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1. Introduction. Geometric probing considers problems of  determining a geo- 
metric structure or some aspect of  that structure from the results of  a mathematical 
or physical measuring device, a probe. A variety of  problems from robotics, 
medical instrumentation, mathematical optimization, integral and computational 
geometry, graph theory, and other areas fit into this paradigm. These problems 
are interesting in themselves, but the results also have application to these and 
other fields. This paper surveys the work in geometric probing, emphasizing 
interesting open problems. 

The problem of geometric probing was introduced by Cole and Yap [1] and 
inspired by work in robotics and tactile sensing [2]-[8]. It has since inspired no 
less than three dissertations [9]-[11] and several additional papers [12]-[14]. 
The most complete description of these results appear in [10]. 

In this paper we describe a taxonomy of probing problems, their history, and 
open problems for each probing model. A vast number of  probing problems can 
be defined, since we can take a "Chinese menu"  approach to generating them. 
Choosing from column A, there are a wide variety of interesting models of  sensors, 
with inspiration from physical sensing devices or geometrical operations. Our 
main probing models: 

(1) Finger probes--which measure the first point of intersection between a direc- 
ted line and an object. 

(2) Hyperplane probes--which measure the first time when a hyperplane moving 
parallel to itself intersects an object. 

(3) X-ray probes--which measure the length of  intersection between a line and 
an object. 

(4) Half-space probes--which return the area or volume of  intersection between 
a half-space and an object. 

(5) Cut-set probes--which for a specified graph and partition of  the vertices 
returns the size of the cut-set represented by the partition. 
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More sophisticated sensing devices can be constructed by considering aggre- 
gates of probes sharing certain properties, such as, the set of all probes which 
are parallel to a given line or which pass through a given point. We can also 
consider the power gained by having access to more than one type of probe. 
How well do sensors work together to determine objects? 

In column B of our menu, we have constraints on the type of object being 
probed. Most results hold only for convex polygons. For certain probing models, 
extensions to more general objects are impossible. Other objects of interest include 
collections of convex polygons, star-shaped and simple polygons, point sets, 
straight-line graphs, polytopes in three or higher dimensions, and continuous 
surfaces of specified degree. In all cases, we can also consider restricting the 
objects to come from a known finite class to create model-based problems, 
Interesting problems also arise when the disparity in dimension between object 
and probe increase beyond one. 

Finally, in column C is the property which we are interested in optimizing or 
bounding: 

(1) Determination--how many probes are necessary to completely determine a 
particular object? We are interested in both upper and lower bounds. 

(2) Verification--given a reputed description of the object how many probes are 
necessary to test if the description is valid? 

(3) Computational complexity--the complexity o f  planning the probes can be 
measured under a RAM cost model, assuming that an oracle returns the 
results for a specified probe in unit time. 

(4) Simulation--given a probe model and a representation of the object, how 
much time and space is necessary to simulate an actual probe? 

(5) Feature determination--how many probes are needed to determine some 
feature of the object, such as volume, orientation, or convexity? 

Results in probing are most naturally ordered by probing model. For each 
model we summarize what is known and present open problems which appear 
interesting. 

2. Finger Probes. A finger probe is defined as the first point of intersection 
between a directed line I and an object P. In the first paper in the area of geometric 
probing, Cole and Yap [1] give a finger-probing strategy for convex polygons in 
the plane requiring at most 3 n probes. This strategy involves two phases, the first 
of which terminates when three probe contact points are incident upon the same 
line and hence the same edge. The second phase walks around the polygon and 
repeatedly aims at the conjectured vertex defined by the known edge and the 
next two probes. This strategy ensures that, in general, at most two probes are 
incident upon the relative interior of each edge and one probe contacts each 
vertex to give the 3n bound. They also give a proof that 3 n - 1  probes are 
necessary, which improves to 3n under a mild assumption. Their strategy can 
also be shown to have O(n)-time complexity, making it optimal for two- 
dimensional finger probing. It is easily seen that 2n finger probes are necessary 
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and sufficient to verify a convex polygon in two dimensions, by contacting each 
vertex and the interior of  each edge once. 

(1) Tighten the gap between the lower and upper bounds for determination 
in higher dimensions. Dobkin et al. [15] consider finger probing in higher 
dimensions, proving that fo(P)+fd-l(P) probes are necessary for determination 
of a convex d-polytope P and that fo(P)+ (d +2)fd-l(P) probes are sufficient, 
where f~(P) denotes the number of/-dimensional  faces of P. For d = 3, the lower 
bound has been raised to fo(P)+2f2(P)[10]. 

(2) What is the time complexity of finger probing in higher dimensions? 

(3) How many probes are necessary to verify or determine a convex n-gon 
when n is known? We have shown [10] that 3 In /2]  probes are sufficient to verify 
and 3 n - 1  probes sufficient to determine P when n is known, although we do 
not have interesting lower bounds. 

2.1. Hyperplane Probes. Dobkin et al. [15] define a hyperplane probe to be the 
time of intersection between a hyperplane H, approaching from infinity in the 
direction of  its normal, and the object P. They use a duality argument to prove 
that finger probes through the origin are identical in power to hyperplane probes, 
independently developed by Greschak [9]. Li [12] provides a proof  that 3n + 1 
line probes in E 2 are both necessary and sufficient to determine convex polygons, 
which illustrates that only certain finger-probing results dualize to hyperplane 
probes. Li [ 12] also defines a projection probe as two hyperplane probes of  identical 
slope moving from both directions. He shows that 3 n - 2  such probes are both 
necessary and sufficient for determination. Weaker bounds for this problem were 
independently discovered by Narasimhan [11]. 

(4) Bernstein [13] considered the problem of  identifying a convex polygon P 
from a given set of m such convex polygons, and shows that 2n + k finger probes 
are sufficient, where k is a small constant independent of  m based on various 
assumptions of what is known about P. Bernstein's model-based finger-probing 
strategy does not dualize to hyperplane probes. Is there a better than 3 n +  1 
strategy for hyperplane probing one of a known finite set of convex n-gons? 

(5) Projection probes are two-dimensional versions of  silhouette probes, which 
return the shadow cast by a polytope in a specified direction. These dualize to 
cross-section probes which return a slice of the polytope. Dobkin et al. [15] show 
that fo(P)/2 cross-section probes are necessary and fo(P)+ 5f2(P) are sufficient 
to determine a convex polyhedron in E 3. These bounds dualize to silhouettes by 
reversing the role of fo and f2- Tighten the bounds on determination with 
silhouettes in E 3. 

2.2. X-ray Probes. X-ray probes represent a discrete model of the sensing devices 
used in tomography [ 16] and other forms of  medical instrumentation. Edelsbrun- 
ner and Skiena [17] define an x-ray probe as measuring the length of intersection 
between a line and polytope P. We have shown that 2n x-ray probes are necessary 
to determine a convex n-gon using a topological argument and give a strategy 
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for determining a convex n-gon in 5n + 19 x-ray probes. This strategy is based 
on the observation that four x-ray probes through a common point which pass 
through the same two edges are in general sufficient to reconstruct the edges. 
Three parallel probes are used to confirm that these probes contact the same 
edges. Once the first edge has been determined, Cole and Yap's finger-probing 
strategy can be simulated to determine the rest. However, there are many subtleties 
in this strategy, enough so that the result is probably not tight. 

(6) Tighten the gap between our lower and upper bounds for determination. 
We conjecture that 3n +c  probes are necessary and sufficient, since up to 2n 
probes in our strategy are "wasted" locating the first edge pair. 

(7) We show that n x-ray probes are necessary and 3n/2+6 sufficient for 
verification of convex n-gons. Tighten the gap between these upper and lower 
bounds. 

(8) Can the techniques of x-ray probes be applied to real tomographic systems? 
Specifically, how effective are algebraic reconstruction techniques [16] when 
probing directions can be interactively selected? 

2.3. Half-Space Probes. According to legend, Archimedes determined the 
authenticity of his king's crown by dunking it in a tub and measuring the volume 
of water displaced. We [18] have considered the problem of half-plane probing, 
where a half-plane probe returns the area of intersection between a closed 
half-plane and an object P, and give a strategy for determining a convex n-gon 
in 7n+7 half-plane probes, with a lower bound of 2n probes. The structure of 
this strategy is based on techniques developed for x-ray probing, since we can 
exploit the integral/differential relationship between parallel x-ray and half-plane' 
probes. Also, we give an n + 1 verification strategy, with n/2 probes as a lower 
bound for verification. 

(9) Tighten determination and verification bounds for half-planes. Again, we 
conjecture that 3n + c probes are necessary and sufficient. 

(10) The obvious generalizations to higher dimensions appear difficult. A 
half-space probe returns the volume of intersection between a polytope P and 
the half-space. A cross-sectional area probe returns the area of intersection 
between a plane and P. Is there a finite strategy for reconstructing convex 
polyhedra in E 3 from half-space or cross-sectional area probes? 

(11) Since each half-plane probe can be considered as a function of the entirety 
of P, it is reasonable to consider generalizing to a wider class of objects. Does 
there exist a finite probing strategy for reconstructing star-shaped polygons from 
half-plane probes? Such a strategy cannot exist for x-ray probes. 

2.4. Aggregate Probes. For several of the probing models, considering the 
complete set of probes sharing a particular feature as one measurement provides 
a great increase in power. For example, x-ray pictures, which return the entire 
histogram of a given direction, permit the possibility of extending probing results 
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to general polygons. This is because each probe measures some aspect of  the 
entire polygon, thus eliminating the trivial objection that some small crack will 
not be found in a finite number of probes. Such problems have been studied 
from several different perspectives. 

Hammer [19] posed the following problems in 1963: How many x-ray pictures 
must be taken to permit exact reconstruction of a convex body if the x-rays issue 
from a finite point source? How many are needed if the x-rays are assumed 
parallel? These problems have since generated a substantial literature [20]-[24] 
which is based on integral geometry. The distinction between the two problems 
is exactly the distinction between origin and parallel probing models. We can 
also distinguish between oblivious and nonoblivious strategies, where oblivious 
strategies do not consider the results of previous probes in formulating the next 
probe. 

Gardner [23] shows that three parallel x-ray pictures are necessary and sufficient 
to verify a convex set and Edelsbrunner and Skiena [17] show that three x-ray 
pictures are necessary and sufficient to determine a convex polygon. Gardner 
and McMullen [20] prove that four oblivious parallel x-ray pictures are sufficient 
to determine any convex set. Most of these results are derived for convex sets, 
not the more restricted case of  convex polygons. However, since a convex set 
can be approximated arbitrarily closely by a convex polygon, many results for 
polygons should also hold for convex sets. Simpler proofs of  these results follow 
for convex polygons. 

(12) How many x-ray photograph probes are necessary to determine a star- 
shaped n-gon? This generalizes Hammer's  problems beyond convex polygon s. 
The biggest problem in extending probing results to star-shaped polygons is the 
existence of  invisible vertices, structures which make it difficult to prove that a 
section of  P contains no vertices. For general polygons the histogram no longer 
contains a vertex corresponding to each vertex of  the polygon. It is a problem 
of  combinatorial interest how many such projections there can be in a point set. 
A related problem is that of  the number of k-projections in a point set N, where 
a k-projection is a direction ! such that d -< k points of  N project onto 1 [25]. 

(13) A different notion of  parallelism involves determining P when we can 
make k distinct probes in a round. How many rounds of  k finger probes per 
round are necessary to determine a convex n-gon? We have shown [10] that 
8n/3 rounds are sufficient when k = 2, but have no interesting results for k---3. 

(14) We can generalize probing strategies beyond homogeneous probes. Inter- 
esting problems result when we have access to more than one type of  probing 
device. Greschak [9] asks how many probes are necessary to determine a convex 
polygon P when we can use both finger and hyperplane probes? 

(15) How many probes are required for determination given access to both 
finger and x-ray probes. Clearly 3n is a lower bound but does access to the x-ray 
probe help? 

2. 5. Cut-set Probes. Mathematical probes with little or no physical interpretation 
give interesting problems. We define a cut-set probe to be a straight line which 
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partitions the vertices of a graph embedded in the plane into two subsets and 
returns the size of the cut-set defined by the partition. We have shown [26] that 

(2)  cut-set probes are sufficient to determine a straight-line graph whose vertices 

are in general position. Further, this bound is tight for verification and determina- 
tion when n is even. If we remove the geometric restriction and can inquire about 
the size of an arbitrary cut-set, @(n2/log n) probes are necessary and sufficient 
for reconstruction. 

(16) Are fewer probes needed to determine the number of edges in a graph? 
How about the degree sequence of G? 

(17) Are fewer probes necessary for special types of graphs, such as planar 
graph embeddings? O(n log n) arbitrary cut-set probes are sufficient to determine 
a tree, while lower bounds can be based on enumeration results [27] for the class 
of graph. 

3. Conclusions. Geometric probing is a new and largely unexplored area of 
computational geometry. We have presented the state of the art in probing research 
and given interesting open problems in several areas. Further research in this 
area can lead to insights into fields diverse as medical instrumentation and 
mathematical optimization. 
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