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Abstract. I present a solution to the Schwinger model in 
the light-cone representation which corrects an error in 
a previous work. I emphasize the details of the mechanism 
by which the physical vacuum is different than the pertur- 
bative vacuum. I suggest that the method of analyzing 
vacuum structure presented here may be of use in more 
complicated theories such as QCD. 

1 Introduction 

In a previous paper [1] I presented several solutions to the 
Schwinger model in light-cone gauge, some quantized at 
equal time, some quantized on the characteristic. The 
starting point in all cases was the Coulomb gauge solution 
of Nakawaki [2]. One of the solutions in reference 1 has 
an inconsistency. In the present paper I shall point out the 
inconsistency and supply what I believe is a correct con- 
struction. 

In presenting the solution we shall pay particular 
attention to the mechanism by which degenerate vacua 
are possible in the light-cone representation (in spite of 
formal arguments which suggest that only the pertur- 
bative vacuum can be a physical vacuum in that repres- 
entation). The effect is precisely like an anomaly: one is 
faced with an ill defined operator product; in giving a pre- 
cise definition to that product one cannot maintain all 
properties of the classical product; in this case one must 
either give up gauge invariance or the kinematical nature 
of the operator P § which forms the basis of the argument 
that degenerate vacua are not possible in the light-cone 
representation. Even though other states than the pertur- 
bative vacuum do become degenerate with it under the 
interaction, and even though the operator P + does change 
(slightly) due to the interaction, the degenerate physical 
vacua of the model are much simpler in the light-cone 
representation than in the equal-time representation and 
the operator P+ is much simpler than the manifestly 
dynamical operator P- .  The corrections to P+ are inde- 
pendent of the coupling constant so the effect is nonper- 

turbative. If one wishes to find the states degenerate with 
the vacuum it is only necessary to study P + (a full descrip- 
tion of the dynamics certainly requires the study of P-) .  
Such an effect may be present in more complicated the- 
ories and the study of a fully gauge invariant and renor- 
realized P + may provide a way to study vacuum structure 
without involving the full dynamics. 

In what follows we shall attempt to adhere to the 
following notation which is consistent with [1] and [2]: 

Coordinates: 

xO=t; x l = x ;  g O O = _ g i i = l ;  glO=gOl=0 

y o = ( ~  ; ) ;  7 1 = ( ? 1  10) ; 7 5 : ( ;  1 01) 

x + = x ~  x - = x ~  g+-=g-+=2;  

g++ = g - -  =0 

g+_=g_+= �89  y + = y o + y l ;  ~ - = y o _ ~ l  

Particulars: 

e 
(e is the electromagnetic coupling constant) 

k_(n)=(n-�89 k+(n)_(n-�89 
L L 

nrc m2L 
p_ (n) = ~ ; p + (n) = 4n~ 

p+(n)=�89 p-(n)=�89 

p-(n)=2p+(n); p+(n)=2p_(n) 

~-field: 

~_-first component of ~ 
~+-second component of ~k 
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2 Solution 

The solution in [1] which has the inconsistency is that 
given by equations (3.89) to (3.96) of that paper. The 
solution is canonical on the initial value surface and 
satisfies the equations of motion. Furthermore almost all 
the operators satisfy the Heisenberg equations; but there 
are two operators which do not. These are the spurions, 
a+ and a_ (these operators are defined in [1] and also 
below). The space-time dependence for the spurions as 
given in [1] was: 

ff + (X)__e-i 4~m ((Q-QDx- +Qx+) 

x a+ (O)e -i 4~m((Q-Qs)x- +Q='+) (2.1) 

f f_ (x )=e- i  4~mm((Q+Qs)x+-Q5 x-) 

i ~ ttt~+t3 ~x + ,'~ X-X 
xa_(O)e -4-Zg''~ ~ '  - ~  ', (2.2) 

The terms in the dynamical operators of that solution 
which do not commute with the spurions, which we shall 
call P~ and Po ,  were given as: 

1 
p~- = 4--L~m z (Q2-2QQs)  (2.3) 

1 
Po = 4 ~ m  2 (Qe +2QQs). (2.4) 

The relevant commutator algebra is: 

[ Q ,  o- + ( o ) ]  = - [ Q  ~,  ,r + ( 0 ) ]  = - ~r + (0 )  ( 2 . 5 )  

[Q, o'_ (0)] = [Q ,,  a_ (0)] = - o-_ (0) (2.6) 

It is trivial to use these relations to check that the spurions 
do not satisfy the Heisenberg equations. It might be 
thought that obvious way to proceed would be to modify 
the dynamical operators to properly translate the 
spurions and thus produce a canonical system satisfying 
the equations of electrodynamics. Unfortunately that does 
not work for it seems that there are no operators which 
one can choose for P+ and P -  that will work. That such 
a situation is possible may be of interest in itself but I will 
not further discuss the point here. Rather we shall now 
give what we believe to be a correct construction. 

The classical Lagrangian density is: 

.~ =�89188 u. (2.7) 

The need to use J' is discussed in reference 1; the relation 
of J '  to J depends on boundary conditions. For the 
boundary conditions we will use below (periodic observ- 
ables along the initial characteristics) it is: 

J+'=J+-�89189 

J-'=J--�89189 

Where 

(2.8) 

(2.9) 

ju  = : ~"~h  : (2.10) 

and J+(0) and J-(0) are the zero modes in J+ and J - .  We 
initialize ~b + on x + = 0 with antiperiodic boundary condi- 
tions: 

~k+(0, x - ) = ~ 2 L  ,=ai b(n) e-ik-(")x- 

+ d*(n)e!k-(,)x- (2.11) 

and #/_ on x - = 0 :  

O_(x +, O)= fl(n)e -ik§ (")~'+ 
n 1 

+ 6*(n)e ik+ (")'~+ (2,12) 

We work in the gauge where A + is independent of x- ;  in 
which case it is independent of space-time [-1]. The equa- 
tions of motion are: 

~-i~e(A-~k+ +~O+A-)=0 (2.13) 
8x + 

O~ 1 + 
~x~+i~e(A ~k_ +~b_A+)=0 (2.14) 

82A - 1 
- - ~ d ' +  (2.15) 0X-2 

32A - 1 
. . . .  J ' -  (2.16) 
8x+Ox - 2 

The operator solution is most easily written in terms of the 
fusion operators which we take to be: 

iw/nC(n)= ~, d(1)b(n-l+ 1) 
/=1  

+ ~ b*(1)b(l+n)-d*(l)d(l+n) (2.17) 
l = l  

,rio(.)= i] I) 
I=I 

+ 

+ ~ fl*(l)fl(l+n)-6*(l)6(l+n). (2.18) 
/=1  

The reason for the change in phase between the fusion 
operators associated with the ip+ and if_ fields is to 
produce agreement with the notation of [1, 2]. To define 
the spurion operators we first define the set of states 
IM, N ) :  

IM, N> = 6*(M) ... 6*(1)d*(N)... d*(1)[0> 

( m > 0 ,  N > 0 )  

IM, N> = fl*(M).., fl*(1)d*(N).., d*(1)10> 

( M < 0 ,  N>0)  

IM, N>=6*(M)... b*(1)b* (N)... b*(1)10> 

(M>0,  N<0)  

IM, N> = fl* (M) ... fl*(1)b*(N).., b*(1)[0> 

(M < 0, N < 0). (2.19) 



The spurions can then be defined as: 

[ a . ,  D(n)] = [a . ,  D*(n)] = [a . ,  C(n)] 

= D+, c*(n)] =0 

[a_, O(n)] = Ea-, D*(n)] = [a_, C(n)] 

= D - ,  C*(n)] =0 

(a+)Xlm, N)--=lm, N + I )  

(a_)IIM, N ) = I M + I , N ) .  

We need the charges Q + and Q_ : 

Q+=Ze L b*(n)b(n)-d*(n)d(n) 
n = l  

Q_=Ze L fl*(n)fl(n)-f*(n)6(n). 
n = l  

(2.20) 

(2.21) 
(2.22) 
(2.23) 

(2.24) 

(2.25) 

These are related to the charge and pseudocharge by: 

0=�89 
Q5 =�89 - Q + ) ,  (2.26) 

Central to the issue we most want to discuss is the defini- 
tion of Fermi products. We take: 

:~(x)0+(x):- 

lim (e -ie['~'+"- A(--I dx-I/I~-(X-I"g,-)I/I +(X) 
~.---'.'0 

X e - i e  [-~+"- A~+~ dx-  _ V E  V) (2.27) 

: r (x) ~,_ ( x )  : - 

lim (e- ie I~+"* A~+-) dx + I]1 *_ (X + 8 +) ~b _ (X) 
S + ---~O 

X e -e~:'+"§ A~++) dx+ - -  V E  V ) .  (2.28) 

We shall understand the product defining the coupling 
term in the Lagrangian as: 

lim 1 ,~ ,u ~-~o ~[A~,(x+e)J (x)+J (x)Au(x-e)l. (2.29) 
e2<O 

With these definitions we can now give the operator 
solution as: 

1 2(-)tx~ 2C+)lx ~ 
O + = ~ e  + ' '~+(x)e + ' '  (2.30) 

where 

2 + ( x ) = / ~  L 1 

x (C(n)e-ip(")~+C*(n)eip(")~) (2.31) 

and 

+(x)=e-i4--~-m(Q+(x-+x+))a+(O)e -i4-~(Q+(~-+x+)) (2.32) 

1 
_ = ~ e -  ~ 'a_ (x) e ~(~+) (2.33) 

,/2L 
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where 

2o(x+) = L + D(n) e-ik+'")~+ (2.34) 
n = l  N / F /  

and 

+ -  - ( x + - x l /  
a_(x)=e 4Lm(Q-(x x ))o'_(0)e aLto- (2.35) 

A - =  _ _ _  w/~m .=1 ~ (C(n)e-'P'")x-C*(n)eip(")") 

1 
Lm 2 Q+ (2.36) 

1 
A + = Q_. (2.37) 

Lm-~ 

The dynamical operators are: 

p -  =4gin 2 (Q2_ _Q2+ )+ p-(n)C*(n)C(n) 
n = l  

+ L 2k+(n)D*(n)D(n). (2.38) 
. = 1  

p + =  1 z+_ ~ (n)C*(n)C(n). (2.39) 4Lm 2 (Q Q2-)+2 p_ 
n = l  

These relations can be used to calculate the currents which 
are: 

j+ im 

x (C* (n) e iv(.) x _ C (n) e - iv(.)~) + 1 Q (2.40) 

im L p+(n) 

x(C(n)e-lP(")x-C*(n)eiP(")x)+ L ~ ~/n 
. = l  

1 
x (D*(n)e ik+ (")~+ +D(n)e -ik+ (")~§ Q" (2.41) 

To complete the specification of the solution we must also 
define a physical subspace. It is usual to define the phys- 
ical subspace for the Schwinger model to be the charge 
zero sector and we must do that here; if I P)  is in the 
physical subspace then: 

QIp) =0. (2.42) 

Additionally, we must impose: 

D (n)] p )  = 0. (2.43) 

States in the set (2.19) which have the form I M , - M )  are 
in the physical subspace and we can choose any linear 
combination of these states for the vacuum then generate 
the entire representation space by applying polynomials 
in the C* and D* to that vacuum; if we wish to impose 
cluster decomposition we must choose a 0-state for the 
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vacuum [3]. It is easy to check that the Heisenberg equa- 
tions are all satisfied and that (2.13)-(2.15) are satisfied. 
Equation (2.16) is not satisfied. To examine that fact in 
more detail we write out the left hand side and right hand 
side of (2.16) explicitly: 

ie ~2 p +(n) . . 2 ~  ,~=1 ~ (C(n)eT'p(")"- C~")eW(")") 

ie  
r  ~ x/p_(n)P+(n~)(C(n)e-iP'")x-C~")eW(")~) 

+ ~ (D * (n) eik_ (,),, + + D (n) e- ik- (n)x + ).  (2.44) 
n = l  

The difficulty is seen to be the last sum on the right hand 
side, which involves the D's and D*'s. That inequality is 
the reason we must make the specification of (2.43). With 
that specification of the physical subspace (2.16) is satis- 
fied in matrix elements between physical states. 

The only two complicated issues associated with find- 
ing the solution (2.30)-(2.39) are finding the zero modes in 
the A-fields and calculating the dynamical operators; we 
shall now discuss these two points. The boundary condi- 
tions we choose require that A-  be periodic along x- .  
That is only possible if (2.15) and (2.16) have no zero 
mode. Those are the conditions which determine the zero 
modes in A + and A- .  Using (2.10), (2.8), (2.9), (2.27) and 
(2.28) we find that the requirement that (2.15) and (2.16) 
have no zero modes gives the relations: 

7C 
Ao +L~e  2 Q+ =0  (2.45) 

m § +~-eSe 2 Q_ =0  (2.46) 

where Ao is the zero mode of A-.  
We now turn to the problem of calculating the dynam- 

ical operators P -  and P+. That these are the correct 
operators is shown by the consistency of the solution. The 
problem with calculating them occurs any time different 
surfaces are used to initialize different fields. Since the 
initialization was done on both x + = 0  and x - = 0  we 
expect to have to integrate some density over each surface 
to calculate the dynamical operators. If we work out the 
formal densities we find (see below) that we need to inte- 
grate functionals of the fields over regions which are not 
the initial value surfaces for those fields. If that were true 
we would be in the position of having to solve the problem 
before we could formulate it. Generally one would not 
expect that situation to arise: if we have properly chosen 
a set of degrees of freedom we should be able to calculate 
the momenta and energy from the given information. In 
all cases where the answer is known [4, 5, 1, 6] the 
following rule applies: work out the densities as usual but 
integrate over a given initial value surface only those parts 
of these densities which involve fields initialized on the 
integration surface; for gauge theories there is a further 
consideration which we shall come to below. We shall 
now illustrate this rule and show that it works in the 

present case. Using: 

r .v=2 0se r ~?xu ~(~vO) gU~s (2.47) 

we calculate: 

T ++ =:  2 i (0"  ~-- O+ - 0 - 0 " 0 + ) "  (2.48) 

T + - =:  2i (~/,* O+tp+ - O + 0 * 0 + ) :  

+:(0_ A-  )2 : + 2J,UAu (2.49) 

T- + =:  2 i (0"  O_~p- - - 0 - 0 " 0 - )  : 

_ : ( ~ _ A - ) 2  ,u : + 2 J  A u (2.50) 

T - -  = : 2 i ( ~ * ~ + 0 - - ~ + ~ * ~ - ) :  

+ 2 3 _ A - O + A -  : (2.51) 

Using the rule stated above we calculate the dynamical 
operators as: 

1 
i )2 ,. P - = 2  - : ( 0 _ A -  "+2J  Audx 

- L  

1 L 
JL :2i(O * &O- -O  +~ *-O- ):dx + 

+ 2  

+ 1 
P =5 i :2i(~9*a-O+-a-~/*O+):dx-" 

- L  

There is a further point associated with the fact we are 
dealing with a gauge theory: the fermi products in the 
above expressions need to be gauge corrected and for the 
case of P -  that again leads us to the need for a field, A-  
along x -  --= 0, where we do not know it; we again use only 
what we know and gauge correct only with the (space- 
time independent) zero mode of A-.  We thus calculate the 
dynamical operators as given by (2.38), (2.39). 

3 Discussion 

Equation (2.43) removes most of the states associated with 
the ~_ field from the physical subspace. Indeed the only 
operators from that field which remain physical under the 
interaction are the spurion, ~_, and the charge, Q _. The 
D-field is an auxiliary field. While this may seem strange, 
the same conclusion can be reached by gauge transform- 
ing the Coulomb gauge solution [2] to light-cone gauge 
[1]. In the Coulomb gauge solution only physical degrees 
of freedom are present; under the gauge transformation 
only o-_ and Q_ survive from ~_. The D-field must be 
added to represent the operator solution. The need for 
auxiliary fields seems to be ubiquitous in light-cone gauge. 
Even free Maxwell theory requires one [7, 6]. The present 
situation is somewhat different however. Usually the addi- 
tional fields are ghosts and their unphysical nature is 
manifest in the commutation relations; here, the 
D-field--which is a perfectly physical field in free theory--  
satisfies normal commutation relations and the only ways 
I know to find its unphysical nature are to gauge trans- 
form the Coulomb gauge solution or examine the equa- 
tion of motion (2.16). 



Finally we review the way in which states different 
from the perturbative vacuum come to mix with it. The 
usual argument that that cannot happen is that the oper- 
ator, P+ for the interacting theory is just the P+, P+ for 
free theory. Since the physical vacuum must be.an eigen- 
state of P + with eigenvalue 0, and since there is only one 
such state in free theory, that must be the vacuum state. 
Indeed the density, (2.48), we used to calculate P + has the 
same form as the free density, but the need to gauge 
correct the products, (2.27), introduces a modification. For 
free theory: 

p + _  1 
4Lm 2 QZ+ + 2  p_(n)C*(n)C(n). 

n = l  

For the interacting theory (see (2.39)): 

p + _  1 
4Lm2 (QE-Q2)+ 2 ~ p_(n)C*(n)C(n). 

n = l  

The extra term in P + which allows the degeneracy of the 
states, I M, N ) ,  with the perturbative vacuum is indepen- 
dent of the coupling constant. Note that the additional 
term in P+ is composed of operators associated with the 
field initialized on the surface x - =  O. It seems that that 
must be the case since for all the degrees of freedom 
initialized on x + = O  translations by P+ move within the 
initial value surface and are thus set by the initial condi- 
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tions. For  the Schwinger model one can find all the states 
which are candidates to mix with the vacuum by studying 
the operator P+, which, although not exactly the free P+ 
is much simpler than P - .  To find the vacuum one would 
have to apply P -  to the candidate states but that is 
a much simpler task than finding the eigenvectors of P - .  
The procedure may provide a useful way to study vacuum 
structure even for more complicated theories like QCD. 
I hope to report more on that possibility in the future. 
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