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NATURAL FREQUENCIES OF 
A NON HOMOGENEOUS ISOTROPIC ELASTIC INFINITE PLATE 
OF VARIABLE THICKNESS RESTING ON ELASTIC FOUNDATION 
J.S. Tomar*, D. C. Gupta**, Vinod Kumar*** 

SOMMARIO. Si sono studiate le oscillazioni libere di una 

piastra elastica infinita, non omogenea, isotropa, di spessore 

parabolicamente variabile, poggiata su un suolo elastico. 
Applicando il metodo di Frobenius per la soluzione della 

equazione differenziale del moto si sono calcolate le fre- 
quenze, le deformate ed i momenti corrispondenti ai primi 

cinque modi di vibrazione per due combinazioni di condizio- 

ni al contorno, incastro-incastro ed incastro-appoggio e diver- 
si valori della rastremazione, del parametro di non omogenei- 

t?~ e del modulo del suolo. 

SUMMARY. The dynamic free response o f  a nonhomo- 

geneous isotropic elastic infinite plate o f  parabolically 
varying thickness resting on an elastic foundation has been 

studied. The frequencies, deflections and moments cor- 

responding to the first five modes o f  vibration have been 

computed for the two combinations o f  boundary conditions, 
clamped-clamped (C-C) and clamped-simply supported 

( C-SS) and various values o f  taper constant, nonhomogeneity 
parameter and foundation modulus by applying the method 

o f  Frobenius for the solution o f  the governing differential 

equation o f  motion. 

1. INTRODUCTION 

The nonhomogeneous structures are of  great practical and 

academic interest. The nonhomogeneity in real bodies arises 

due to inclusion of  a foreign material, imperfections or as 

a result of  being composite material. Therefore, in such 

elastic bodies, the material properties are not constant 

but vary with position in a random manner. Plywood, timber, 

deltawood and fiber reinforced plastics are some examples. 

So far very few papers have been devoted to the investigation 

o f  the effect of nonhomogeneity on the frequencies of  
elastic bodies. Bose [ 1 ] has analysed the vibrations produced 

in a thin nonhomogeneous circular plate whose Young's 
modulus and density both vary linearly with radius vector 

with constant Poisson's ratio. Roy [2] has also assumed 
linear variation in the modulus of  elasticity of  a square 

plate with x-coordinate by keeping both Poisson's ratio 

and density constant. 
The present work is a continuation and an enlargement of  
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the previous work [3] where the statistical homogeneity and 

statistical isotropy were assumed with the exponential 
variation in Young's modulus and density with x-coordinate. 
These assumptions would include <<glass-spheres in epoxy- 

resin>> and certain mixture of  metals for example lead-alu- 

minium. In this investigation the first assumption remains 

the same and the modulus of  elasticity and density of  the 

plate material are supposed to vary linearly along x-axis 

with constant Poisson's ratio which is apparent in many 
nonhomogeneous structures, particularly when they are made 

of  concrete or when they are raw planks from branch side 

toward the root side used extensively on temporary bridges 

in war time [2]. 

2. FORMULATION OF THE PROBLEM 

Here, the plate is assumed to be of infinite extent in one of  
the directions (the y-direction) and the thickness of the 

plate h, Young's modulus E, density p and flexural rigidity 
D are assumed to vary only in x-direction. Adopting these 

assumptions, the equation of motion of  the isotropic infinite 

elastic plate of  variable thickness, in accordance with Winkler's 

assumption [4], is derived as 

Eh 2 - -  + 2 h 3 - -  + 3h 2 E 
~x 4 ~x ~x 3 

+ h 3 _ _  + 6h 2 
OX 2 ~X 

( + 6Eh + 3h2E - -  
()X I OX 2 OX 2 

02w 
+ 12(1 - -v  2) oh - -  + 12(1 - -u  2) kfw = O, (1) 

Ot 2 

where w is the transverse displacement, v the Poisson's ratio 

which has been assumed to be constant and Icy is the found- 

ation modulus. 
If  the non-dimensional variables, H = h/a, X = x/a and 

W = w/a are introduced, equation (1) takes the form 

0414/ t ()-E OH I O3 W 
E-H 3 - ~  + 2  H 3 - - + 3 H 2 0 x  - -Eox --OX 3 

+ H 3 + 6H 2 
~X ! OX 

--(OH] 2 ~2H t O2W 
(2) + 6EH \ - ~  ! +3f i l l  2 - ~ 1  aX 2 
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02W 
+ ~ H - a 2 1 2 ( 1 - - v  2) - -  + 1 2 ( 1 - - v  2)kfW=O, 

3t 2 
(2) 

where E = E/a, -ff = p/a and a is the width of  the plate. 

In this investigation, the thickness of  the plate H, modulus 
of  elasticity E- and mass density ~ are assumed to vary as 

H = H o ( 1 - - c ~ X 2 ) ,  E = E o ( 1  +/3X) and ~ = ~ o ( 1  +/3X) 

where 

Ho 
a is a taper constant and /3 represents the parameter of  
non-homogeneity. 

The consideration of above hypothesis and substitution 
of W(x, t) = W(X) e i'~ t for harmonic vibrations in equation 
(2) yield 

(1 + fix -- 3cr.X 2 -- 3ceflX 3 + 3c~2X 4 

+ 3~2/3X 5 -- 43 X 6 _ o~3/3X 7 ) - -  
aX 4 

- - ( 2 / 3 -  1 2 a X -  18a/3X 2 + 24c~2X 3 

+ 30~23X 4 -- 12a3X 5 -- 14a3/3X 6) - -  
OX 3 

+ (-- 6a -- 18a/3X + 36cr 2 

+ 60a2flX 3 -- 30o~3X 4 -- 42o~3~X s) - -  
~X 2 

-I(1 +/3X-aX 2 -a/3X 3) FtW=0': (3) 

+ ~ axFs(X)XC+X + s axF6(;k)XC+k+l 
h=0 k=0 

+ ~ axFT(X)XC+X+2 + s a~,Fs(X)XC+X+3 
x=o ;k=O 

where 

b i ~  = (c + X), 

b (1) = ( c  +~k)(C+~k--]), 

b(x 2) = (c + X) (c + X--  1) (c + X-- 2), 

b(x 3 ) = ( c + x ) ( c + x - 1 ) ( c + X - 2 ) ( c + x - 3 ) ,  

F 1 (X) = bi3) , 

F 2 (X) =/3(b ~3 ) + 2b ~2)), 

F3(X ) = --3a(b(x 3) + 4b~x2) + 2b~1)), 

F 4 (X) = -- 3at3(b(x 3 ) + 6b(x2) + 6b (1)), 

a2 G 
Fs(X) = 3c~2(b (3) + 8b12) + 12bl 1 ) ) - -  + - - ,  

i x C x 

F6(X ) = 3o~2fl(bl 3) + 10bi2) + 2 0 b i l ) ) -  
~,2 3 

I x 

G(~k) = --ff3(bi3) + 12b(a2) + 30b(~ 1)) + - -  
I x 

and 

Fs(X) = -- a3~(b(3) + 14b (2) + 42b (1)) + 
I x 

= o, (5) 

where 

i x H ~  k / c x  
-- i 2 , G = = - ,  = E o 

a2= Yoa2C~ _~,2)  
, 

12(1 - -v  2) ' 

co the radian frequency and I2 is frequency parameter. 

The series expression (4) to be the solution for equation 

(5), the condition of vanishing coefficients of all the powers 
of X is enforced and the indicial roots c = 0, 1, 2, 3 are 

obtained by equating to zero the coefficient of the lowest 

power of  X. Also, when the coefficients of  the next sub- 

sequent powers of  X are equated to zero, a 1, a 2 and a 3 are 
found to be indeterminate for c = 0 and rest of  the a x's 

(X = 4, 5 . . . .  ) are obtainable from the following recurrence 
relation 

3. SOLUTION AND ITS CONVERGENCE 
Adopting the method of  Frobenius for the solution, the 

series expression 

W(X)= s ax XC + X , ao =/= O , 
h=0 

(4) 

for W is substituted in equation (3) which reduces to 

a~ = a o A i  0) + a l A i l )  + a 2 A i 2 ) + a 3 A ( 3 )  ' (6) 

where A (x i) 's have been defined in appendix. 

Now, after substituting the values of  unknown constants 
a x's the following solution, corresponding to c = 0 for equa- 
tion (5), is obtained 

W=a0II  + ~ A(~ s zil)g~" 1 
k=4  h J k=4  

axFl(X)XC+X-4 + s axF2(X) XC+X-3 + 
~,=0 h=o 

+ ~ axF3(X)XC+X-2 + ~ axF4(X) XC+X-x 
h=0 X=0 

+a2[  X2 + 2 4  Ai2)X~']+a3IX3 + x--~4 AI3)XXI' (7) 

Apparently no new solution arises for other values of 
c since these are already contained in the solution (7). 

The convergence of  the solution (7) has been tested by 
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adopting the technique used by Lamb [5] and found to be 
convergent in the interval 0 ~< X ~< 1 for [# ] < 1 (where 
# = lim aT, + 1lax) and hence uniformly convergent for all 

7, --~ oo 

IVY-a[ < 1 and ( f l [  < 1. 

4. BOUNDARY CONDITIONS AND FREQUENCY E- 
QUATIONS 

The frequency equations for clamped-clamped and clamp- 
ed-simply supported infinite plates are obtained by using 
the following boundary conditions. 

(C-C)-PLATE 

For an infinite plate damped at both the edges X = 0 
and X = 1, the deflection and slope of the plate element 
at the edges should be zero 

~W 
= = O. ( 8 )  i.e. Wx=0,1 ~ x = o , 1  

Enforcing the boundary conditions (8) on (7) the fre- 
quency equation is obtained as 

I G1 (~) G2(~) = O, (9) 

G 3 (I2) G 4 (s  

where 

a x ( a )  = 1 + ~ ( ~ ,  a2 (a )  = 1 + ~), 
7 , = 4  ~ = 4  

G 3 ( ~ ) =  2 + ~ XAi2)and G 4 ( ~ ) = 3 +  ~ ~kA(~ 3). 
7 , = 4  X = 4  

(C-SS)-PLATE 

For an infinite plate clamped at X = 0 and simply sup- 
ported at X = 1, the boundary conditions are 

x = o,1 O~---XWX x = o ~) 2 ~ -- -- ~ X = l  = 0. ( 1 0 )  

Applying the boundary conditions (10) on (7), the charac- 
teristic equation for the determination of frequencies has 
been derived as 

I Gl(a'2) G2(a)  = 0 (1 1) 

G s (~) G 6 (~) 

where 

as (a )  = 2 + ~ x ( x -  t )n [  2~ 
k = 4  

and 

G 6 ( ~ 2 ) = 6 +  ~ X(X- -1 )AI3) .  
7,=4 

5. RESULTS AND DISCUSSION 

The numerical results have been computed by using 

DEC 20 digital computer and terms of the series upto an 
accuracy of 10 -s in their absolute values have been retained. 
The results for the variation of frequency parameter s = 
= ar -- u2)/(ffo/p o) with taper constant a have been 
displayed in Fig. 1. The frequency parameter ~ for homo- 
geneous plates without foundation decreases with the increase 
in a for both the combinations of boundary conditions in 

7 L = �9 = . , = __.. 
, . . . . . .  
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Fig. 1. Effect of taper constant ~<co on frequency parameter <<~2>~. 
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Fig. 2. Effect of non-homogeneity parameter ~</3>~ on frequency para- 
meter ~<f2>~. 
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Fig. 3. Effect of foundation modulus <<Fp)~ o n  frequency parameter 
<<E~>~ of a (C-SS)-PLATE. 

EZ increases slowly with the increase in/3 while for e = 0.1 

and Fp = 0.01, it decreases for the edge conditions and 

modes discussed here. It is also noted that the frequencies 

of  uniform plates are larger than those of  plates of  variable 

thickness. Figs. 3 and 4 depict that the frequencies of  (C-SS) 

and (C-C) plates increase with the increase in the value of 

foundation modulus for all the sets of values of a and /~. 

The non-dimensional transverse displacement 14,' and moment 

parameters M have been shown in Figs. 5 and 6 respectively. 
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Fig.  5.  Transverse displacement <<W~ corresponding to the first five 
modes o f  v ib r a t i o n .  
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Fig. 4. Effect of foundation modulus <<Fp~ on frequency parameter 
<<~2>> on a (C-C)-PLATE. 

LEGEND 

all the five modes. Also, the frequencies, in the case of 

homogeneous plates resting on elastic foundation, are larger 

than those in the case of  nonhomogeneous plates on elastic 

foundation. 

Fig. 2 shows the effect of  nonhomogeneity parameter 

on the frequency parameter ~2. For  ~ = 0.0 and Fp = 0.0, 

Fig. 6. Moment parameters <<M>> corresponding to the first five modes 
of vibration. 
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The results obtained here compare very well with those given 

in [3] for ~ = 0.0,/3 = 0.0 a n d F p  = 0.0 (Fig. 1). The values 

of  ~2 for a = 0.1 and/3 = 0.0, for the variation of  foundation 

modulus (Figs. 3 and 4) have been found in a good agreement 

with those obtained by  Tomar and Gupta [6] for the available 

first two modes of  vibration while those differ to some 

extent  for/3 = 0.0, Fp = 0.01 for the variation o f a .  

A P P E N D I X  

Definition of  the parameters involved in equation (6) 

are as follows for i = 0, 1,2,  3: 

A(xO = 1 if X = i 

= 0 otherwise (X = 0, 1, 2, 3) 

A ~i)  = _ IA ~i)e2 (3) + A ~i)~ 3 (2) 

+ A~i)F4 (1) + A(oi)F 5 (0)]/F 4 ( l) ,  

A ~i) = _ [A ( i )F 2 (4) + A ~/)F 3 (3) 

+ A (i)F 4 (2) + A ~i)F s ( 1 ) + A (oi)F6 (0 ) ] IF  5 (1), 

A(6 i) = -- [A~i)F 2 (5) + Ai i )F 3 (4) 

+ A (3i)F4 (3) + A ~i)F 5 (2) + A ~i)F 6 (1) 

+ A(o~)F 7 (0)]/F 6 (1), 

A(7 i) = -  [A~i)F2(6 ) + A~i)F3(5) + 

+ A(4i)F 4 (4) + A ~i)F 5 (3) + A (2i)F6 (2) 

�9 (~)~ 
+A~ ' )F7(1)  + A o" rs(O)l /F7(1) 

and 

A(i) ,~(i) 6F2( k + 6) , ,(i)  F (X + 5) h+7 =--[Jlh+ +"iX+5 3 

+AIi)+4F, I(X + 4) 

+A(i)  3 F s ( k + 3 ) + " ( i ) ' F ' ( k + 2 ) 4 - A ( i ) x +  Pxx+z u _ x + a F 7 ( X + l )  

+A(xi)Fs(X)I/F7(X + 1) (X = 1, 2, 3 . . . .  ). 
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