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1. Introduction 

It is well known that every left module M over a ring R can be embedded 
in an injective left R-module. In this note, we consider the following more 
detailed questions: If M has finite length (i.e. has a finite composition series) 
does there exist an injective module containing M which also has finite length ? 
Even more generally, do there exist any injective R-modules of finite length ? 

This problem was brought to the fore recently by  AZUMAYA [2] who 
showed that in extending Pontryagin-type duality to modules over a ring 
with minimum condition, the dual module of M must be defined as Horn R (M, Q) 
where Q is an injective module of finite length containing all simple left 
R-modules (cf. also [9, w 4] [11, p. t08]). 

The answer to the questions posed in the first paragraph is clearly no as 
long as R is arbitrary (e.g., R = the integers). However, we restrict ourselves 
to rings with left minimum condition where the problem had its origin. Here 
the" answers are again no, because the condition for embeddability turns out 
to be equivalent to an additional, nonvacuous finiteness condition on the right 
structure of the ring (Theorem t), If we restrict ourselves further to tings 
with both minimum conditions, our question becomes equivalent to a gener- 
alized version of an old question of ARTIN'S [5, p. t76] and [8, p. 6]: If a 
division ring has finite left dimension over a division subring, does it also 
have finite fight dimension ? The generalized problem is the same with 
division rings replaced by semisimple rings with minimum condition. We 
conjecture that the answers to all these questions are still no, but in view of 
the complications inherent in division rings infinite over their centre, finding 

�9 a counterexample seems to be quite difficult. 
On the other hand, we can show that the answers to our embeddability 

questions are yes if the ring is sufficiently hke a finite dimensional algebra 
(the extra hypothesis in Theorem 3 if imposed on all the simple homomorphiq 
images is actually equivalent to  assuming a polynomial identity). I t  should 
also be noted that quasi-Frobenius rings satisfy our embeddability condition. 

In 3 we drop all minimum conditions and assume that every simple left 
R-module is contained in an injective module of finite length. Then the 
radical turns out to be nil and nearly nilpotent (Theorem 4). If in addition 
R is commutative our assumption is satisfied if and only if every ring of quo- 

1) P a r t  of t h i s  w o r k  was  d o n e  w h i l e  t h e  a u t h o r s  w e r e  on  l e a v e  a t  t h e  I n s t i t u t e  for  
Advanced Study, Princeton, N.J .A.  ROSENBERG was there supported by N. S. F. grant 
G-1974 and D. ZELINSKY WaS a John Simon Guggenheim Fellow. 
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tients R M (M a maximal ideal of R) satisfies the minimum condition (Theo- 
rem 5). Examples of rings satisfying the latter hypothesis are furnished by 
Theorem 6, which is due to KAPLANSKY: R is (von Neumann-) regular if and 
only if R M is a field for every M, or equivalently, if and only if each module 

'RIM is injective. 
2. Rings with minimum condition 

We consider only rings with unit but  we begin by imposing no finiteness 
restrictions on the rings. For such rings it seems more appropriate to con- 
sider, not finitely generated modules, but modules of finite length, i.e. modules 
having finite composition series. Of course, for rings with minimum condition 
these two classes of modules coincide. 

According to ECKMANN and SCHOPF [d] every module A over a ring R 
has a unique injective, essential extension moduleS), called the infective hull 
of A and written A. The injective hull of A is contained in every injective 
extension of A and contains every essential extension of A. Moreover, the 
following facts follow readily: 

a) If A is an essential extension of B, then A =/~.  
b) If A = A I ~ 3  . . . O A , ,  then -4 = - ~ 1 ~ ' " G - 4 ~ .  

c) A module A is embeddable in an injective module of finite length if 
and only if A has  finite length. 

d) The  injective hull of A has finite length only if A has finite length. 
e) Let S denote the socle of A, i.e. the sum of all simple submodules of A. 

If A has finite length, A is an essential extension of S and thus .4 = S by a). 
Moreover, if S-----Sx (~. . .  �9 Sn is written as a direct sum of simple modules, 
S =  $1G. . -  �9 S~ by  b). Cf. [6, w 2 and w 3]. 

We may, therefore, conclude that a module A of finite length is embeddable 
in an injective module of finite length if  and only if each simple submodule 
of A has an injective hull of finite length. Thus having reduced the embedd- 
ability of arbitrary modules in injectives of finite length to that of simple 
modules, we proceed to our main device 

LEMMA 1. Let R be a ring, R = N O __) N 1 )__... ,_) N k = 0, a chain "of two-sided 
ideals in R. For every'left R-module A define the (Loewy-) series 

0 =Ao(=AI(=. . . (=A~=A 

by setting As=annihilator o] N i in A = { x C A ] N i x = O  ). Then there is a 
natural left R-monomorphism 3) 

A~+I/Ai--> Hom R (NdN/+ 1 , A). 

I] A is in~ective, this is an isomorphism. 

2) An extens ion module  of A is essential  if every  nonzero submodule  has  a nonzero 
intersect ion wi th  A. 

8) The H o m  below is a left R-module  by  vi r tue  of the  r ight  operat ions  of R on N//Ni+I, 
viz(rg)(n)-~q)(nr), for r in R, ~ in N//N/+I, 9 in HomR(N//N/+t,  A). 
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PROOF. We may identify A i with HomR(R/Ni, A) by letting correspond 
to x in As the homomorphism sending l + ~ into x. Since 

0 -~ ~ /~+1-~  R/~+I-~ R /~ -~  o 

is exact and the mappings are two-sided R homomorphisms We have an exact 
sequence of left R-modules 

0 -+ HomR (R/N~, A) --~ HomR (R/N~+I, A) -+ HomR (Nd~+l,  A) 

and, in fact, we can adjoin a zero on the right to get a five term exact sequence 
in case A is injective [3; II, 4.6]. Making the above identification we obtain 
the desired monomorphism (isomorphism if A is injective). 

LEMMA 2. With notations as in Lemma 1, suppose that each Ni/Ni+ 1 is a 
semisimple ( =  completely reducible) left R-module. Let A be a le]t R-module o~ 
[in#e length with socle S. Then A is embeddable in an injective module o] finite 
length q and only i] HomR(NdNi+x, S) has finite length as a left R-module/or 
i = 0 , 1  . . . . .  k - - l .  

PROOF. By Lemma t, A is the result of a finite succession of module 

extensions with factors HomR(NdNi+l, ,4). Thus 2t has finite length if and 

only if Homg (N~/N/+I, A) has finite length for all i. Now every homomorphism 

of a semisimple module has a semisimple image so that  HomR (N//Ni+I, ,4) = 

Horn R (NdN~+I, S') where S' is the socle of A ~. However, S '=  S because if T 

is a complement of S in the semisimple module S', Tc~A = 0 ; b u t  2~ = S  by 

e), thus A is an essential extension of S and so T = 0 and S = S', proving the 
Lemma. 

As a direct consequence of Lemma 2 and the fact that every module over a 
semisimple ring (with minimum condition) is semisimple, we have 

THEOREM t. Suppose N is a nilpotent ideal in a ring R and R /N is semi- 
simple with minimum condition. Then a left R-module A with socle S is con- 
tained in some injective module o/finite length i] and only q the left R-modules 
HomR(Ni[N i+1, S) have finite length (i = 0 ,  t . . . .  )4). 

REMARK t. An equally good necessary and sufficient condition is: the 
(R/N)-modules HomRm(Ni[N i+1, '5) have finite length (equivalently, are 
finitely generated) for i = 0, t . . . . .  

REMARI~ 2. The condition that HomR(N~/N ~+1, S) has finite length for 
every simple left R-module S (equivalently, for every sernisimple S of finite 
length) and for i = 1, 2 . . . .  is equivalent to the same condition postulated 
only for i = 1. To prove this by induction on i, consider the natural two- 
sided R-epimorphism N i -  1 @R N--~ N i determined by m | n -+ m n for m 6 N i-  1 

a n d  n E N. This induces an epimorphism (Ni-I/N i) | (iV[ Nz) --~N~/Ni+I, 
which in turn gives an R-monomorphism 

HomR (N~]Ni + 1, S) -+Hom R (Ni-a/N i | IV/N2, S) = 

HomR (Ni-1/ Ni, HomR (N/N ~, S) ) 
*) Here we set NO= R. 
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(cf. [3, II, 5.2']). But S ' = H o m R ( N / N  ~, S) has finite length by hypothesis 
and is semisimple because N S ' = 0 ,  and so HomR(N~-I/N ~, S') also has finite 
length by the induction hypothesis. So also do all its submodules, completing 
the induction. 

Suppose now that R is a ring with left minimum condition, N its radical, 
A a simple left R-module, and V i the corresponding homogeneous component 
of the left module Ni]N ~+1. I t  is well known that  V~ is a two sided R-module 
so that  if El denotes t he  endomorphism ring of V i as left R-module, Ei con- 
tains as a subring Ri, the mappings induced by  the right operations of R 
on V~. Moreover, since V~ is a finite direct sum of copies of A, the ring E i 
is just a matrix ring over the division ring of R-endomorphisms of A, i.e. E i 
is simple with minimum condition. Further, since V~N(=(Ni]Ni+!)N = 0 ,  the 
ring Ri is a homomorphic image of R/N and so is a semisimple subring of Ei. 
With these notations we then have 

LEMMA 3" A is embeddable in an in~ective module o/ f ini te  length i/ and 
only i / E  i is a ~i~itely generated le/t R~ module/or i = O, t, 2 . . . . .  

PROOF. Since V i is a finite direct sum of copies of A, E i =  Hom R (V~, Vi) 
is a finite direct sum of copies of Horn R (V~, A) = H o m  R (Ni]N i+x, A), and this 
decomposition is a left R-modul~ decomposition. Thus E~ has finite length 
as a left R~-module if and only if HomR(NI[N i+x, A) has. This together with 
Theorem l,  the subsequent remark, and the fact that left action of R on E i 
is exactly the left action on E~ of the subring R i proves the  Lemma. 

That  the condition of Lemma 3 is not always fulfilled is shown by the fol- 
lowing example: 

Let K be any field with an isomorphism ~r into itself such that [K:crK~ = oo; 
e.g., K =F(xx,  x 2 . . . .  ) with F a field~ cr(x~) = x ~  x and a = t h e  identity on F. 
Define a two-sided Nmodu le  N as follows: as a left K-module N is isomorphic 
to K;  on the right nk = (crk)n for k E K ,  h E N .  If we set N 2 = 0  the two-sided 
K-moduie direct sum R = K + N  is a ring with left minimum condition and 
with only one simple module, A = R/N. Here E 1 = H o m  R (N, N) = the ring 
of K-endomorphisms of K, which is the set of left multiplications l~:n-~kn, 
R x is the set of right operators on N which by definition is the set of l,(~). 
Thus E x as a left Rx-module is isomorphic to K as a aK-module~ Since it is 
not finitely generated R admits no injective modules of finite length. 

Although the ring in this example has left minimum condition it does not 
satisfy the right minimum condition. The next Lemma shows that  the con- 
dition of Lemma 3 is closely analogous (but presumably not equivalent) to 
the right minimum condition. 

LEMMA 4. With the same notations as in Lemma 3, suppose that R also 
satisfies the right minimum condition. Then /or each i = O, t, 2 . . . . .  E i is a 
finitely generated right Ri-module. 

PROOF. It  is well known [1, 5.7A 1 that as a right Ei-module V~ is the direct 
sum of a finite number of copies of the unique simple right Ei-module , W i. 
Furthermore Ei as a right Ei:module is also a finite direct sum of copies of 
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W,-. Now since R satisfies the minimum condition the following right R- 
modules are finitely generated: 

N', N~[N '+1, V~ -((N~[N'+I), W~, and so finally E~. 

Note that if conversely we let i = 0, t ,  2 . . . .  and let A range over all the 
simple left modules of R, the resulting set of conditions, E~ finitely generated 
as a tight Ri-module, imply that  R satisfies the right minimum condition. 

For rings satisfying both minimum conditions the only informatior~ on the 
embeddability problem we have is given in 

THEOREM 2. The/ollowing statements are equivalent: 
(i) There exists a ring R satis/ying both le/t and right minimum conditions 

but having a simple le/t-module not embeddable in a ]initely generated in]ective 
module. 

(ii) There exists a simple ring wah minimum condition E and a semisimple 
subring T with minimum condition and containing the unit o~ E such that E 
is [initdy generated as a right T-module but not as a le]t T-module. 

PROOF. That  (i) implies (ii) is a consequence of Lemmas 3 and 4. 
Conversely, given E and T as in (ii) we construct R as follows: Let N be 

a simple right E-module and D = Homn (N, N) so that  N is.a finite dimensional 
left vector space over the division ring D and T - ( E  = Hom o (N, N). Consider 
N as a left module over the ring D ~ T by  setting TN ---- 0. Right operation 
of T on N is already defined since T_(E; if we then set ND = 0  we have made 
N into a two sided D @ T module. 

Next, define a multiplication in N by setting all products equal to zero. 
Then R = ( D @  T)~-N 5) is a ring; Since T N = N N = O  and [N:D]t<oo , the 
left R-module N is of finite length. Thus R is a left R-module of finite length, 
i.e. R satisfies lef t  minimum condition. As for right minimum condition, we 
are given that E is a right T-module of finite length. But N is an E-direct 
summand of E so that N is also a right T-module of finite length. Since ND = 
NN = O, N is also a right R-module of finite ]ength and so R satisfies the right 
minimum condition. 

If we now choose A =R/ (T  +N) =D, then Ex=E, 171= T and so Lemma 3 
asserts that  A is not embeddable in a finitely generated injective. 

REMARK. If there is a simple ring E with N and D as above and'if  there 
is a ring isomorphism of E onto a proper subring T with [E: T i t =  oo but 
[ E : T ] , < c o ,  we can construct a ring R * = D + N  much as above which 
satisfies both minimum conditions and which is also completely primary and 
so has no finitely generated injectives at all. 

The question naturally arises as to the independence of the two minimum 
conditions on  a ring R and the condition that  all the simple left modules have 
injective hulls of finite length. The examples we have constructed so far 
consist in lJroducing a left D-, right T-module N and asking about the  finiteness 
of IN!D] (left minimum condition in R), of EAr: T] (right minimum condition) 

~) -~ means  two sided (D (~ T) -module  d i rec t  sum. 
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and of [N*: T]'(finite length of injective hulls) where N*=HomR(N,  A ) =  
HomD(N, D) [since HomR(N, T ) = 0 ,  it is only the injective hull of the 
simple module D that  need be considered]. I t  is standard, of course, that  
[N*:D 1 is finite if and only if [N:D] is. Thus if we assume the existence of 
asymmetric ring extensions as in Theorem 2, and build a ring with radical 
N* rather than N, an anti-isomorphism of this ring would give an example 
showing that  the right minimum condition is independent of the other two 
conditions. However, it is plausible that the left minimum condition is implied 
by the other two; in the type of example analyzed above, if T is a simple 
ring then the finiteness IN: T] and of [N*:T] imply that  N and N* have 
the same cardinality, which implies at least that  [N: D] is less than the cardinal 
of Di 

It  is well-known that  if R is a finite dimensional algebra over a field K, 
then every simple left module (R/N)~ is embeddable in the injective module 
Homr  (eR, K) which has finite length (even as a K-module) (cf. [7, Lemma 5]). 
We proceed to generalize this fact, using the techniques above. 

LEMMA 5- Let E be an algebra over a commutative ring Z and finitely gen- 
erated as a Z-module. Let R be a right Noetherian subring of E (having the same  

unit as'E) and suppose that E is finitely generated as a right R-module. Th n 
E is finitely generated as a left R-module, too. 

PROOF. Since Z R  ( E, the tight R-module Z R  is also finitely generated and 
so we may write Z R  ----zlR +z2R + . . .  + z . R  = R z x + R z , + . . .  + R z .  for zi in 
Z, i --~ 1, 2 . . . . .  n. Hence Z R  is also a finitely generated .left R-module. But  
then any left ZR-module which is finitely generated will also be finitely 
generated as a left R-module. Now E is a finitely generated 1Eft Z module 
and so a finitely generated left ZR-module, proving the theorem. 

THEOREM 3. Let R be a ring satisfying both left and right minimum conditions 
and A a simple left R-module. Let U be the anniMlator of A in R and suppose 

that the simple ring R/U = R '  is finite over its center. Then A is o/finite length 
as a left R-module. 

PROOF. The module V~ as defined before Lemma 3 is a left R'-module and 
Ei = HomR (V~, V/) = Homw (Vi, Vi) is finite over its center if R' is. But Lemma4 
implies that  E~ is a finitely generated right Rcmodule whence by Lemma 5 
E i is also fl"nitely generated as a left R~-module. Thus Lemma 3 concludes 
the proof. 

3. General rings 

In this section we study the effect on the structure of a ring R of assuming 
that  aU the injective hulls oLits simple left modules have finite length. Most 
of our results are based on a general lemma which is a kind of analogue of 
the usual subdirect sum decomposition of a ring with zero radical: 

LEMMA 6. Let R be any ring with unit and {A} the set of iniective hulls o/ 
simple left R-modules. Then R is faithfully represented by its action on the 

direct sum o/the fi. That is, i / x  C R and xA = 0/or every ,,1 then x = O. More 
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specifically, if M is any maximal left ideal in R containing the left annihilator 

l(x) of x, and if A is the in#ctive hull o / R / M ,  then x,4 4=0. 

PROOF. The Cyclic module Rat is isomorphic to R/l (x), which can be mapped 

onto RIM. This gives a nonzero mapping of R x  into the injective hull A of 

R/M, which must be of the form rx~-->rxa for some fixed a in .4. Hence 
x a ~ O .  

THEOREM 4. Let R be a ring with unit and with (JAcoBsoN) radical N.  
suppose that the injective hull of every simple left R-module has finite length. 

O0 

Then N is a nilideal and N N i =  O. Furthermore, if R has only a finite number 

o/ isomorphism classes of simple modules, then N is nilpotent. 

PROOF. First we remark that,  since N annihilates every simple module, 
N B has smaller length than B for every module B of finite length. Thus 
NkB = 0  for some k. 

Now let n E N. If there is a single maximal left ideal M containing all 

the left annihilators l (hi), i = t ,  2, . . . ,  then by Lemma 6, the injective hull ~i 

of RIM satisfies n i A ~  0 for all i, which contradicts the fact that  NkA~=0 

for some k. Thus 13 l ( n i )=R ,  so that  t annihilates some n ~, proving that  
N is nil. i=t 

Next, if n E Q N ~, then n annihilates every module of finite length. Under 

the hypotheses of our Theorem, we may apply Lemma 6 to conclude n = 0 .  

Finally, if there is only a finite number of nonisomorphic simple modules, 
A 

there is only a finite number of nonisomorphic injective hulls A. Then a single 
power of N annihilates them all, and, by  Lemma 6, this power of N is 0. 

REMARK. It  is not true that N is nilpotent if we assume only that the in- 
jective hulls of the simple modules have finite lengths. For example, let 
C~-----K[x]]x~K[x] where K is a field and x an indeterminate. Let R be the 
K-algebra obtained by adjoining a unit (algebra style) to the direct sum of 
the C~. Then the radical of R is nil but  not nilpotent, while the injective hull 
of every simple R-module has finite length. 

From now on we suppose R is a commutative ring with unit. For  any 
maximal ideal M of R there is associateda ring of quotients R M and a ring- 
homomorphism R--~R M such that every element of R which is not in M maps 
into a unit in R M, and RM is universal with respect to this property; t h a t  is, 
any ring-homomorphism R--~ S which associates units to all elements outside 
M is factorable thus: R-+RM-+S. In particular, if A is any R-module with 
the property that every element of R not in M induces an automorphism of A, 
then A is an Rm-module in a natural way (take S = HomE(A; A)). We should 
also note that R e has a unique maximal ideal [10, Chapter IV, w 1 6 7  

We can now localize our basic hypothesis as follows: 
LEMMA 7. Let R be a commutative ring with unit, M a maximal ideal in R, 

A = R I M  and,A ihe in/ective'h|dl o /A .  Then A and ~i VmR~-modules. As  an 
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RM-module, A is still simple and ft is its iniective hull. Furthermore, A has 
]inite length as an R-module q and only q it has [inite length, as an R~t-module; 

PROOF. Let  t C R, t G M. Then t acts on ,4 as a nonzero element of the 
field R/M; thus t acts as an automorphism of A. I t  follows tha t  A is an 
Rn~-module. Every  R~t-submodule of A will be an R-submodule, so A is a 
simple R:)t-module. 

Now consider the action of t on A. The kernel of this operation is a sub- 

module of A intersecting A in 0. Since A" is an essential extension of A, this 

kernel is 0. I t  follows that  t A ' ~  ,4 so that  tA" is an injective submodule of 

containing A (we proved above that  tA = A ) .  Thus t A ' = 2 i ,  showing that  t 

induces an automorphism of A61. Once again this implies that  ,4 is an R,~- 

module�9 Clearly, if A satisfies chain conditions on R-submodules, it will also 

satisfy chain conditions on R~t-submodules. Conversely, if A has an RM- 
composition series, the factors will be isomorphic to R]M (the only simple 
RM-module ) Which is also a simple R-module; thus this same series will be an 
R-composition series. 

In the same vein, if A" is an essential extension of A as an R-module, it 

will be likewise as RM.-module. I t  remains to prove A" is RM-injeetive. I f  X 
is any RM-module, it is an easy consequence of the definition of R~t tha t  the 
ring of operators on X induced by  R M is generated by  the operators induced 
by R and the inverses of the operations by  elements of R not in M. I t  follows 

ihat  HomR (X, A) = HOmRx (X, .4). Since the first of the~e Horn's is an exact 

functor of X, so is the second, proving A is R~t-injective. 

THEOREM 5. Let R be a commutative ring with unit. Then the iniective hull 
o] a simple R-module RIM has ]inite length q and only q R~t is a ring with 
minimum condition. 

PROOF. If  R~  satisfies the minimum condition, the Ru-injective hull of 
RIM has  finite length as an R~t-module by  Theorem 3. Lemma 7 then com- 
pletes the proof. Conversely if the injective hull of RIM has finite length, 
the radical N of R~t must  be nilpotent by  Theorem4 and the modules 
HomRx(Ni[N i+1, R/M) have finite length  by  Lemma 2. Since Rm is com- 
mutative,  this simply means that  Ni]N ~+~ is a finite dimensional vector space 
over the field R/M, so that  R~t does indeed satisfy the minimum condition.  

COROLLARY. I] R is an integral domain and some simple R-module has an 
iniective hull o! ]inite length, then R is a ]ield. 

PROOF. Suppose the injective hull of RIM has finite length. Then R~t is 
an integral domain with minimum condition by  Theorem 5. Thus R,~t must  

n) Even for noncommutative R and for n0nsimple modules A, this proof shows that 
ifu is an element of S = HomR(A, .~) which vanishes onA, then t + u is an automorphism 
of A ~. Hence, these elements u form a radical left ideal U of S. If, besides, A is a charac- 
teristic submodule of ,~ (e.g., if A is semisimple) then U is a two-sided ideal and, from 
the injectivity of .-~, it is trivial to prove that, S/U = HomR(A, A) (cL-[6, Theorem 4.2]). 
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be a field. But  this  means  MRM=O, M = 0  [10, Chapte r  IV, Theorem 19] 
so t ha t  R is a field. 

LEMMA 8. Let R be a commutative ring and M a maximal ideal in R. Then 
RIM is itsel] an in]ective R-module i] and only i] RM is a ]ieM. 

PROOF. If  R/M is R-inject ive ,  then  i t  is RM-injective b y  .Lemma 7, and 
the  r ad ica l  of R M is zero b y  L e m m a  6. Thus  R M is a field. Conversely,  if 
R M is a field, R[M i s  RM-injective , hence R- in jec t ive  b y  L e m m a  7. 

The  nex t  resul t  was first  found b y  i .  KAPLANSKY, who proved  i t  b y  direct  
methods .  

THEOREM 6. A commutative ring R (with unit) is (yon Neumann-) regular 
i[ and only q every simple R-module is iniective. 

PRoof .  W e  shall  show t h a t  R is regular  if and  only  if every  R ~  is a field. 
I f  R is regular ,  consider  i ts  image  R '  under  the  ma pp ing  R---~R~t. Since R' 
is also regular ,  eve ry  e l emen t  n o t  a zero divisor  is a unit .  The  images  of 
e lements  not  in M are  not  zero divisors  even in R~t, so t hey  have  inverses 
in R' .  Thus  R m = R '  is a regular  r ing with  a unique m a x i m a l  ideal.  Hence 
R M is a field. 

Fo r  the  converse,  we r emark  t h a t  the  na tu r a l  ident i f ica t ion  Rm-+R u |  
induces  an  iden t i f ica t ion  of the  mapp ing  R-+R~t with  the  mapp ing  a- -~t  |  
for aER.  If  R M is a fielcl, the  ideals genera ted  .by l |  and  b y  t |  z are  
equal.  Since R M is R-f la t  [3, vii ,  Ex. 10] these ideals  a re  R M |  and 
R M |  ~, respect ive ly .  Thus  ( R u | 1 7 4 1 7 4  
for al l  a E R  and  al l  M,  B y  [3, vii ,  Ex. tt] th is  implies  Ra/Ra2=O for all  a ;  
t h a t  is, a = # x  for some x in R. Thus  R is regular .  
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