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Abstract. An extremely simple but instructive, "toy" 
model is presented which shows that a small excess of 
pions in the nucleus can produce a significant change in 
the values expected for the Gottfried sum rule. The general 
question of the convergence of the sum rule and of the 
convergence of the experimental integral is also discussed. 
It is demonstrated that conclusions about the sum rule, 
based on deuterium data, are surprisingly model depen- 
dent. In contrast, it is stressed, that the Bjorken sum 
rule can be tested significantly using deuterium 
data. 

Introduction 

Recently the NMC Group at CERN presented [ l l  results 
on the comparison of deep inelastic scattering on protons 
and neutrons which purported to show a significant 
discrepancy between the data and the Gottfried sum 
rule [2] 

i P n 1 
f F2 (x) - F 2 (x) dx (1) 

I G ~ = - -  

o x 3 

Their results have stimulated a great deal of discussion [3] 
concerning both the correctness of the sum rule and the 
interpretation of what is actually measured. 

In this paper we address the following issues. Firstly 
we discuss the general conditions for the convergence of 
the Gottfried integral Ia and we comment upon models 
which attempt to replace (1) by the result 

Ia < �89 (2) 

which would apparently be compatible with the NMC 
result. Secondly, assuming the convergence of IG, we ar- 
gue that experiments on deuterium cannot provide 
a simple and direct test of (1); moreover that the 

experimental integral 1 

IpD(Xmln) = 2 i F ~ ( x ) -  F~(x) dx (3) 
x 

Xmln 

almost certainly diverges as Xm~n ~ 0. 
We then construct an extremely simple, but instruc- 

tive, toy model of the pion excess in nuclei. With this we 
show that even a tiny excess, with the pious carrying 
- 2% of the momentum of the deuteron, leads to a signif- 

icant difference between the experimental integral IpD and 
the true Gottfried integral I~. Thus we conclude that the 
testing of the Gottffied sum rule using deuterium is sur- 
prisingly model dependent, and we offer a simple formula 
for extracting F((x) - F~(x) from F~(x) in a more correct 
fashion. 

In our conclusion we draw attention to the fact that, 
despite its naive simplicity, our toy model appears to give 
a reasonable description of both the Q Z variation of F2/F ~ 
and of deep inelastic and Drell-Yan scattering on nuclei. 
Finally we explain why the analogous, but much more 
fundamental, Bjorken sum rule [4] can be adequately 
tested using deuterium. 

Convergence of the Gottfried sum rule 

The scaling functions Ff'"(x) are directly proportional to 
the total cross-section for the scattering of a virtual 
photon O-momentum q") of (mass) 2 = -Q Z  and labo- 
ratory energy v on a stationary proton or neutron 
O-momentum pu). At fixed Q2 the high energy regime 
corresponds to 

s -= (q + p)2 ~> QZ (4) 

i.e. to 

2 m y  
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or, in terms of Bjorken x, to 

x ~ 0 (6) 

At fixed Q2 it is believed that, provided (5) is satisfied, 
the behaviour of the cross-section for virtual photon on 
nucleons will be similar to that of real photon-nucleon 
scattering. We shall assume this to be true in what follows. 

Now experimentally [5] a~p appears to be growing like 
a typical hadronic cross-section at very high energies i.e. 

a s ; = a l n  2 s + b p +  ... (7) 

The neutron cross-section has not been measured at high 
energies to see the Froissart In 2 s growth, but undoubtedly 
one will find analogously that 

or, = aln2s + b, + ... (8) 

such that 

lira ~ = 1 (9) 

The convergence of the Gottfried integral IG requires that 
a s s - - +  0(3 

aTp - as. oc s ~- i (10) 

with e < 1, a behaviour which is very natural in Regge 
theory where c~ = %(0) ~ 1. However it is feasible, even if 
unlikely, that b, ~ bp in (7) and (8), which would imply, as 
8- - -+O(3  

~s; - av, ~ const (11) 

which would lead to a divergent IG [6]. 
Thus the Gottfried sum rule is by no means self- 

evident or sacrosanct and its failure to converge would 
not at all be a catastrophe. It would simply be telling us 
something interesting about a s p -  as, or in parton lan- 
guage, about the difference between the up sea ti(x) and 
the down sea a (x) inside a proton. 

In the conventional pat ton model IG is given by [7] 

1 

Ia = j dx �89 [uv(x) - d r ( x ) ]  + -~ [ti(x) -c l (x) ]  (12) 
0 

The value IG = �89 comes from assuming ti(x) = cl(x) and 
from the charge conservation sum rules which imply 

1 

J dx [u~(x) - dv(x)] = 1 (13) 
0 

Both ti(x) and cl(x) are supposed to grow without limit 
as x ~ 0, and the convergence of Ia requires that 

r a ( x )  = 1 (14)  
o d ( )  

in such a way that as x ~ 0 

ti(x) - d(x) oc x -~ (15) 

with e < 1 in correspondence with (10). 

Prior to the NMC experiment the best fits for the 
quark dis_tributions[8] seemed to prefer the equality of 
tT(x) and d(x) but, there is no fundamental reason to have 
~(x) = d(x) for all x, although in the past this was taken to 
be a reasonable approximation. Indeed it has been argued 
[9] that the Pauli principle ought to make t i (x)< d(x) 
which would lower the value of 1G. 

Eichten, Hinchliffe and Quigg [10] have produced 
a model, based on chiral perturbation theory, in which 
valence quarks split into zr-mesons and quarks and the 
~z-mesons then populate the sea when they split into 
quark-antiquark pairs. The fact that u~(x) > d,(x) then 
leads to an imbalance such that one expects more cl pro- 
duced than ti(x) i.e. ti(x) < cl(x) and therefore IG < 1. But 
more recent data on Drell-Yan production in nuclei [11] 
rules out a large asymmetry in the sea in the kinematical 
region of the N MC measurements and suggests that ti and 
cl are equal for x > 0.01. Aside from the question of 
detailed parametrisations we feel that this model reflects 
an important physical effect, but that the treatment is not 
quite consistent. 

Once it is admitted that there is a non-negligible qq~ 
coupling this will be reflected in the nucleon wave func- 
tion, part of which will then contain pions as constituents. 
The expressions for F~'"(x) will be modified to include the 
contribution of the pion constituents. In taking the differ- 
ence FJ(x) - F~(x) the pion contribution cancels out and 
one is left with (12). However the result of integrating (12) 
is different because the charge conservation sum rules 
must reflect the existence of the pionic constituents. Thus 
one has for the proton 

1 

1 = j dx [2 u~(x) - �89 d~(x) +f~+/p(x) - f~-/;(x)] (16) 
0 

where f,/p(X) is the number density of pions in a proton. 
Similarly, for the neutron, 

1 

0 = j dx [2 dr(x) - �89 uv(x) +f~-/p(X) - f~+/p(X)] (17) 
0 

where, via isosopin invariance, we have used 

f~+/n(x) = f~-/p(X), L-/n(x) =L+/p(x) (18) 

From these it follows that (13) is replaced by 

1 1 

dx [u~(x) - d~(x)] = 1 -- 2 ~ dx [f~+/p(x) --f~-/p(X)] (19) 
0 0 

so that 

1 

Ia = �89 - } J dx [f~+/p(X) --f~-/p(x) + d(x) - zi(x)] (20) 
0 

Since there will be more rr + than zr- in a proton the new 
term in (20) will make IG < �89 even if if(x) = ti(x). 

However as we shall now argue, we do not think that 
N MC experiment yields a significant test of the Gottfried 
sum rule, so that it is perhaps premature to assess models 
of the degree to which ti(x) ~ d(x) 
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The deuterium sum rule 

The use of Ipo in (3) as a test for the Gottfried sum rule is 
based upon the assumption that is safe to take 

2F~(x)  = F~(x) + F~(x) 

in which case  IpD reduces to IG. But, as we shall now 
discuss, it is virtually certain that IpD(Xmin) diverges as 
Xm~. ~ 0 even if I~ itself is convergent. 

There are very strong arguments 1-12] to believe that 
shadowing persists at asymptotic energies, so that as 
S'--+ 00, 

a~o < a~p + a~, (22) 

For not too large fixed Q2 there seems no reason to expect 
that (22) ceases to be valid. It follows that 

lim [F2P(x) - FzD(X)] r 0 
x ~ O  

leading to the divergence of Ipo as Xmin --+ 0. 
In the original NMC paper [1] there was no sign of 

any such divergence. In their most recent paper [13] 
NMC report some indication of shadowing, in that the 
quantity " P Fz/Fzlex p - - 1  does not go to zero as x--. 0. 
Given that " F2/F2 lexp is obtained from the data by using 
(21), this is tantamount to having a non-zero limit in (23). 
As we shall show in the next section by means of a very 
simple toy model, there are nuclear effects in deuterium 
which, although minute, are not negligible compared with 
the very small difference 2 [ F / ( x ) -  Fz~ These have 
two consequences. On the one hand they make the con- 
nection between Ipo and IG more model dependent than 
hoped for. On the other they tend to hide the effect of 
geometrical shadowing so that presumably the divergence 
in IvD will show up at still smaller values of x. 

We should stress that the argument for the diver- 
genceof Ivo is not a rigorous one. But if Ivo really does not 
diverge that will be a major physical puzzle, requiring 
some very subtle dynamical explanation. 

Extracting F2 r - F2 n from the deuterium measurement  

Let us first recall the origin of the simple-minded 
expression (2t). If the deuteron consists only of a 
proton and a neutron and if we ignore shadowing then 
one has 

where fp/o(Y) is the number density of protons in the 
deutron whose momentum is a fraction ~ of the mo- 
mentum of the deutron. As usual x for the deuteron is 
defined by 

x=2(Q ) 

where P is the deuteron 4-momentum. In principle x can 
thus run between 0 and 2. 

Isospin invariance gives 

f,/o(Y) = fp/D(Y) (26) 
(21) 

and charge conservation implies 

2 

1 = ~ dyfp/o(y) (27) 
o 

Now in the simplest possible picture both the proton 
and the neutron carry exactly one half of the momentum 
of the deuteron, so that 

fpw(Y) = 6(1 - y) (28) 

Insertion of this into (24) yields (21), or more correctly 

2e2D(x)=F~(x)+F~(x) x <_ l 

(23) = 0  x > l  (29) 

Many arguments have been given that the pionic con- 
tent of nuclei is not negligible [14]. Let us therefore 
suppose that the deuteron wave-function contains a pion- 
ic component. In that case, ignoring shadowing, (24) is 
replaced by 

+ 3 i d y F ~ ( Y )  (30) 

where 

F~(z) =- �89 [F~+(z) + F'~~ + F~-(z)] (31) 

is the average pion structure function. In (30) we have, via 
isospin invariance, taken for the number density of pions, 
whose momentum is ~ of the deuteron momentum, 

f,~+/D = f,~o/o = f,~-/D =-f~/D (32) 

Baryon number conservation implies that (27) is un- 
changed, but momentum conservation now requires 

2 
Y 

1 = ~ dy ~ [2fp/o(y) + 3f~/o(y)] (33) 
o 

In the spirit of the simple picture that led to (21) let us 
now assume that the proton and neutron each carry 
exactly �89 - ~) of the deuteron's momentum, so that (28) 
is replaced by 

fp/D(Y) = 6(1 -- e -- y) (34) 

Using this in (33) and (27), one has as expected 

2 

Y (35) dy ~ 3 f,/o(y) = 
0 

(25) i.e. e is the fraction of the deuteron's momentum carried by 
its pionic constituents and is expected to be very small. 
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Substitution of (34) into (30) yields 

= + F 2 0(1 - e - x) 

Since our primary aim is to learn about F~(x) - F~ (x), 
let us now write 

F~(x) - F~(x) = [ 2 F ~ ( x ) -  2F2D(x)] 

+ [ 2 F f f ( x ) -  F~(x) -- F~(x)] 

- [2F~(x) - 2F2D(x)] + 5F~(x) (37) 

The first term of the R.H.S. of (37) is what is measured 
in the NMC  experiment. The term 5FVz(x) is the correc- 
tion needed to extract F~(x) - F~ (x). 

From (37) and (36) we see that 

= + F 2 0(1 - ~ - x) 

- [F~(x) + F~(x)] 0(1 - x) + 3 ~ dyF'~ f~/D(Y) 
X 

(38) 

dx + dx j 0 ( 1 - x )  

(39) 

We shall now attempt to estimate the terms on the 
R.H.S. of (38). Since we are dealing with a small correction 
it should be safe to take dF~/dx from the naive expression 

F~(x) = [2F2D(x) - -  F~(x)] 
0 . 0 0 0  

0.0  2.0 

using NMC's parametrizations [15] for the deutron and 
the proton structure functions. The pion structure func- 
tion is supposed to be known from experiment. We take 
for it the Q Z . d e p e n d e n t  parametrization given in [ 16]. It is 
shown in Fig. 1 for Q2 = 5 (GeV/c) 2. 

We do not have very convincing evidence for the shape 
of the pion distribution in the deuteron, so apart from 
a slight modification we follow the estimate of Berger et al. 
[17] and take 2 

3L/o(y) 

=2r(a+2)r(b+l) 2 1 - ~  o_<y<2 (40) 

which is designed to satisfy (35). We fix a = 2, b = 5 as 
reasonable estimates. The resulting distribution is shown 
in Fig. 2. 

The whole of the R.H.S. of (38) is then proportional to 
s and this is the only free parameter. Models suggest that 

2In our notation 3f~ m corresponds to f~/o in [-17] 
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Fig. 1. The pion structure function, (31) 
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Fig. 2. The number density of pions in the deuteron, (40) 

e cannot be larger than a few percent. Let us therefore take 
e -- 2% and see whether 5F~(x) has a significant effect in 
(37). In Fig. 3 we show values of 

F~ (x) -] 
[F~(x) -- F~(x)]naiv e = V~(x) 1 F~(x) J (41) 

from the previously mentioned parametrizations and the 
result of adding bFDz (X) to these. In Fig. 4 we show the 
integrand of the Gottfried sum rule, i.e., the same func- 
tions divided by x. We are assuming the convergence of 
the Gottfried sum rule, so we extrapolate the R.H.S. of(37) 
to zero at x = 0. It is seen that even with e of just 1% there 
is a non-trivial modification at small values of x. In Fig. 5 
we show the effect of taking e = 1, 2, 3% on the estimate 
of 6F~(x). 

It should be noted that even if we assume convergence 
of the real Gottfried sum rule, the two individual terms on 
the R.H.S. of (37) wilt each give rise to a divergent integral. 
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Fig. 3. Values for the difference between the proton and neutron 
structure functions, (37), (s = 0 continuous line, s = 0.02 dashes) 
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Thus without resorting to a detailed model as to how the 
separate divergences cancel we cannot simply compute 
the Gottfried integral all the way down to x = 0. However 
we note that using xmN = 0.004 it is possible to make the 
Gottfried integral take on the value �89 by choosing e ~ 2%. 
However, since there are some arguments for having 
~i # c[for all x (even if the detailed models are not convic- 
ing) we do not believe that ~ should be fixed in this 
fashion. The point we wish to emphasize is that (37), and 
not (21), is the correct relation between Fz p (x) - F~ (x) and 
the measured observable and that this relation, unfortu- 
nately, is somewhat model dependent. Hence until one has 
a more convincing description of the (pionic content of) 
the deuteron, one cannot use the N M C  measurement to 
make definitive statements about  the Gottfried sum rule. 

Parton fusion effects and shadowing 

In the above analysis we have neglected shadowing and 
also the possibility that in the dense cloud of small-x 
partons fusion may take place between partons from d/f- 
ferent nucleons. 

Close, Qiu and Roberts [18] have estimated the cor- 
rection A F~2(x) per nucleon arising from parton fusion for 
A - - 5 6 .  Because the deuteron is a very loosely bound 
large structure, the effects coming from the proximity of 
the nucleons to each other will be smaller than expected 
on the basis of'the A ~/3 behaviour of A F A (x). A naive A1/3 
scaling extrapolation gives for the deuteron 

! , t 1 5 " 5 6  A F~ ~ 3 J 1 2 whereas estimates based on a more realis- 
tic deuteron radius suggest an even smaller value. In that 
case, the values of A F~ 6 given in [18], yields a correction 
to (38) of the same sign as 5F~ which is small compared to 
5FVz for ~ ~ 2%. 

A heroic attempt to estimate shadowing, based upon 
a mixture of vector dominance and parton fusion, has 
been made by Badelek and Kwiecinsky [19]. The correc- 

o tion t e r m  ~ F  2 Ishadowino found by them, negative for 
x < 0.1, is negligible compared to the positive pionic cor- 
rection for e = 2%. However it is comparable in magni- 
tude to the pionic correction for x _< 0.01 if e ~ 1%. 

Although all these effects are very small correction to 
Fz D their r61e in the difference 2 [F~(x) - F~(x)]  is much 
amplified. Thus the extraction of F~(x)-  F~(x) is really 
very model dependent. 

The Bjorken sum rule 

There is a profound and much more fundamental sum rule 
due to Bjorken [4], that relates the spin-dependent struc- 
ture functions gf(x) and g~(x), namely 

1 G~v v (42) dx[gf(x) - g~(x)] = 
0 

Strenuous efforts have been made at CERN and 
SLAC to test this sum rule, using deuterium and helium 
targets, respectively [21]. On the basis of our analysis of 
the Gottfried sum rule one might worry whether the 
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deuteron measurement is able to yield any real test of the 
Bjorken sum rule. 

We believe that the two cases are very different. For  
the Gottfried sum rule the correction term 6 F2 D is extreme- 
ly small but is a correction t o  the tiny difference between 
F~(x) and F~(x). On the contrary, as was r emarked  in 
[20], for the Bjorken sum rule the analogous correction 
term c~g~(x) will be negligible since 9~(x) and g~(x) are 
expected to have opposite signs for most  of the range of 
x-values and therefore the difference gf(x) - 9~ (x) will be 
relatively large, of the order of [gf(x)] + [g~(x)l. 

Moreover  the leading correction will not come from 
the pionic constituents, since these, being scalar, do not 
possess spin dependent inelastic form factors. So the ana- 
logous correction terms could only come from rarer, non- 
zero spin constituents. 

It seems, therefore, that the use of deuteron targets to 
test the Bjorken sum rule should suffer no serious difficul- 
ties of interpretation. 

O t h e r  r e a c t i o n s  

Despite its naive simplicity, our toy model for excess pions 
in deuterons gives a surprisingly good description of the 

QZ-dependence of the ratio " P F2/F2lexp as measured by 
N M C  [22].  The observed dependence disagrees with the 
result obtained by evolving F [  and F~ as obtained at some 
Q~, to higher (22 via usual QCD evolution equations, an_d 
clearly cannot be understood as a consequence of ti v e d. 
As there are no theoretical reasons for having different 
higher twist contributons for the proton and the neutron, 
the model provides a reasonable theoretical mechanism 
for the observed behaviour. 

The model has also been applied successfully to heavy 
nuclei for both deep inelastic ad Drell-Yan processes [23]. 
There is, perhaps surprisingly, a remarkable agreement 
between the available Drell-Yan data, which rule out large 
asymmetries in the sea, and the predictions given by the 
model. The same can be said about  deep inelastic data for 
different nuclei. In generalising the model to a nucleus A, 
the only change made is to allow the pion momentum 
fraction e to be a free parameter. One then finds that 
e behaving as A 1/3 gives an accurate description of the 
ratios between heavy nucleus and deuteron structure func- 
tions in a wide range of the Bjorken variable (x > 0.01). 
We would like to draw attention not only to the simplicity 
of the model but aso to the consistency in describing 
different phenomena. 

S u m m a r y  and c o n c l u s i o n s  

- We have discussed the physical implications of the 
convergence of the Gottfried sum rule. It  seems liklely 
that it does converge, but there are no fundamental 
reasons for this, and it wold not be a catastrophe if it 
were found to diverge. 

- Assuming the convergence of the Gottfried sum rule we 
have shown via a very simple model that the extraction 
of F f ( x ) -  F~(x) from the data on deuterium is really 
quite model-dependent. Although the corrections to the 
naive expressions F~(x) = �89 + F~(x)] are small 
related to F~(x), they are highly amplified when taking 
the difference 2[FzP(x) -  FzD(X)], which is used as an 
estimate for F~(x) -  F~(x), since this difference is ex- 
tremely small. Thus we have concluded that significant 
tests of the Gottfried sum rule cannot be made on the 
basis of the deuteron data without consideration of 
detailed nuclear models. 

- Despite its naive simplicity our "toy" model seems to 
explain some unexpected features in DIS and Drell-Yan 
scattering on nuclear targets. 

- In the case of the Bjorken sum rule we stress, contrary 
to the Gottfried case, that the use of deuteron data to 
estimate 9 f ( x ) -  g~(x) should be quite reliable. This 
follows because the dominant  pionic effects which affect 
the Gottfried case are inoperative for spin-dependent 
structure functions and because the difference 
9f(x) - 9~a (x) is expected to be large. 
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