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Abstract. A method is given to calculate exactly the stardiscrepancy of arbitrary 
finite plane sets. Using this method the stardiscrepancy of the sequences of 
Hammersley is obtained. The recursive structure of these sets allows for a proof by 
induction. 

I. Introduction 

The stardiscrepancy can be seen as a measure for the deviation 
between the empirical distribution of a given set in the unit hypercube 
and the uniform distribution. Therefore, it is for instance used by 
statisticians as a test for uniformity. Moreover, it has been studied 
extensively in number theory and due to its applications in numerical 
quadrature it attracted also the attention in numerical analysis. A 
survey of this theory has been given by NIEDERREITER in [10]. 

Given a subset S of [0, l) k containing N elements and a hyperrec- 
tangle ~ c [0, 1] k, then the positive rest of ~ versus S is given by 

A(~;S)  
E + (~; S ) : -  vol (~) (1.1) 

N 

where A (~; S) is the number of elements in ~ c~ S and vol (~) is the 
volume of ~. 

E -  (~; S ) :=  - E + (~; S) (1.2) 
and 

E(~;  S ) : =  IE + (~; S)I (1.3) 

are respectively the negative rest and the rest of ~ versus S. The 
stardiscrepancy is given by 

k 

D } ( S ) : =  sup E ( [  I [0, ai) ;S).  (1.4) 
O<~ai<~l i = l  
l <~i<~k 
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Other  not ions of  discrepancy have been studied in the literature such 
as the 5r which is the ~eZ-norm over [0, 1] k of  the 

k 
funct ion E ( I  ] [0, ai); S). 

i=1 
When  the set S is clear f rom the context, we will write E(~) ,  

E + (~), E -  (~.) instead of  E (~; S), E + (~; S), E -  (.~; S). We note that  
the positive rest is additive with respect to ~, in that  sense that  
~'~ = ~'~1 L) "~2; "~1 ("1 ~'~2 = 0 implies that  E + (~) = E + (~l) + E+ (~2). 
The same holds true for the negative rest. 

In the past  decennia, a lot of  research has been done to find sets 
with the lowest stardiscrepancy. A mot iva t ion  herefore is the fact that  
there exists an upper  bound  for the quadra ture  error 

1 u 
- -  ~ f ( x . ) - -  ~ f ( t )  d t  
N n = 1 [0,11 k 

having the form C (jr). D*  (S), where C (J) is a constant  only depending 
o n f a n d  S = {Xl,...,XN}, [10]. 

Sets which often have been studied in this context, are the so-called 
sequences of  Hammersley.  In order to define them, the functions 

Or (n), r >/ 2 are in t roduced:  when n = ~ ajfi, aje {0, 1 , . . . ,  r - 1} 
then j=0 

oo 

a i r  - j - 1  . (1 .5)  
j=0  

These functions ~r (n) are also called "radical  inverse funct ions."  A set 

{(N,~r,(n),...,~k_l(n)) O <~ n <~ N--1} 

where k >~ 2 and the natural  numbers  ri, 1 ~< i ~< k - 1 are pairwise 
coprime, is called a sequence of  Hammersley.  HALTON proved in [6] 
that,  when S is a sequence of  Hammers ley  in [0, 1) k, then 

D*(S)  = O (N -1 ( logN) k-l) . (1.6) 

The constant  of  Hal ton  has been successively improved by MHJER [8] 
and FAURE [4]. But actually no better order of magni tude  has been 
found for the stardiscrepancy of  a finite subset of  [0, 1) k. 

Exact results for the stardiscrepancy are only known in one and 
two dimensions.  In two dimensions,  for instance, a more  extensive 
study of  the sequences 
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) } o~r. = , ~r (i) 0 ~ < i ~ r ' - - i  (1.7) 

has been done. HALTON and ZAREMBA calculated the stardiscrepancy 
and the ~2-discrepancy of  the sets or. for the case r = 2, [7]. W~TE 
studied in [12] the ~2-discrepancy of  the sequences or. for arbitrary 
natural  numbers r ~> 2 and n >t 1. How to calculate in arbitrary 
dimensions the stardiscrepancy of  a given finite set S in a finite number  
of  steps, is shown by NIEDERREITER in [9]. 

In section II, we will derive a formula by which the number  of  steps 
to calculate the stardiscrepancy in two dimensions is still reduced. The 
only restriction we impose on the sets S studied is that no two points of  
S have the same abscis or ordinate. F rom the point of  view of  sets with 
low stardiscrepancy, this restriction is not  important.  In section III, we 
will calculate the stardiscrepancy of  the sets mr.. Our method is based 
on our formula for the stardiscrepancy in two dimensions and on the 
recursive structure of  the sets cot, which allows for an inductive method 
to be used. 

We use the standard notations: [x] for the largest integer smaller 
than or equal to x and {x} for x - [x], x being a real number. 

II. The Calculation of the Stardiscrepancy of an Arbitrary Set 

When S is an arbitrary subset of  [0, 1) k with N elements, then we 
define for all j, 0 ~< j ~< N, the following sets: 

k k 

Oj: = { [ I  [0, bi) I 0 <~ bi <<. 1, A (1--[ [0, b/); S) = j and V e = (el, �9 �9 ek) 
i=1  i=1  

k (2.1) 
with ei >~ 0 and not ~ - 0: A (1-[ [0, bi + ei); S) > j} 

i= l  

k k 

oj:= {1-[ [0, bi] l0 < b; < 1, A (y[  [0, bi]; s)  = j and V e = (e l , . . . ,  ek) 
i= l  i=1  

k (2.2) 
with e~ >~ 0 and not e = 0: A (y[  [0, bi - e~]; s)  < j} 

i=1  

Oj is the set of  maximal hyperrectangles containingj  points and oj is the 
set of  minimal hyperrectangles containing j points. With these 
notations one can formulate the following 1emma: 

Lemma. The stardiscrepancy of  a set S c [0, 1) k with N elements is 
given by 
19" 
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D}(S)  = max max {max E - ( O ) ,  m a x E  + (o)}.  (2.3) 
O<~j<~N O~Oj oeoj 

Proof: We follow Niederreiter 's p roo f  of  the one dimensional  case 
[9]. One can easily see that  

D~v (S) = max  sup ~ ,  
where 0 ~j .< N 

X j =  -~ - -  Vi, l<.i<~k:O<~x~<.l andA(I - I [O,x~) ;S)= j . 
"= i = l  

Since ~ - x is a convex function,  one has 

J 
supXj = maX{moa2{ J - v o l ( o ) } i m a m {  v o l ( O ) -  ~ } } .  

For  every maximal  hyperrectangle O containing j points,  there is a 
minimal  hyperrectangle o containing these points.  Since evidently 

J - vol (O) < J - vol (o) 
N N 

and 

J J 
vol (o) - ~ < vol (O) - ~ ,  

one only has to consider positive rests of  minimal  sets and negative 
rests of  maximal  sets. []  

In the next theorem, we convert  formula  (2.3) to a more  detailed 
one for sets S = {(x. ,y.)[  1 <~ n <~ N} ~ [0, 1) 2 satisfying 

i < j ~ xi < )9 and Yi r Yj- (2.4) 

F r o m  the point  of view of  sets with low stardiscrepancy, this 
restriction is not  impor tan t  since for each set S '  which does not  satisfy 
(2.4) there exists a set S satisfying (2.4) such that  D}(S)  <~ D}(S') .  

The crucial point  in deriving a formula  for the stardiscrepancy in 
[0, 1] 2 is the stepwise ordering of  the y-coordinates of  the points  of S. 
Let the numbers  gik, 1 <. k <~ i, be the y-coordinates Yk, 1 ~< k ~ i 
arranged f rom smaller to bigger. Let ti, 1 ~< i ~< N be the place of  yi 
between gi-1,k, 1 ~< k ~< i - 1. This means 

tl = 1 (2.5 a) 
and for i >~ 2 
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t i =  1 ~--~0 <~ yi < gi_l,1 

1 < t i <~ i - 1 ~"-~gi-l , t i-I  < Yi <<- gi-l , t~ 

I i = 1 ~-'~gi-l,i-1 < Yi < 1 . 

(2.5b) 

(2.5c) 

(2.5d) 

In [0, 1] 2 the maximal  and  minimal  rectangles can be classified as 
follows. Firstly, we in t roduce  the set 

~ l  (S) : = {[0, x~) x [0, 1 ) l l  ~< i ~< N} w {[0, 1)x [0,yi) [ 1 ~< i ~< N} 
(2.6) 

= {[0,xi) x [0, 1)[ 1 ~< i < ~ N } w { [ O ,  1 )x[O,  gui )[1  <. i < . N }  . 

Accord ing  to formula  (2.4) and the definit ion of  the numbers  gNi, it is 
clear that  

[0, x~) x [0, 1)~ 0 i -1  (2.7a) 
and 

[0, 1) x [0, gin) ~ 0~_1 �9 (2.7b) 

Secondly,  we in t roduce  the set 

~ 2 ( S ) : =  { [0 ,x~]x [0 ,y j l l  ~< i~< N } .  (2.8) 

F r o m  (2�9 one knows that  

[0, x~] x [0, y~] ~ or,. (2.9) 

Finally,  we in t roduce  the sets 

~3 (S) : = {[0, xi) x [0, yj) [ 1 ~< j < i ~< N, yj. > yg} 
(2.10) 

: = {[0, xi) x [0, gi -  1, k) [ 1 <<. i <<. N ,  t i ~ k ~ i - 1 } 

and 

~ 4  (S)  " = {[0, xi] x [0, yj] [ 1 ~ j < i ~ N ,  yj > Yi} 
(2.11) 

�9 = { [0, x;] x [0, g i -  1. k] [ 1 ~< i ~ N ,  ti ~< k ~< i - 1 } 

~3 (S) is a set o f  maximal  rectangles, ~4 (S)  contains  min imal  
rectangles�9 It is clear that  

A ([0, xi] x [0, gi -  1, k]; S)  = A ([0, x 3 x [0, g i -  1, k); S )  + 2, 

and it follows f rom (2.5) and the definit ion of  the numbers  g~k that  for 
a l l i ,  k, 1 4 i ~ < N a n d t ~ < k ~ < i - l :  

[0, xi) x [0, gg_ l, k) E Ok_ 1 (2.12 a) 
and thus 

[0, x/] x [0, g i -  l. k] ~ ok + l �9 (2.12 b) 
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From the formulas (2.7), (2.9) and (2.12), we obtain the following 
theorem: 

Theorem. I f  S = {(xn,y , ) l  l <~ n <<. N} c [0, 1) 2 satisfies condition 
(2.4), then 

i - 1  i - 1  tg 
D } ( S ) =  max X i - - - - , g N i  ' N xiYi, 

l<.i<.N N N 

m a x  m a x  x i g i _  1, k , x i g i -  1, k , 
ti<~k<~i_l N N 

where the numbers tg and gi_l,k, 1 <<. i <<. N and t~ <~ k <<. i - 1  are 
defined as above. 

III. The Exact Calculation of the Stardiscrepancy of the Sequences 
of Hammersley in Two Dimensions 

In [2] FAURE proved that for all i , k ;  0 <<. i<~ r n - l -  1 and 
0 ~ < k ~ < r - l :  

k 
q~r(i + k r  "-1) = q~r(/) + - - -  (3.1) 

r n 

Therefore, owing to (1.7), 

cot,= ~ + r ' ~ b r ( i ) + - ~  O < . i < . r ' - l - - 1  and O ~ < k ~ < r - 1 } .  

(3.2) 

This recursion property is fundamental in the exact calculation of the 
stardiscrepancy of the sequences of Hammersley. The following 
lemma is from FAURE [3]. 

Lemmal.  gn, r,n>~ 1 andr>12: 

0 E , r pk 

with uk, Pk e N for  k = I, 2; 

U k < r pk and Pl + P2 = n . (3.4) 

It can be seen from (3.2) that one also has 
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where 

~41(O)r~) "= 0, V- l -  • 0 , ~ r q )  + V 

0 ~ < j < i ~ < r  " - l - 1 ; ~ r ( J ) > q ~ r ( i ) ; 0 ~ < k ~ < r - 1 }  

(3.8) 

+ a ,  F + a  • = 
(3.5) 

= + a, rp----- ~ + a x , r p2 

u l + l  
Where 0 ~< a < 1 - -  and uk and Pk, k = 1, 2 satisfy (3.4). 

rpt 
In [5] GABAI mentioned the following lemma, which can also be 

proved using recursion relation (3.2). 

Lemma 2. For all points ( x , y ) ~  [0, 1] 2, one has 

E -  ([0, x) x [0,y); or.) ~< 0 .  (3.6) 

From this lemma, it follows that it is not necessary to consider the 
negative rests of the elements of N1 (mr,)w N3(o~r,) to calculate 
D*,(~or, ). By the following lemma which is due to PEART [11] the 
number of positive rests of the elements of ~2 ((Dr") k..) ~4 ((Dr't) to be 
studied is reduced by the half. 

Lemma 3. The sets ~or. are symmetric with respect to the main 
diagonal o f  the unit square, f o r  all natural numbers n >>- 1 and r >~ 2. 

Our aim is now to find the rectangle belonging to 
~2 (cot~ w ~4 ((or~ such that its positive rest is equal to D*. ((or.). We will 
therefore compare the rests of these rectangles mutually. 

Due to formula (3.2) and the definitions (2.8) and (2.11) of the sets 
~2 (S) and N4 (S), one has 

~2 0or~ �9 = 0 , ~ +  x O,~br(i ) 

(3.7) 

O <~ i <~ r n-1 - 1;O<<.k<<. r -1  t .  

We split ~4 (~or.) into two parts: 

~4 (09rn) : = ~41 (60rn) k_) ~'~42 (O)rn), 
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i and  42  rn, ____ + IX[0, + t 
(3.9) 

<<.j,i ~ r ~-~ - 1; q~r(j) > q~r(i); 0 ~ l < k ~< r -  1 t . 0 

We will show now that it suffices to consider the rectangles of~42 (COt~ 
satisfying l - k - 1. For this purpose, we calculate for every i , j ,  k and 
l satisfying the conditions of  ~42 (COr n) the positive rest of the rectangle 

k IO, r/~n q-k]x[O,~rq)q " ~nn~ll~[O,r/~n -{-klx[O,(/Ir(j)--~-/l = 

'i + rk - I  (J )+--r  n @r (J)+ - - 7 - - t "  (3.10) 

From formula (3.2) one can see that this rectangle contains the 
k - l -  1 points with ordinates: 

/ + 1  k - 1  
r  q )  + - - ,  . . . ,  e ' r  ( j )  + - -  r n r n 

As the volume of the rectangle (3.10) is smaller than ( k  - l - 1 ) / r  n 

it follows that its positive rest is positive. 
We may thus restrict ourselves to the rectangles ~42 (COrn) satisfying 

l = k - 1. Therefore, we only have to consider the positive rests of  
the elements of 

and 

~2(corn)'= {IO,-~-{-@lMIO,(l)r(j) -}-kl ] 

0 ~ < j <  i ~  r "-1 - -  1; ~[}r (]) > ~5~(i) 

or O < . i < ~ r ~ - l - - 1 ; j = i  and O ~ < k ~ r - l t =  
) 

= "~2 (60r=) k.) ~41 (Or") 

1 k - 1  

0 ~< i ~< r n-1 - 1; 0 ~<j  ~< r n-1 - 2; ~r(J)  >~ ~r  (i); 

0 ~ < k ~ < r - 1 } .  

(3.11) 

(3.12) 
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This last set is empty for n = 1. We look now for the values of k for 
which the positive rests of the elements of N~ (~or,) and ~ (cot,) are the 
largest. To do so, we elaborate on the following quantities: 

" - e" ( 3 . 1 3 )  8i+krn-l,j,k i,j,O 

where i,j and k satisfy the conditions of ~ (cot.) and 

" - e -~. (3.14) Ei+krn-l,j,k+(r-1) z,j,O 

where i,j and k satisfy the conditions of N~ (~or.). We used here as 
notation: 

(/]E " " -  E + ( 3 . 1 5 )  8I, J , K . - -  0, X O , ~ r ( J  ) ~-~-~ . 

We detail the calculations for the most difficult case, namely (3.14). It 
follows from the formulas (3.1) and (3.15) that (3.14) is equal to the 
positive rest of 

( ~ , ~  + k l  x IO, q)r (j)) (3.16) 

~ ' ~ + r  x ~r(j),cb,.(j)+r~5_l + ~ (3.17) 

1 k - 1  

Now (3.16) is equal to 

+ x �9 

r-_- 1 r 

It follows therefore from (3.5) and the additivity of the positive rest 
that the positive rest of the rectangles (3.16) is zero, such that we may 
restrict ourselves to the rectangles (3.17) and (3.18). I f j  ~< i, then the 
union of (3.17) and (3.18) contains the points with ordinates 

and 

1 k 
(Pr (J) + --r"' '"-, q~r (]) + r~ (3.19) 

1 1 k - 1  
~r (J) + rn-~'" " ", q~r (J) + ~ + r ~ (3.20) 

In the case j > i, this union contains the points with ordinates 
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k - 1  
J r ( J ) , . . - , J r ( J )  + -  (3.21) /~n 

and the points with ordinates (3.20). In both cases, we conclude that 
the union of  the rectangles (3.17) and (3.18) contains 2 k points. 

Once this is known, one can derive by simple calculations that 
(3.14) is equal to 

2 k  ik  k 2 i ( r -  1) k ( r -  1) 
r n r2 n rn+l r2 n r~+l "--f~ (i,k) . (3.22) 

In the same way, it can be seen that (3.13) is equal to 

k ik  k 2 
r n r2 n rn+l. f~  (i,k) . (3.23) 

With these notations one has 

D*. (mr,) = max A w B 
where 

A ' =  {e~"j,0 + max {f~ (i,k)}10 <<,j< i<~ r n-1 - -  1; 
O<~k<~r-1 

q~r(J)>~r( i)  or 0~< i~<r  n - l -  1 ; j = i }  

and for n > 1 

B : =  {6inj, o-~ - max ~ ( i , k ) } l  
O<<.k<~r-1 

0 ~< i ~< r n-I -- 1; 0 ~<j~< r n-I - 2; q~r(J) >~ q~r (i)} �9 

while for n = 1 B is empty. 
One has 

max { f ~ ( i , k ) } = f ~ ( i ,  I21)  
O~k<~r-1 

and 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

([r+ll) 
max {f~ (i,k)} = f~  i, ~ . (3.28) 

O<<.k<<.r--1 

Using (3.27) and (3.28) we show now that for n > 1 

max B >~ max A . (3.29) 

(jr) 
Comparing the functionsf~' i, and f{' i, ~ one has that  
for 0 ~< i~<K: 
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(3.30) 

_ rn--2~  forrodd 
K = r (3 .31 )  

I f n- 11 for f even. 
2 (r - 1) 

F o r  the case K < i ~< r n-1 - 1, we compare  each posit ive rest (We 
remark  that  this case does no t  occur  for  r = 2.) 

E + 0,77 + x 0, q~,(/) + , (3.32) 

belonging to A, with the posit ive rest 

([ r l) E + + - - - x  0, ~ ,  (/) + -;- . (3.33) 
r 

F r o m  i > K and (3.31), we can conclude  that  (i-rn-2)/r"> O. 
Therefore ,  we k n o w  that  this last rest belongs to B for  the case that  r is 
odd  and is smaller than a rest belonging to B for  the case that  r is even 
(see fo rmula  (3.28)). 

F r o m  (3.25) we k n o w  that  

0 ~<j < i~< r n-1 - 1; qs(/)  > (~r(0 (3.34a) 
or 

0 ~< i ~< r ~-~ - 1 ; j  = i (3.34b) 
and 

 I21 
W e  compare  n o w the rests (3.32) and (3.33). F r o m  (3.34) and  the 

definit ion o f  the funct ions  q}r, it fol lows that  there exists a J,  
0 ~ < J ~ < r  ~ - 1 -  1 such that  

J 
~b,q) r , _  1 . (3.35) 

W e  conclude  f rom (3.35) tha t  the difference be tween  (3.33) and (3.32) 
is equal  to the posi t ive rest o f  

77 + , r ~  + x 0, + . (3.36) 
r r L r "-~ 7 ;  
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One has that the number  of  points in the intersection of (3.36) with mr" 
is equal to 

A ( ( /  k / ~ - ~ + -  - - + - -  
r ' r  n 

minus 

( ( ' i - - r  n-2 k + l i 

A \ \ r" + -- 'r  r ~ 

k + 
1. x + ~ ; O)rn (3.37) r r l 

kl]  [ k] 
+ r x 0,r--7~_~+V "oJr (3.38) 

and as j < i one has that (3.37) and (3.38) are respectively equal to 

A 7 + 7 , 7 + - -  • ;0~ r L 'r"-7  
and 

F ) ,340, A - ~ + - -  r , +  • 0 "o)r, . r ' r k ' r n - 2 }  ' 

It follows then from (3.5) that (3.39) is equal to J and (3.40) to [J/r]. 

Hence it follows that the positive rest of (3.37) is equal to 

- - - + ( 3 . 4 1 )  r n r ~ _ l +  ~ x ~-2 r n r ~- " 

Due to (3.34), one has that k = [r/2]. Therefore, (3.41) is positive 

{ ' / } > [ 2 ] ( ! - 5 ) "  (3.42) 

If  the rest (3.32) does not satisfy this condition, it can be seen that there 
exist values i' and j '  satisfying (3.34) and such that the rest 

/+ (I0, f~n "q- kl x [0,(/)r0? -3vkl) 

is larger than (3.32). Therefore, we conclude from (3.30) that (3.29) is 
indeed satisfied. Using (3.24), (3.26), (3.28), (3.29) and the symmetry 
of the sets ~r" with respect to the main diagonal, the results obtained 
until now can be summarized in the following lemma. 

Lemma 4. V r, n G No wi th  r a n d  n >~ 2 one has  

D*(o)r.) = m a x  {Ze,~l 0 ~< i , j  <~ r n-2 -- 1} , 
where  

(3.43) 
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(3.44) 

x [ O , I ~ - ~ - l / r + I ~ 2 1 1 / r ~ + j / r n - l l ) .  

Using this lemma we will derive at the end of this section an expression 
for D~ (~or2). By an analogous reasoning as the one leading to (3.24) we 
may conclude from Lemma 4 that for the case n ~> 3 

D* (cot,) = m a x  ( ~ i ? l  + Kr Jl- max {g~ (L, i), g~ (L, i)} ] 
O<~L<.r--1 

1 ~ < i ~ < r  n - 3 , 0 ~ < K ~ < r  n - 3 -  1 and (3.45) 

1 <~ i + L r  ~-3, 1 + Kr  + L <~ r n - 2  - -  1} . 

where 
" �9 - ~ "  = (3.46) g l  ( L , O  : ~ in+Lrn-3 ,1+Kr+L i , l+Kr  

- r2 , -- i L r  2 + L (-- r n - 2 - r ) + L ( r  n - r ~ - l ) - L 2 r  ~-1 

and (3.47) 

g~ (L,/)" a n  - ~inl - -  (3.48) ~- J ' i + L r n - 3 , 1 + K r + L + ( r - 1 )  +Kr - -  

_ 2n ( -  i(L + r - 1 ) r 2  q- L [ ~ ] ( - -  rn-2-- r) -q- L r  n -  

(3.49) 

- [ ~ ] r ( r  - 1 )  - L2rn-1) . 

The expressions (3.47) and (3.49) can be derived in the same way as the 
expressions (3.23) and (3.22) for f~ (i, k) and f "  (i, k). 

�9 2 

Continuing with the case r odd we introduce the function 

1 
hn(i).= ~inl+Kr _ ~n-1  (3.50) - -  i, I + K  

r 

which makes the link between D* (cot~ and Dr*.-1 (0Jr.- 0. One can prove 
that this function is equal to 

l _ ( r - 1  r i ) ( 3 ~  2 2r 1~.  
r2 " \  2 + + 2 /  (3.51) 

The following lemma is fundamental  for the derivation of D* (mr~ 
for n ~> 3. 
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D :  ((Drn) ~--- 

L e m m a  5. When n and k satisfy n >>. k + 2, k >~ 1 then 

{{rkl-~ ~ +A~,k(i)] m a x  ~ i ,  1 + Kr 
O<~K~r "-(k+2)- 1 

l ~- n- (k- l) U ~ ~'i,l+Kr -~- B, ,k(i)  

r r-- 1 

1 ~,-(k-O 
U tr-~-~ ,,I+K~ + c,,,k(o] 

[:_(k+3)(r~l) r;l_]</~<r._(k+2)} } 

where 

A.,k(i) "= Z h "-j i+ ~, r "-h + 
j=O h=j+4 

+g~-J , i+ ~ : -h  
h=j+4 

(3.52) 

+ 1 ~n_(k_l)(r~2 1,i); 
r-~T-16 2 

+ (3.53) 

.2,( ( ) 
Bn, k( i ) '= ~ ~ h n-j i +  r n-h + 

j=O \ T / / h = j + 4  

n j ( r _  1 ( ~ )  k+2 ) )  + gl- ~ - - ,  i+ Z r"-h + (3.54) 
h=j+4 

1 crn_(k_ 1 ) 

and 

C.,k(i)'= E r7 hn-J i +  E r n - h +  rn-(k+2) + 
j=0 h=j+4 
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+ g~-J , i + E 
h=j+4 

Proof." We prove this lemma by induction. 

1) For the case k = 1 the proof follows from formula (3.45). One 
can prove that 

(3.55) 

r - 1  1 
[ r-i] 

when i > r n-4 
2r 

and on the other hand that 

max{g~(L,i)[O <<.L < ~ r - 1 } _  gn (~__1 i) when 1 ~< i~< r n-3 
- -  2 ~ ~ 

Formula (3.52) follows from the comparison of the functions 

g ] ' ( ~ 2 1 , i ) , g ~ ( ~ 2  3,i)  and g ~ ( ~ 2 1 , i )  . 

2) We suppose now that we proved formula (3.52) for k. Then it 
follows from (3.46), (3.48), (3.50) and the fact that 

r n - ( k + 2 )  r -  1 rn (k+3) 
_ _  - -  _ _  r n - ( k + 3 )  + - - ,  

2 2 2 
that 

f 1 1 l 
D*o (~or.) = max J~i"i-+Xr + -z-max {g,l-k (L, i),g'~ -k (L,/)} + 

O<~K<~r~_(k+3)_l  l .F r ~ 

+ h"(i + L r  n-(k+3)) + A,,k(i + Lr  "-(k+3)) 

r - 3  1 <. i <. r n-(k+3), 0 ~ L <. - -  or 
2 

l~<i~< 2r ' 2 

max {g]' (L, /)10 ~< L ~< r -  1} = 
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{ ~  1 t),g 2 (L,i)} + U ~inl-+kKr + 7~ max {gT-k (L," , -k  

+ hn(i + Lr"-(k+3)) + Bn, k(i + Lr~-(k+3)) I 

r-1} 
-2 2-r < i <~ rn-(k+3)' L - -  2 

1 
U ~ + ~ max {g7 -k (L, i), g~-k (L,/)} + 

q- hn(i -4- Lrn-(k+3)) + Cn, k( i  q- Lrn-(k+3))l 
I 

I 

<<. i <~ r n-(k + 3), r + 1 1 ~ <<. L <<. r - 1  
) 

(3.56) 

To prove formula (3.52) for k + 1 it suffices to calculate the maxima of 
the functions 

1 
- ~ g f - k ( L ,  i) + hn(i + L r  n-(k+3)) + H.,k(i  + L r  "-(k+3)) , 

where j = 1, 2 and Hn, k can be An, k, Bn, k or Cn, k, for the values of 
(i, L) indicated in (3.56). (3.52) follows from a comparison of these 
maxima. []  

Using this lemma we prove now the following theorem, stating the 
exact result for the stardiscrepancy of the sequence fOrn in the case r 
odd. 

Theorem 1. I f  r is odd then one has for every natural number n >f 2 
that 

O~n(~176 r - - I  1 (5 !) 1 - n + + (3.57) 
4r" ~ 4 4r  2n 

and this value is equal to the positive rest of  the square 

+ + (3.58) 
r 2 r  ~- x r 2 r  n 

Proof. We treat first the case n ~> 3. It follows from (3.52) that 

1 
D* (mr,) = ,--7~_~ J 31,, + C,,,_2(1) . (3.59) 

It can be verified that 
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( ) ( ~ ' - 3  1 r - 1  1 2 + 1  r + l  
1,1 r 3 --~-r3 - t -~ + 2 r - 2 r 3 2 r -2r ~ . (3.60) 

Formula (3.57) follows then from (3.59) and (3.60) by substituting the 
expressions for the functions h ~, g7 and g"2 in (3.55). Formula (3.58) 
can be derived from the arguments of the function g~ in Cn, n-2 (1). The 
case n = 2 is a consequence of Lemma 4. [] 

For r odd we did essentially the following. Starting from Lemma 4 
we reduced the number of arguments to be considered for the 
calculation of D* (~or,) by a factor r and using the function h" we made 
the connection between the remaining arguments for D* (o)r,) and the 
arguments for D*-~ (C0rn-0, and so on. In the case r is even, one has to 
make a distinction between even powers of r and odd powers of r. 
Therefore one has to reduce the number of arguments to be considered 
for the calculation of D* (~o~,) by a factor r 2 and make the connection 
between the remaining arguments for D*, (co~o) and the arguments for 
D*n-~ (mr, 0" Using this procedure one can prove by induction for the 
case r even a lemma similar to Lemma 5, which leads to the following 
theorem. 

Theorem 2. For r even and for  all even natural numbers n >~ 2 one has 

D*, (~o~.) - 
4r"(r  + 1) 

[ r + 2  
= E+ 0 '2(r  + 1) 

and for  r even 

4r"(r  + 1) 
D r . ( m r .  ) - -  

r2. 2r+ ) 
+--r" + 4 ~ + i - )  2- - 4 - ~  1 + ( ~ + ] ~ / =  

• 
2rn(r + 1) [0'2-(-r-; -1) 2rn(r + 1 

and for  all odd natural numbers n >>. 3 one has 

r2n 1 (5 5 r + 4  ) 

+ V  4 + 4 r ( r + i )  j + 

, 1 6r+  

+~-G 4 r 4r  2 4rS(-r+-l)ZJ 

]E ]) = E  + + 2 r + 2  r + 2  r + 2  2 r Z - r - 2  
r(r + 1) 2r"(r  + 1) x 0 , 2 ( r + l )  + 2r"(r-+--1 i " 

This theorem generalizes the formulas for D*o (COZn) obtained by 
HALTON and ZAREMBA [7]. Finally we treat in the last theorem the case 
n = 1 for all values of r. 
20 Monatshefte fiir Mathematik, Bd. 101/4 



278 L. DE CLERCK: Exact Calculation of the Stardiscrepancy of Plane Sets 

T h e o r e m  3. For  al l  r one  has  

[ r /2]  + 1 [ r /2]  2 
D*(c~ - r r ~  - (3.61) 

= 0 r [ ]jr]x[o (3.62) 

P r o o f  F o r m u l a s  (3.61) a n d  (3.62) f o l l o w  f r o m  the  f o r m u l a s  (3.23), 

(3.24), (3.25) a n d  (3.26). 
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