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Abstract. The so called ad hoc exponentiations of the
perturbative solution to Gribov-Lipatov evolution equa-
tion for the non-singlet electron structure function are
discussed. It is shown that the series resulting from the
exponentiation prescription proposed by Jadach and
Ward can be understood as a new type of perturbative
solution possessing better convergence properties. A re-
currence formula for the elements of the Jadach—Ward
series is derived. A new perturbative series possessing even
better convergence properties and simpler structure is
proposed.

In the leading logarithmic approximation the non-singlet
electron structure function can be obtained by solving the
Gribov-Lipatov evolution equation [1]:
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with the boundary condition
D(x,0)=45(1—x). 2)
In (1)
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where a is the (running) coupling constant, and
2
P(2)=0(1—2)(3/2+2Ine)+0(1 —e—2) 11+_ZZ . 4)
The perturbative solution to (1), (2)
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up to the third order in B has been calculated.* In an
important paper [5] Kuraev and Fadin proposed an ad
hoc exponentiation procedure in order to improve accu-
racy of the finite order perturbative solution. According to
the prescription of Kuraev and Fadin

D(x, B)=Dg(x, B)+ L F'&nx)+O(B""), (6)

where the Gribov function
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solves (1) for x—17~, and the functions &,(x) are derived
from the requirement that (5) and (6) are identical up to
terms of order B". In (7) y=0.57721 ... is Euler’s con-
stant.

Inspired by the classic work of Yenni, Frautschi and
Suura [6] Jadach and Ward proposed an alternative
prescription [7]:

D(x, B)=Dg(x, B) Z—‘, Bbu(x)+ OB ). @)
n=0

At first glance it seems surprising that one is able to
express N + 1 coefficient functions d,(x) in terms of N coef-
ficient functions ¢,(x). However, dy(x)=0 for x#1, and
the number of independent coefficient functions is N. It
has been shown by studying the numerical solutions to
Gribov-Lipatov equation that the Jadach and Ward ex-
ponentiation, as defined by (8), provides a particularly
good approximation [4, 8].

In this paper I show that the Jadach-Ward series can
be considered as a systematic perturbative expansion, and
derive a recurrence formula for its coefficient functions. As
a first step we eliminate the infrared regulator ¢ and derive

* For a review and the list of important contributions to this subject
see [2-4]
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the following form of the evolution equation:
oD(x, B)
ap

=[§+3In(1-x)~3Inx]1D(x, f)

1td :
+Z£y__y§[<1 +%>D(y, B)—2D(x, /})]. ©)

As we are interested in the non-singlet electron structure
function, which is strongly peaked near x =1, it is natural
to eliminate the term ~1In (1 —x) in (9). Thus, we write

D(s, =h (1 -2 6(x, (10

and the boundary condition (3) implies

é(1,0)=1, (11)
because
lim jdxa(l— P Lf(x)=f(). (12)

The evolution equation for & can be written in the follow-
ing form:
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where
31
%(ﬁ)=§—§v——l//(1+ﬂ/2) (14)
and Y(x )-dlnl’(x) is Euler’s digamma function. For
x—17 only the first term in rhs of (13) does not vanish.

After an obvious substitutuion:

- 8

P(x, p)=exp [I dp’ ‘5(/3’)] P(x, p), (15)
0

which implies, c¢.f. (7) and (10),

D(x’ ﬂ)=DG(x7 ﬂ)di(x, ﬁ) (16)

we derive the following condition

&1, f)=1. (17)

In fact we have shown that Gribov function Dg(x, ff)
solves Gribov—Lipatov equation for x—17. The evolution
equation for @(x, f) reads:
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(3, = 20(x, B)] ”_"y } (15)

Let us remark that in contrast to (1), (2) the above equa-
tion admits a smooth solution for 1>x>x, and
0>p=>p,, where x, and fB, are positive. Since the kernel
of the integral operator is non-singular in this region one
can solve (18) numerically, or write the solution in terms of
power series in f, or 1 —x, or a double power series*. In
particular, by inserting the expansion

B, = 3 (B2 6,09 (19)

we derive a recurrence formula for the coefficient func-
tions of Jadach—Ward series:

Po(x)=3% (1+x?), (20)
P1(0)=—$[2(1 —x)*+(1+3x*) Inx], 21
1 {1-— 1—x & 1
Pur1(x)= +2{ An(X) = u(x) In x + 7 L o
L
2w (=2)
[(1+ 2/ 2) d)k(y) (fk(x)]}’ (22)
—Xx
where

Aa(x)=—(1/n1) [ dy(1 +y) (x + y)/y* In"[(1 = y)/(1 = x)].
. 23)

The above integrals can be expressed in terms of Nielsen’s
polylogarithms

1
Sum)=(=1*""1/[(n—D!m!] fde e~ In" ¢ In™(1 — x2).
(4]
(24)
For n>2
An=(= 1 1 =x+ (1 +x)S, (1 -x)+ xS, 1.1 (1 -X)],
(25)
whereas
Ay=1—x+(1+x)Li,(1—x)—xInx, (26)
and dilogarithm Li, =S, ;. The first two coefficient func-
tions ¢, have been calculated in [7]. A direct evaluation of
Feynman diagrams and resulting leading terms also leads
to ¢ as given in (20), c.f. [2]. The next coefficient reads:

¢2=1[(1——X)2+1(3x2—4x+1)lnx

12(1+7x2)ln x+(1—x?) L12(1—x):| 27
and has been first obtained in [8].

It is evident from the form of the coefficient functions
¢, that Jadach-Ward series is poorly convergent for

* Analytical solutions to evolution equations in terms of power
series in x and 1—x are given in [9], see also references quoted
therein



x near zero. It follows from (22) that ¢, ~ In” x for small x.
Thus, it seems reasonable to consider the power series
expansion for the function

¥ (x, B)=P(x, B)/Po(f In x), (28)

which we require to be finite at x=0. By definition
@y (B In x) contains this part of @(x, f) which is divergent
for x—>0%. It is conceivable that the power series for
¥(x, f) has a simpler structure, at least for a few first
coefficients, because the requirement of finiteness con-
strains the number of building blocks for the perturbative
expression of a given order*. For the same reason expres-
sions resulting from Jadach and Ward exponentiation are
much simpler than the corresponding expressions derived
using Kuraev and Fadin prescription. In order to derive
@o(f1Inx) one has to study the limit: x and f—»0* for
B In x finite. In this limit one derives from (18) the follow-
ing equation for @:

0P(Blnx) 11

= LT Ay 2000l 10 )~ 068 01/~

x

—®o(B1ny)/y} + B [1 - Bo(f Inx)]
—% In x @0 (8 In x)+ O(1). (29)

We insert expansion

o

®o= ), c,(Bflnxy, (30)
n=0
and obtain the following expression for the coefficients ¢,,:
cp=(—1)"/[4"(n+ 1)!n!]. 31
Consequently
2
Do (B 1nx)=\/——T Li(/ —BInx), (32)
—fBlInx

where I, (z) is the modified Bessel function.
Taking all the factors together we obtain our final
expression for the non-singlet structure function in the

* A similar strategy for solving differential equations is known in
quantum mechanics as the method of Sommerfeld polynomials.
I thank Professor Kacper Zalewski for pointing this out to me
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leading logarithmic approximation:

exp (8/2(3/4—7)]
W\/—ﬁ/lnxll(\/—ﬂlnx)
“(1=xy27 1 WP(x, B), (33)

where the power series for ¥(x, f) can be derived from
Jadach—Ward series (20)(22) and the series (30) for &,.
Then from (28) we obtain:

B
8

D(X, ﬁ)=

¥(x, B)z%(l +x) =S [(1 —x)®+x2 Inx]

2
+§(1—x)[1—x—x Inx

+(1+x)Lis(1—x)]+. . .. (34)

As a final remark let us note that exponentiation in QCD
is a highly non-trivial task. Thus, it has been believed that
the exponentiation procedures cannot be easily extended
to QCD. However, the derivation given in the present
article can be extended to the case of Altarelli-Parisi
equation [10].
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