermion line argument) 
coupling constant renormalization (which is vertex renor- 
malization) is not affected in our scheme. So the renormal- 
ization group argument of Zee [22, 23] applies without 
modification. 

All the above arguments use the fact that we do not 
have spurious anomalies for open fermion lines. So the 
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si tuat ion changes drastically when we go to schemes 
having spurious anomalies  in this sector, e.g. BM-like 
schemes. Nevertheless there are indications that one can 
restore the Ward-Ident i t ies  in BM-like schemes with ap- 
propriate counter terming [24]. 

What  happens when an anomalous  fermion loop ap- 
pears itself as a subdivergence in a bigger graph? To 
answer this quest ion note that there are only two possibil- 
ities. Either the fermion loop is part  of a subdivergence as 
a whole. In  that case the result for the fermion loop 
appears as a factor in the whole result. No matter  what the 
(possible divergent) value of this factor is the coefficients of 
such terms must  be zero in an anomaly-free theory. Or the 
fermion-loop is 'cut open'  by a subdivergence. Than  the 
open fermion line a rgument  applies. 
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