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Abstract. The so called ad hoc exponentiations of the 
perturbative solution to Gr ibov-Lipa tov  evolution equa- 
tion for the non-singlet electron structure function are 
discussed. It  is shown that the series resulting from the 
exponentiation prescription proposed by Jadach and 
Ward can be understood as a new type of perturbative 
solution possessing better convergence properties. A re- 
currence formula for the elements of the Jadach-Ward  
series is derived. A new perturbative series possessing even 
better convergence properties and simpler structure is 
proposed. 

In the leading logarithmic approximation the non-singlet 
electron structure function can be obtained by solving the 
Gr ibov-Lipa tov  evolution equation [1]: 

1 1  

OD(x, fl) 1 lim ~ dxldX2(~(x-xix2),~t(x1)D(x2, fl), 
Off 4 ~ o  + o o 

(1) 
with the boundary condition 

D (x, 0) = 6 (1 - x). (2) 

In (1) 

2 '  ~(s')ds' 
f l ( s ) = ~  s------s~, (3) 

where ~ is the (running) coupling constant, and 

l + z  2 
~(z)=6(1--z ) (3 /2  + 21ne)+O(1--~--z) 1--z (4) 

The perturbative solution to (1), (2) 
N 

D(x, fl)= Y fl"d.(x)+(;(flN+ '), (5) 
n = O  
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up to the third order in fl has been calculated.* In an 
important  paper [5] Kuraev and Fadin proposed an ad 
hoc exponentiation procedure in order to improve accu- 
racy of the finite order perturbative solution. According to 
the prescription of Kuraev and Fadin 

N 

O(x, fl)=D6(x, fl)+ ~, fl"~,(x)+(f(flN+ a), (6) 
n = l  

where the Gribov function 

exp [f l /2(3/4-  7)] fl (1 - x) p/2-' (7) 
DG(x, /~) = F(1 + fl/2) 2 

solves (1) for x--* 1-,  and the functions ~,(x) are derived 
from the requirement that (5) and (6) are identical up to 
terms of order fiN. In (7) y=0.57721 . . .  is Euler's con- 
stant. 

Inspired by the classic work of Yenni, Frautschi and 
Suura [6] Jadach and Ward proposed an alternative 
prescription [7]: 

N - 1  

D(x, fl)=DG(x, fl) Y~ fl"~.(x)+a(fl"+l). (8) 
n = 0  

At first glance it seems surprising that one is able to 
express N + 1 coefficient functions d,,(x) in terms of N coef- 
ficient functions ~b,(x). However, do(x)=0 for x r  and 
the number of independent coefficient functions is N. It 
has been shown by studying the numerical solutions to 
Gr ibov-Lipa tov  equation that the Jadach and Ward ex- 
ponentiation, as defined by (8), provides a particularly 
good approximation [4, 8]. 

In this paper I show that the Jadach-Ward  series can 
be considered as a systematic perturbative expansion, and 
derive a recurrence formula for its coefficient functions. As 
a first step we eliminate the infrared regulator e and derive 

* For a review and the list of important contributions to this subject 
see [2-4] 
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the following form of the evolution equation: 

OD(x,/3)= [sa+ �89 In(1 - x ) - � 8 9  lnx] D(x,/3) 

1 i dy x a 
+,!-y--x[(l+--y-i)D(y,/3)-2D(x,/3)]. (9) 

As we are interested in the non-singlet electron structure 
function, which is strongly peaked near x = 1, it is natural 
to eliminate the term ~ In ( 1 -  x) in (9). Thus, we write 

D(x, fl)=fl (1 -x)  p/2-1 ~(x,/3), (10) 

and the boundary condition (3) implies 

q~(1, 0)= 1, (I 1) 

because 
1 

lim ~ dx a(1 -x)"- lf(x)=f(1). (12) 
a~O + 0 

The evolution equation for ~ can be written in the follow- 
ing form: 

~,~(x, fl) 
0/3 

1 
c~(/3) ~(x,/3) + ~ [�89 + x2)~( 1,/3)- ~(x,/3)3 

1 /1  _ _  y ' ~ # / 2  

�9 {2 ~(y' /3)--~(x, /3)  x+y 
y - x  y2 ~(Y,/3) 

1 [(1 +x2/yZ)~(y,/3)-(l+xZ)~S(1,/3)]t' 
+ l - y  

(13) 

where 

3 1 1 
(g(/3) = ~ - ~  7 - ~  @(1 +/3/2), 

d lnF(x) . 
and ~ b ( x ) = - -  is Euler's 

dx 

(14) 

digamma function. For 

x ~ l -  only the first term in rhs of (13) does not vanish. 
After an obvious substitutuion: 

~(x,/3)=exp I ! af t  (g(ff)] qi(x, fl), (15) 

which implies, c.f. (7) and (10), 

D(x, ~3)=Do(x,/3)q~(x,/3) (16) 

we derive the following condition 

4(1,/3) = 1. (17) 

In fact we have shown that Gribov function D~(x,/3) 
solves Gribov-Lipatov equation for x ~ 1 -. The evolution 
equation for q'(x,/3) reads: 

~ ( x ,  fl) 1 
[�89 (1 4- x 2 ) _ q) (x,/3)] - �89 In x q) (x,/3) 

0/3 /3 

4- !dY\l-x/ -y 

�9 cl)(y, fl)--2~(x, fl)] i + x 2 ~  (18) j- j. 
Let us remark that in contrast to (I), (2) the above equa- 
tion admits a smooth solution for l>x>xo and 
0 > fl > flo, where Xo and/3o are positive. Since the kernel 
of the integral operator is non-singular in this region one 
can solve (18) numerically, or write the solution in terms of 
power series in/3, or 1 - x ,  or a double power series*. In 
particular, by inserting the expansion 

q)(x,/3) = ~ (/3/2)" ~b,(x), (19) 
n=0 

we derive a recurrence formula for the coefficient func- 
tions of Jadach-Ward series: 

~bo(x) = �89 (1 + x2), (20) 

4) 1 (x) = - s x [2(1 - x) 2 + (1 + 3x2) In x], (21) 

1 ( 1 - x  1 - x  1 
q~"+ 1 (x) = n--~ ~ T  2,(x)-~b,(x)In x.-{-Tk=l~ (n-k)! 

"ixy_ xdy ln,_k(ll~_Yx) 

�9 [(l '-vx 2-/y 2 ) ~ - -  " l - -y  f ~ k ( Y )  ~ ~bk(X)l~ 1 - x J J '  (22) 

where 
1 

2, (x) = - (1/n!) S dy (1 + y) (x + y)/y2 ln" [(1 - y)/(1 - x)]. 
x 

(23) 

The above integrals can be expressed in terms of Nielsen's 
polylogarithms 

1 
S,,m(x) = ( - 1)" + m- 1/[(n _ 1)! m!] S dt t - I  ln"-i  t lnm(1 - xt). 

0 
(24) 

For n > 2  

'~n : ( - -  1) n+ 1 I1  --X-~" (1 "-]-X)Sn, l(1 -x)--~-xS n_ 1,1(1 - x ) ] ,  

(25) 

whereas 

21 = 1 - x + ( 1  +x)Li2(1 - x ) - x  lnx, (26) 

and dilogarithm L i 2 -  $1,1. The first two coefficient func- 
tions ~b, have been calculated in [7]. A direct evaluation of 
Feynman diagrams and resulting leading terms also leads 
to ~bo as given in (20), c.f. [2]. The next coefficient reads: 

qb2 = ~ [(1- x)2 + ~ (3x2 -4x  + l ) ln x 

+l(1+7x2)In2x+(l-x2)Li2(1-x)],  (27) 

and has been first obtained in [8]. 
It is evident from the form of the coefficient functions 

4). that Jadach-Ward series is poorly convergent for 

* Analytical solutions to evolution equations in terms of power 
series in x and 1-x  are given in [9], see also references quoted 
therein 



x near  zero. It  follows f rom (22) that  4), ~ In" x for small x. 
Thus,  it seems reasonable  to consider the power  series 
expansion for the function 

7J(x, fl)= ~(x, fl)/ ~o(fl In x), (28) 

which we require to be finite at x = 0 .  By definition 
q0o( fl In x) contains  this par t  of  ~(x,  fl) which is divergent 
for x-+0 + . It  is conceivable that  the power  series for 
~U(x, fl) has a simpler structure, at least for a few first 
coefficients, because the requirement  of finiteness con- 
strains the n u m b e r  of building blocks for the per turbat ive  
expression of a given order*. Fo r  the same reason expres- 
sions resulting f rom Jadach  and W a r d  exponent ia t ion  are 
much  simpler than  the corresponding expressions derived 
using Kuraev  and Fadin  prescription. In order  to derive 
�9 o( f l lnx)  one has to s tudy the limit: x and ft-+0* for 
fl In x finite. In this limit one derives f rom (18) the follow- 
ing equat ion for 40: 

(~(~o(fl In x) 1 1 
- - ~ !  dy {2[(Po(fl l n y ) -  ~o(fl in x)]/(y-x)  

- ~o( f l  In y)/y} + fl-1 [1 --  ~o( f l  In x) ]  

1 
- ~ In x 4o (fl In x) + (_9 (1). (29) 

We insert expansion 

q~o = ~ c,(fl In x)", (30) 
n=O 

and obta in  the following expression for the coefficients c,: 

c , = ( -  1) ' /[4"(n + 1)!n!]. (31) 

Consequent ly  

2 I i ( ~ x ) ,  (32) ~o(fl In x) - x/~__ fl In x 

where I1 (z) is the modified Bessel function. 
Tak ing  all the factors together  we obta in  our  final 

expression for the non-singlet  s tructure function in the 

* A similar strategy for solving differential equations is known in 
quantum mechanics as the method of Sommerfeld polynomials. 
I thank Professor Kacper Zalewski for pointing this out to me 
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leading logar i thmic approximat ion :  

D(x, fl) = exp (fl/2(3/4- 7)] ~ 11 ( x / ~  In x) 
r (1 +/~/2) 

�9 (1 - x )  p/2-1 LP(x, fl), (33) 

where the power  series for T(x,  fl) can be derived f rom 
J a d a c h - W a r d  series (20)-(22) and the series (30) for 40. 
Then f rom (28) we obtain: 

~ (x, fl)= ~ ( l + x2)--fl [(1-- x)2 + x21n x] 

+ 3 ~  (1 - -x)  [1 - -x- -x  l n x  

+ (1 + x) Li2(1 -- x)] + . . . .  (34) 

As a final remark  let us note that  exponent ia t ion  in Q C D  
is a highly non-tr ivial  task. Thus,  it has been believed that  
the exponent ia t ion  procedures  cannot  be easily extended 
to Q C D .  However ,  the derivat ion given in the present  
article can be extended to the case of Altarel l i -Paris i  
equat ion [10]. 
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