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SOMMARIO. Nelle oscillazioni di grande ampiezza di un 

cavo sospeso, il moto nel piano e fuori del piano risulta 

accoppiato, a differenza di quanto predetto dalla teoria 

delle piccole oscillazioni. Questo problema viene studiato 

faeendo riferimento ad un modello del cavo, semplice ma 

significativo, a due soli gradi di libert~, dei quali uno tiene 

conto del moto pendolare e l'altro del moto neI piano. La 

soluzione delle equazioni di moto ~ ottenuta con una tecniea 

perturbativa fino al terzo ordine, adatta al problema con 

nonlinearitd quadratiche e cubiche. Si studia la modifica- 

zione della legge del moto dovuta al trasferimento di 

energia tra i due modi per differenti condizioni iniziali in 

assenza di risonanza interna e si valutano gli effetti dell'ac- 

coppiamento modale nel problema nonlineare. 

SUMMARY. In the finite motions o f  a suspended elastic 

cable the in-plane and out-of-plane oscillations are coupled, 

which is in contrast with what is predicted by the theory 

o f  small oscillations. To study the phenomenon of  nonlinear 

coupling, a simple but meaningful two degree-of-freedom 

model is referred here, one parameter being used to describe 

the in-plane motion and the other the out-of-plane motion. 

The solution of  the dynamic equilibrium equations is 

accomplished by an order.three perturbational expansion, 

which furnishes the time solution of  the two displacement 

parameters. The modification of  the free oscillations due 

to the exchange of  energy between the two modes in 

absence of  internal resonance is studied for different initial 

conditions and the effect o f  modal coupling is evidenced. 

1. INTRODUCTION 

The analysis of the dynamics of  continuum systems 

usually leads to the study of nonlinear partial differential 

equations. Tile complexity of  the problem often suggests 

to find the solution of  the linearized equations of  motion, 

though linear models can not disclose some aspects of  the 

actual behaviour [1, 2]. 

To tackle a more suitable description of  the problem, 

retaining the most important  effects of  the nonlinearities, 

it is convenient to introduce a certain number of  simplifying 

assumptions, mainly to reduce the equations of mot ion to a 

system of  ordinary differential equations by representing 

the spatial configuration with a finite number of  prescribed 

shapes [ 3 - 5 ]  or with a finite element approach [ 6 - 9 ] .  

Sometimes, for a particular phenomenon as the relationship 
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between the frequency and the amplitude of  the oscillation, 

it is possible to adopt only one shape to represent the mode 

under consideration; in this way the problem is reduced to 

the study of a simple nonlinear oscillator [10 -13 ] .  This 

circumstance can be viewed as a particular case of the 

general discrete approach where, for a system uncoupled in 

the linear part, the solution of the single equation is obtained 

by neglecting the contribution of the other modes in the 

nonlinear terms. 

A better  description of  the frequency-amplitude rela- 

tionship of  a multidegree-of-freedom system is given by the 

analysis of monofrequent oscillations; in these cases the 

motion is still periodic and has the correct nonlinear fre- 

quency of the prevailing component which makes the other 

components  to arise [14, 15]. 

If the attention is focused on the nonlinear coupling of 

multidegree-of-freedom structures, even simple mechanical 

model can be conveniently utilized to study the problem, 

as it was made for the special case of internal resonance 

[16, 17]. The complete study of the coupling requires the 

general solution of  the equations of  motion; taking into 

account that the numerical importance of this problem is 

strongly influenced by the sequence and the ratio of the 

natural frequencies, it is often possible to obtain well 

approximated results by considering only the two modes 

mainly involved in the coupling. 

Within this frame, in the present work the solution of 

the coupled motion of a suspended cable is found by 

referring to a simple but meaningful two degrees-of-freedom 

model; the model, utilized also in [14], is implemented here 

to consider the contribution of  longitudinal displacements, 

which play an important  role in the nonlinear behaviour 

[18]. The solution is obtained by an order-three perturba- 

tional procedure suitable for studying problems with qua- 

dratic and cubic nonlinearities; the time law of  the two 

quantities which define the deformed configuration of  the 

cable is obtained. The modification of the motion due to 

the exchange of energy between the two modes considered 

is studied for different initial conditions; for particular 

values of the latter, the nonlinear motion is characterized 

by a unique frequency, i.e. monofrequent oscillations occur. 

Finally, the solution obtained is used as a case example to 

show what is lost when the coupling terms are omitted. 

2. NONLINEAR MODEL OF CABLE. EQUATIONS OF 

MOTION 

Consider a heavy elastic cable suspended between two 

fixed supports at the same level. The initial static equilibrium 
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configuration of  the cable, which is assumed as reference 

configuration of length ~c, lies in the x y  plane and is 

represented by the function y(s) .  The dynamic configuration 

is described through the displacement coordinates ~'l(S, t), 

92(s, t), 93(s, t) of a point P(s) (Fig. 1), which are connected 
with the components u, o, w in an orthogonal s y s t e m O x y z  

by the relationships: 

U = 9 3  

o = (y + ~l)COS ~ - y  ( l a - c )  

w = (y + ~l) s inr  

It is assumed [14] that during the motion the cable 

always remains in a plane, whose position with respect to 
the x y  plane is defined by the angle: 

c~(t) = ~2(0,  t ) /y(O)  = q2 ( t ) / d  (2) 

while the deformed in-plane configuration is described 

through t~l and q3" Such simplified kinematics are consi- 
dered to be adequate for studying nonlinear coupling 

between the in-plane modes and the out-of-plane first 
symmetric mode. With these assumptions, and using the 

Lagrangian strain as the strain measure, the extensional strain 
of the cable axis is: 

e(s, t)  = (O~l /~s) (dy /ds)  + (b93/Os)(dx/ds) + 

1 (3) 
+ -- [(i)91/~}S)2 + (~93/~)S) 21 

2 

In order to obtain an analytical solution to the problem 
of free vibrations of the cable the following assumptions 

are made [18]: i) the static equilibrium configuration is 
represented through the parabola: 

y = 4d[x/l~ - (x/s 21 (4) 

which entails d s _  dx and permits approximation of  the 

cable initial tension T ] with its horizontal component H; 

ii) the initial strain is negligible with respect to unity; iii) 

the gradient of the horizontal component of the dynamic 
displacement is negligible with respect to unity, i.e. mode- 
rately large rotations are considered in the cable motion. 
An integral relationship between the two in-plane displa- 

cement coordinates t~l and q3 is obtained by neglecting 
the longitudinal inertia forces of the cable, from which the 

extensional strain results to be function of  time only: 

! 8 

y ~ t~',(s,t ) P(s) 

~,ls,t) 

(t) 
) 

, ~ ' # l s , t )  

Fig. 1. Cable configuration. 

1 
Oq3/OX + (aql f i )x)(dy/dx)  + -- (aql/aX)2 = e(t) 

2 
(5) 

By integrating Eq. (5) and accounting for the boundary 

condition 93(s t ) =  0 to determine the constant e(t) ,  it 
follows: 

Iv I x dy 
~3 = -- -- + dx+ 

s Lax dx 2 ~ x !  _1 

( x [  ~ql dy 1 (  391/2]dx 

-Jo + 

(6) 

The equations of  motion of  a simple two-parameter model 
of the suspended cable can be deduced via the Lagrange 

equations. The strain energy, the kinetic energy and the 
gravitational energy are as follows: 

U =  U I +  He  + --  E A e  2 dx ,  
2 

(7a - c) 

f 1 m(/~2 + ~;2) dx,  W = W I K = - mgo  dx 

where U t, W I are the values in the initial configuration, E, 

A and m are the elastic modulus, cross-sectional area and 

mass per unit length of cable, respectively. By substituting 

for e(t)  the expression obtainable from Eqs. (5), (6), for v 

and w the relations (lb, c) - the former being expanded 

up to order-four terms in the two components c~1 and r 

assumed of the same order when substituted in Eq. (7c) - ,  

the Lagrange equations are written in terms of  just ql and 

q~. The cable transverse coordinate ql is represented through 
separate variables as follows: 

91(x, t )  = q l ( t ) f ( x )  (8) 

the in-plane shape function f ( x )  being assumed as the 
eigenfunction of  the linearized dynamic problem [18]. To 

obtain a dimensionless form of the equations of motion, the 
following positions are made: 

U 1 = q l /d ,  u 2 = 4) = q2/d ,  x = x / s  ~ = y / d ,  r = co2t (9) 

and the parameter X = 6oi/6o 2 is introduced, to 1 and w 2 

being the frequencies of  the in-plane and out-of-plane 

motions in the associated linear problem. The equations of  
motion then read: 

//1 + ~k2Ul- (6'1/22 + r + 6'3/)~ ) + (C7Ul/J22 + CsU~) 

U'2 + U2 = (6,4UI~J'2 + CSt~lU2 + CsUlU2) + (lOa, b) 

+ (C9U32 + CloUl/Jl/J 2 + 6,11//~/~2) 

where the dot indicates d /dr .  The dimensionless coefficients 
c i, which are given in Appendix 1, depend on the initial 
configuration ~ and on the assumed transverse eigenfuction 

f;  c 1 and c s also contain the parameter A 2 =  (EA/mgg.)  

(8d/s 3 which, according to the nondimensionalization with 
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respect to sag, accounts by itself for the mechanical and 

geometrical properties of  the cable and governs its planar 

nonlinear vibrations [ 1 3, 1 8 ]. 

Nonlinear quadratic and cubic terms exist in Eqs. (10). 

Analysis of them gives some indications as regards the 

phenomena which can occur in the finite free dynamics of  

the cable. The occurrence of  geometric and inertial terms 

of  pure nature (Ul 2, u~, fi~, u~, u ~ ) i n  the two equations 

assures that  both  monofrequent  oscillations can exist under 

particular initial conditions for the remaining variable, with 

frequency dependent on the amplitude of oscillation and 

time solution different from the linear one. Neglecting the 

contribution of  the horizontal in-plane displacement, they 

were studied in [14] where it was shown that, due to the 

presence in the equation for U 1 of pure forcing terms 

associated with u2, the out-of-plane monofrequent  oscillation 

is characterized by some nonlinear coupling between the 

two coordinates. Eqs. (10) can be used as well for studying 

the general case U l ,  u 2 of the same order, in which pheno- 

mena of  either internal resonance or general modal coupling 

occur; the latter will be analyzed in the following. 

To obtain the solution to system (10) the multiple scale 

method [2] is adopted. A perturbat ion parameter e of the 

order of  the amplitude is introduced and the variables u i 
are considered functions of  a sequence of  three independent 

time scales T o , T 1 , T 2 , which are related to r by the 

expressions T n = e nr, and are expanded in powers of  e up 

to the e 3-order, to attain a solution with the same accuracy 

as is involved in the differential equations: 

u i = e u i l ( T  O,T 1 ,T 2 ) + e 2 u i 2 ( T 0 , T  1 ,T 2 ) +  

+ e3ui3(To , T1, T2) + 0(e 4~') (1 1) 

By expressing the time derivatives in terms of  the T n 

variables and substituting Eqs. (1 1) in Eqs. (10), a system 

of two partial differential equations with the unknowns uij 
is obtained. By equating coefficients of like powers of e, a 

sequence of three linear systems follows: 

order e : Dooull + X2Ull = 0, DooU21 + U21 = 0 (12) 

o r d e r  e2 :DooUl2  + ~k2u12 = - 2 D o l U l l  + ClU21 + 

+ c2u221 + c3(DoU21 )2 
(13) 

D00u22 -I- u22 = - 2D01u21 + c4UllDoou21 Jr 

Jr c5DoUllDoU21 Jr C6UllU21 

orde r  e3 :Doou13 + X2u13 = - 2DolU12 - 2Do2uH - D l l U l l  Jr 

Jr 2ClUllU12 Jr 2c2u21u22 Jr 

Jr 2c3(Dou21Dou22 + DoU21DlU21) Jr 

Jr C7Ull(OoU21 )2 + C8U311 (14) 

DooU23 Jr u23 = - 2DolU22 - 2Do2U21 - D l l U 2 1  Jr 

Jr c4(ut1Doou22 Jr 2u11DolU21 Jr Ul2Doou21) + 

+ c5(DoUllDoU22 + DoUllDlU21 + 

+ DoUl2Dou21 Jr DlUllDoU21 ) + 

Jr C6(UllU22 Jr U12U21) + C9U31 Jr 

+ cloUllDoUllDoU21 + CllU~lOoou21 

where the notations D i = a/~T i and Di/= a2/3TiaT/ have 

been used for the sake of simplicity. The problem is completed 

with the initial conditions: 

u~(O) = e~- i u;(O) = e~.  (15)  

3. PERTURBATION SOLUTION 

In order to examine the modification of  the law of  

motion of  the i-th coordinate induced by the ]-th, the 

periodic solution: 

Ull = AI(T1, T2)e ixTo + c.c., u21 = A2(T 1, T2)eiT~ + c.c. (16) 

is introduced in system (12), A/(T 1, T 2) being unknown 

complex amplitudes. In Eqs. (16) and the following, c.c. 

and the overbar (A]) indicate the complex conjugate. 

Substituting in system (13) gives: 

D00Ul2 + )~2u12 = -2i~D1AleixTo + ciA~e2iXro + ClA1A-1 + 

+ (c 2 -c3)A~e2iTo + (c 2 + c3)A2A- 2 + c.c. (17) 

Doou22 + u22 = - 2iD1A 2 eiTo - (c 4 + csX - c 6)A 1A 2 ei(x§ 1) To.+ 

--(C 4 -CS~k-c6)A1A2 ei(x-1)T~ + c.c. 

Analysis of system (17) shows that internal resonance 

occurs at ~the order e 2 for X = 2. If this circumstance is not 

verified, zeroing of the secular terms gives A~ =A/(T2), 
showing that no frequency correction occurs at this order 

for either one of  the coordinates. Solving Eqs. (17) gives: 

Ul 2 = '~1--1 ~ k  A2a2ikTo + k2A22e2iTo - 3 k l A 1 / ~  t + k3A2A'2 + c.c. 
(18) 

U22 = k4AiA2ei(X+ 1)T0 + ksA1A2ei(X-t)To + c.c. 

the coefficients k 1 , . . . ,  k s depending on X and ci; they are 

reported in Appendix 2 together with coefficients k6,  �9 . . ,  k15 

introduced subsequently. By substituting Eqs. (16) and (18) 

into (14), the following system is obtained: 

O00Ul3 + ]k2U13 = [-- 2iXD2A 1 4- k6A2Z 1 + k7A1A2A2 ]eixT~ + 

8~k2kloA~e 3i~'r~ - 4(X + l)kllAiA~ei(X + 2)7"o 4_ 

+ 4(k - 1)kl2Al"A~ei(X-2)T~ + c.c. (19a, b) 

DooU 23 + u 23 = [ -  2iD2A 2 + ksA 1A1A 2 + k9A 2A2]ei To + 

- 8kl3A3e3iVo - 4X(X + 1)kt4A~A2e i(2x+ 1)To + 

- - 4 k ( X -  1)klsA 21"A2e i(2x- x) T~ + c.c. 

from which it is observed that internal resonance occurs at 

the order e 3 for k = 1 in Eq. (19b). However this condition 

has no significance in the actual mechanical problem since 

it corresponds to the taut string, whose behaviour can not 

be studied through the model used herein, in which the 

two parameters considered describe the in-plane and the 

pendulum motions. If this resonance condition is excluded 

too, zeroing secular terms again, when the polar forms 

.~ . iqoh(T2) 
Ah (T2) = ahti2)e (h = 1, 2) (20) 

are introduced and the real and imaginary parts are separated, 

provides a differential system with respect to time scale T 2 

having the unknowns a h , r whose solution reads: 
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a~ = const. ~h = ~h r + ~~ (21a, b) 

wherein 

1 1 
~ol - (k6a ~ + k7a2)e2, ~o 2 = - - -  (kaa~l + k9a~2)e 2 (22) 

2), 2 

The values of the real amplitudes a h and phases ~0h0 = ~o h (0) 

will be determined by means of conditions (15). The solution 
to system (19) reads: 

it13 = kloA ~ e3ihTo + k l l A  1A ~ ei( X + 2)T0 + 

k A A-'2ai(h-2)To + .~12..1,.2 ~ + c.c. 
(23) 

k A 2 A  oi(2X+l)To_}_ U23 = kl3A3e3iTo + ,~14~1-2 ~ 

+ k A2A.  e i(2x-l)To + c.c. 
15 1 2 

Accounting for Eqs. (21b), the amplitudes (20) are ^ i~, 
- ~ * e  z~t~r with A~ = abe ~. Substituting rewritten as A h (r) - "*h ' 

them in the relations (16), (18), (23)and these in Eq. (11) 
the complete solution at the order e 3 follows: 

u 1 = eA~ei~:  r + e2{klA~2e 2if~r: + k2A~2e2i~2r + 

- 3 k l A ~ A .  ~ + k3A~A ~ }+ e3{kloA~3e 3i~lr + 

k A*A*2oi(~t+2~22) r k A*'~*2Di(f~l-2S22)r~ 
+,~11-~1~.2 ~ +,~1T.1,~2 ~ j-l- C.C. 

(24) 
u2 = eA~ei~Z2": + e2{k4A~A~ei(nl + n2)1- + 

+ ks A *X*,,i(nl-~2)'r 1--2 ~ } + e3{kl3A~3e 3in2r + 

k A*2A*,,i(2~zl + S2z)~" + k A*2h*~e i(2s21-s2z)r } +"14"~1 ~'2 ~ 15 1 2 + c.c. 

where 

~'21 = ~k + ~1, ~'22 = 1 + if2 (25) 

denote the nonlinear frequencies of the two coordinates. 

Taking into account Eqs. (22), it is observed that each 

frequency depends on the square of  the oscillation amplitude 
both of the corresponding coordinate and of the other one. 

In satisfying the initial conditions, the complex amplitudes 

Aft are expanded in powers of  e as: 

3 
�9 k e Ahk + 0(e 4) (26) 

1 

and substituted in Eqs. (15) via Eqs. (24). Accounting for 

Eqs. (22), (25) as well, three systems of conditions follow 
at the orders e, e 2, e 3, from which the complex amplitudes 

Ah* k (h = 1, 2; k = 1, 2, 3) are obtained sequentially (see 
Appendix 3); then, if the polar forms 

.0 
Ahk* = ahk e~a~ (27) 

are introduced and the real and imaginary parts are sepa- 

rated, the real amplitudes ahk and the phases ~oh~176 k follow. 
Finally, by substituting relations (26), (27) in Eqs. (24), 

the temporal laws of the motion in circular form are obtained: 

u l = e2all cos011 + e22{a12cos012 + a21(klCOS2011 - 3k 1) + 

4- a~l(k 2 cos 2021 + k 3) } + e 32{a13 cos 013 + 

+ 2alla12[k I cos(011 + 012) - 3k 1 cos(011- 012)] + 2a21a22 �9 

' [kEC~ + 022) + k3 cos(@2~- 022)] + a]lkl0C~ 3011 + 

+ alla21[kll cos(011 + 2021) + k12 cos(011 -- 24)21)1} 
(28) 

u 2 = e2a21 cos021 + e22{a2zCOS022 + aua21[k4 cos(0u + 021)+ 

+ k5 c~ - 021 )] } + e32{a23 cos 023 + 

+ alla22[k 4 cos(011 + 4)22) + k 5 cos(011 - 022)] + 

+ a12a21[k 4 cos(012 + 021) + k s cos(012 - 021)] + 

+ a31k13c~162 +a~la21[k14c~ + 021) + klsc~ -%1)]} 

In Eqs. (28) the phases Ohk read: 

0hk = 12hr + ~h0k (29) 

the nonlinear frequencies I2 h being expressed explicitly in 

terms of  ahk , ~oOk as 

1 2 
" h  = ~h - - -  ~ i  / [e2Kh/~ 2 +2e3Kh/a/la/2c~176176176 

2~h (30) 

wherein: ~ I = X ,  ~ 2 =  1, K l l = k 6  ~ K12=k7 ,  K21=k8,  

K22 = k 9 . 
Equations (28) show considerable modification of the 

temporal laws of the two coordinates with respect to the 
linear ones, which is due essentially to the existing nonlinear 

coupling. Indeed the motion of the h-th component is 
described by superposing several harmonics - having fre- 

quencies combinations of the two nonlinear fundamental 

frequencies (30) - to the generating solution. This latter 

splits into three terms - of  order e, e 2, e 3 respectively - 

having different phases ~0~ ; such difference however reduces 

to zero if the particular case of zero initial velocity for the 

h-th component is considered. 

The following combination frequencies appear explicitly: 

2~1 '  2922, ~1 + I22 
(31a, b) 

3 ~ 1 '  3 ~ 2 '  ~21 + 2~2 '  2~21 + ~"~2 

Harmonics with frequencies 2~2h, 3f2 h are associated 
with the pure nonlinear terms of equations of motion (10), 

while the remaining ones are associated with the mixed 

terms; each of them affects just the component exhibiting 
the corresponding nonlinear term in the relevant equation. 

Quadratic and cubic terms of  (10) give rise to harmonics 

with frequencies (31 a) and (3 lb) respectively. Pure quadratic 

terms give rise to constant contributions (drifts) as well in 
the laws of  motion, which therefore occur for u 1 only: 

one of them depends on the in-plane oscillation amplitude, 
the other one is forced by the out-of-plane oscillation. They 

have different sign: indeed the former is negative due to 
softening behaviour of the cable for u 1 < 0, the latter is 

always positive; the ensuing in-plane motion occurs about a 
position different from the initial configuration. 

4. P A R A M E T R I C  I N V E S T I G A T I O N  OF N O N L I N E A R  

COUPLING 

The laws of  motion of  the two coordinates are now 

examined to put into evidence the features of  the nonlinear 

response of  the cable to a given set of  initial conditions. 
Two cables are considered, characterized by the values of  

2! (1986) 41 



the elastogeometric parameter  A 2 corresponding, for a 

technical value of the mechanical properties (EA/H = 500), 

to two different sag-to-span ratios d/~ (Table 1); they are 

both prestressed cables [13] and have linear frequencies 

with ratio ;~ either more close to the resonant condition 

;k = 1 (a) or equally far from both the resonant conditions 

= 1 and k = 2 (b). The laws of motion obtained refer to 

a dimensionless time interval 0 ~< r ~< 60 and to different 

initial oscillation amplitudes, the initial velocities of both  

coordinates being assumed zero at first. 

When small initial amplitudes of the same value are 

considered for both coordinates ( u l ( 0 ) = u 2 ( 0 ) =  0.1), the 

nonlinear phenomena are very modest  for very shallow 

cables, like cable a. For  the slacker cable b some nonlinear 

effects are observed mostly in the pendulum oscillation 

(Fig. 2), whose amplitude grows up to 1.4 times its initial 

value; they are due essentially to the e2-order harmonic of  

frequency ( I21-  522), which has appreciable amplitude with 

respect to the harmonic of frequency I22. As the initial 

amplitudes increase, the coupling effects increase too, owing 

mainly to the contr ibution of the higher harmonics having 

frequencies (521+ I22). The mot ion of  the shallower cable 

a does not yet differ very much from the linear motion 

(Fig. 3), thus showing that the existing proximity to the 

e3-order resonance condition ;k = 1 is not sufficient to 

give rise to strong energy exchange for the amplitudes 

considered: both  the in-plane and the out-of-plane coordina- 

tes still exhibit prevailing component  oscillations of fre- 

quency ~2 t = 1.056 and $22 = 1.002 respectively, though as 

time runs they are shifted about the static equilibrium 

positions, mostly the u 2 coordinate due to the slow harmonic 

of  frequency (~21- ~22) = 0.054. 

Stronger nonlinear effects are observed for the slacker 

cable b for the same initial amplitudes (Fig. 4), being directly 

associated with the higher energy exchange occurring between 

the two coordinates. The in-plane motion is influenced 

Table 1. Cable properties. 

Cable A 2 d/s ~ I M " ~  " ~ 2 ~ g  " '  ~. 

a 1.536 1/144 1.179 1.118 1.054 
b 19.20 1/41 1.766 1.118 1.580 

notably from the pendulum one: indeed the forced harmo- 

nic of frequency 2522 = 2.018 existing in the law fo ru  1 has 

amplitude equal to 40% of that of the natural oscillation, 

which is then almost hidden in the motion, and it is in 

phase with the pendulum oscillation. This latter - though 

similar qualitatively to that occurring for lower initial 

amplitudes (see Fig. 2) - is more markedly nonstationary, 

the ratio U2max/U2(0) reaching the value 2.2 in the time 

interval considered: it results mainly from the combination 

of  the natural oscillation of frequency ~22 = 1.009 and of  

the harmonic of  frequency ( ~ 1 - ~ 2 2 ) =  0.520, which is 

faster than the corresponding one for cable a (see Fig. 3). 

It is interesting to observe how the motion changes as an 

equal but negative in-plane initial amplitude is considered 

(Fig. 5, plot ted in the same scale as Fig. 4), which is opposite 

V yAyy/ Ul 

~ U2 

Fig. 3. Motion of cable a: Ul(0) = 0.25, u 2 0 )  = 0.25. 

AAA  u, 
w V V W V V V V V V V V V \  

A A AAAAA 
) v v V v V v V v \  u' 

Fig. 4. Motion of  cable b: ul(O) = 0.25,  u2(O) = 0.25. 

\AAAAAAAAAAAAAA/ 
VVVVVVVVVVVVVVV u, 

Fig. 2. Motion of  cable b: ul(0) = 0.1, u2(0) = 0.1. 

AAAAAAAAAAAAAAA 
/ v v v v v v v v v v v v v v ' " '  

Fig. 5. Motion of  cable b: Ul(O) = - 0.25,  u2(O) = 0.25. 
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in phase with respect to the pendulum amplitude and cor- 

responds to lower potential energy assigned to the system. 

In the in-plane motion the contributions of  the natural 

oscillation of frequency ~ 1 =  1.554 and of  the e3-order 

slow harmonic of frequency (2~2 - -~21 )=  0.394 are reco- 
gnizable. The out-of-plane motion remains limited within 

the values + 0.25, still being described by the natural 
oscillation of frequency I22 = 0.974 and by higher order 
harmonics. 

The strong coupling existing between the two coordinates 

suggests to examine the response of  the system to finite 
initial amplitude assigned to one coordinate and zero (or 

small) to the other one. With ul(0) = 0, u2(0) = 0.5 (Fig. 6), 

the in-plane component is completely forced by the pen- 

dulum one: however, it vibrates with its frequency ~'21 = 1.508 

and is modulated by the forced harmonic of frequency 

2122 = 2.122, the two harmonics having the same amplitude 

so to give rise, when in-phase, to a maximum value of  u 1 

reaching 64% of U2max =u2(0).  Of course the pendulum 
component too is involved in the coupling phenomenon and 

its natural oscillation is somewhat modified by the harmonics 

of  frequencies (~2~- I22) = 0.447 and 3122 = 3.183. The 
motions of  the two components are markedly different from 

those arising in the pendulum monofrequent oscillation [14] 

which occurs for particular in-plane initial amplitude (Fig. 7). 
This is a steady-state oscillation characterized by the unique 

nonlinear frequency ~22 = 1.061, in which a forced in-plane 
component exists of  order higher than the out-of-plane one. 

When finite initial amplitude is assigned to the in-plane 

coordinate and zero to the out-of-plane one, no coupling 

occurs: this is the case of  the in-plane monofrequent oscil- 

lation [14]. However, a small perturbation assigned to the 

pendulum is sufficient to produce notable coupling again 

(Fig. 8, in which a double time interval is considered). The 

in-plane motion essentially consists of  the natural oscillation, 
drifted towards the soft side of the system; the pendulum 

motion exhibits beatings due to the presence in the relevant 

equation of a forcing harmonic of  frequency ~21- ~"~2 --  ~'~2" 

Strong energy exchange between the two coordinates is 
observed, according to which as the in-plane motion decreases 

slightly, the out-of-plane one increases up to 8.5 times its 

initial value; this deep difference in the variation of the 

two coordinates is obviously a consequence of the much 

higher flexibility of  the cable in the out-of-plane direction. 

It is worthwhile to notice that the maximum out-of-plane 

displacements correspond to the maximum in-plane oscilla- 

tion towards the soft side, while the cable lies in the vertical 

plane (u 2 ~ 0 )  when the in-plane oscillation exhibits a 
maximum value towards the hard side. 

With the same initial conditions, the beating phenomenon 

just seen does not take place for the shallower cable (Fig. 9). 
Finally, a case of  initial velocity different from zero for 

one coordinate only is examined. The set of  conditions 

chosen in Fig. 10 correspond to the same energy furnished 

to the cable as in the case studied in Fig. 4. Little modifi- 

cation of  the shape of  the law of  motion for u 2 occurs but 

the maximum value reached (U2max : 0 . 3 8 )  is notably lower 

3A AA AA AA_AA AAro, 
v v VV v VV 

Fig. 6. Motion of cable b: Ul(0) = O, u2(0 ) = 0.5. 

  AAAAAAAAAAAAAAAAAAAu, V V V V V V V V V V V V V V V V V V  

U2 

Fig. 7. Motion of cable b: u1(0)=0.163 , u2(0)=0.5 (pendulum 
monofrequent oscillation). 

IAAAAAAAAAAAAAAAAAAAAAAAAo, VVVVVVVVVVV V V /VVV VVVV- 
u, 

Fig. 8. Motion of cable b: Ul(O ) = 0.8, u2(O ) = 0.1. 
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Fig. 9. Motion of cable a: ul(O) = 0.8, u2(0 ) = 0.1 

 A/AAi AAAAAAAAA 
VVVVVVVVVVVVVVI 
A A AAAA # 
vvvvv V' V 

u1 

u2  

Fig. 10. Motion of cable b: Ul(0)= 0.25, fil(0)=O; u2(0)=0, 
,',2(o) = 0.25. 

Fig. 11. Effect of disregarding modal coupling (cable b): Ul(0)= 0, 
.2(0) = o.5. 

v v v v v: 'v v:v 
. - .  ::"~176176 ooo~e~ 

A AA A/A 'A//A a/5 
V ~ ~ V \V W V .V -',# ~\ 
'..:" - " V " V " V " \, 

Fig. 12. Effect of disregarding modal coupling (cable b): u l ( 0 ) =  
= n2(0 ) = 0.25. 

than the maximum (0.55) in Fig. 4. Correspondingly, the 

peaks in the law of  u 1 are amplified with respect to the 

initial value, Ulmax reaching the same value as U2max. This 
shows how differently the motion evolves depending on the 
way, as either amplitude or velocity, a given energy is 

assigned initially to the system. 

5. EFFECT OF DISREGARDING MODAL COUPLING 

Some approximations are often introduced in the kine- 

matics of  a mechanical problem to reduce the system of 

equations of  motion to one or two equations only. In cable 

continuum dynamics, this reduction has been accomplished 

by assuming zero the longitudinal displacement component 
in [14], or by expressing it in terms of the transverse displa- 

cement component through different procedures in [12, 
18] and in the present paper as well (see Eq. 6); similar 

assumptions have been made in the literature for the taut 
string and the shallow arch. But the main reduction of the 

number of variables is often effected on the discretized 

model by retaining few degrees-of-freedom, sometimes only 
one, associated with the modes of  interest of  the system 

[4, 6]. In this way the contribution of  the omitted modes 

on the law of  motion of  the retained coordinate is Iost; 

however, it must be noticed that this contribution is not 

always important, since it depends on the values of  the 

dynamical characteristics of  the system. 
For the cable model considered herein the effects which 

arise among the in-plane modes are negligible while the 
coupling between in-plane and out-of-plane modes just 

described by two parameters is important. 
Indeed, if the coupling terms are omitted in Eqs. (10), 

no in-plane motion is forced by the out-of-plane one when 

the initial amplitudes u l ( 0 ) =  0, u2 (0 )=  0.5 are assigned 
to the cable; the pendulum oscillation in turn remains uncor- 

rectly stationary and with nonlinear frequency I22 = 0.996 
lower than the actual one (Fig. 11 ). It is then easily understood 

how if finite initial amplitudes (u l (0 )=  u2(0)=  0.25) are 
given to both uncoupled components, the motions which 
arise differ completely from the nonstationary actual ones 

(Fig. 12). 
The results obtained clearly show the entity of the errors 

which can be made in some mechanical systems when modal 

coupling is disregarded. 
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6. CONCLUSIONS 

A two degree-of-freedom model of  an elastic cable, simple 

but able to represent the main features of its dynamic 
behaviour, has been used to study the coupled in-plane and 

out-of-plane finite free oscillations. 
It has been shown that, as the initial amplitudes increase 

with respect to very low values, the response differs notably 
from the linear one just due to coupling between the two 
coordinates, which gives rise to non-periodic motions with 
continuous energy exchange. The slacker is the cable, the 

stronger are the coupling phenomena. 
The peculiar characteristics of  the nonlinear dynamic 

response of the cable are associated with its initial curvature, 
which causes quadratic nonlinearities in the equations of  
motion. They consist of: i) considerably different forced 
out-of-plane motion arising if the initial finite in-plane 
amplitude is given towards the hard or the soft side, the 
resultant out-of-plane motion being increased notably in 
the former case also if it is simply perturbed initially; ii) 
strong in-plane motion being forced from the out-of-plane 
one for zero initial condition assigned to the former as well. 

An evaluation has also been made of how the laws of 
motion change if the coupling terms in the nonlinear 
equations of  motion are cancelled. The information obtained 
can be of interest mostly whenever a given configuration 
variable is represented through one, rather than several, modes. 

3 
c 1 - 

1024 

= z j 6  J, 
1 

c 8 - 
1024 

APPENDIX 1 : Expressions of the dimensionless coefficients C i 

1 
A2ZlZ2IcclZLfSe c2 = - 2 Z/c/Sf i lc  

C 4 = C 5 = -- 2Zcf/Icc C 6 = -- S f / I  c C 7 = 1 

- -  A2ZZZcclIgIc c 9 = 1/6 Clo = 2Cll = - 2Z#/Z<c 

where A 2 = ( E A I m g s  3 and the integrals Z read 

ii s s 
Z 1 = f ' y '  dx ,  12 = f , 2  dx ,  Z c = y d.x, 

. 1  i 1  i l dx, Zf t el  Zc<=.;y:d~, los= yfdx, Ii~= f2 = fOx 
Jo "o 

the prime denoting d / d ~  and the tilde being omitted for 
the sake of simplicity. 

APPENDIX 2: Expressions of  the dimensionless coefficients 

k i 

k 1 = - cl/3~k2 k 2 = (c 2 - c3)/(~.2 - 4) k 3 = (c 2 -I- c3)[~.2 

k 4 = (e 4 + ;kc 5 - c 6)/;k(x + 2) k s = (c 4 - K s - c 6 ) / x ( x -  2) 

k 6 = - 1 0 C l k  1 + 3 c  8 

k 7 = 2{2clk 3 + c2(k 4 + k s) + c3[(;k + 1)k 4 - (X - 1)ks] + c7} 

k s = 6kl(C 4 - c  6) + k4[k(X + 1)c s - (X + 1)2c4 + c6] + 

+ ks[X(X - 1)c s - ( X  - 1)2c4 + c6] - 2Cll 

k 9 = (c 6 - c4)(k 2 + 2k 3) + 2csk 2 + 3c 9 

kl0 = - ( 2 c l k  1 + Cs)/8~,2 

kll = { - 2 C l k  2 + 2k4[(X + 1)c 3 - c 2 ]  + c7}/2(k + 2) 

k12 = { 2 c l k  2 + 2 k s [ ( k -  1)% + c 2 ] - c 7 } / 2 ( k - 2 )  

k13 = [ (C  a q'- 2c s - c 6 ) k  2 - c9 ] /8  

k14 = {c4[k I + (~, + 1)2k4 ] + cs[2Xk  1 + X(X + 1)k4] + 

- c 6 ( k  1 + k4) + ~kCl0 + ell  }/4~k(~k + 1) 

kls  = { c 4 [ -  k 1 + (X - 1 )2k s ] - c 5 [2Xk I - k(k - 1)k s ] + 

- c 6 ( k  1 + ks) -kCl0 + Cll}/4~,Gk- i) 

APPENDIX 3: Expressions of  the complex amplitudes A* Ilk 
( '* '  being omitted for the sake of simplicity) 

A n  = 2 ~ 1 - i  

1 

= 2 m -i 2) 

1 [kl(3A~l _A_21 _ 6AuA--11) + A n  - 2 

+ k 2 ~ - - " ~  A~I + - - X  ~'21 + 2k3A21A21 

1 
A22 - {k4[(~. + 2)AriA21 - XAnA21 ] + 

2 

+ ks[~A11A21 - (k- 2)A11A21 ]} 

l [  
2k1(3A 11A 12 - A 11A 12 - 3A hA-12 - 3A'I1A 12 ) + A13 - 2 

/x+2 x-2 ) 
+ 2 k 2 / T  A21A22 + ~. A-21A'22 + 2k3(A21A22 +A-21A22 ) + 

1 
2)v 2 (k6A HAll  + k7A 21A21)(A 11 - Al l  ) + 

_ / X + l  1 ) 
+ 2k10(2A~l-A~I)  + 2 k l l [ ' - - ' ~  A I l A ~ I - 7  Z-llh-21, + 

x - i  _ l )] 
+ 2 k 1 2 ( T  AllA21 + T A I I A 2 1  

1 
A23 = -  2 {k4[Gk + 2)(ALIA22 +A12A21)- k(A11A22 +AI2A21)] + 

+ ks[X(Al l -422  + A 12A-21) -- (X -- 2)(A'ltA22 + A-12A 21)] + 

1 
- 2 (kgA l lh l l  + kgA 21A'21)(A 21 - a-21 ) -1- 2k13(2A 11 - A31) + 

+ 2kl4[CA + 1)ALIA21 -)v411A21 ] 
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