
Algorithmica (1989) 4:33-60 Algorithmica
�9 1989 Springer-Verlag New York Inc.

Discrete Simulation of NC Machining 1

Robert L. (Scot) Drysdale, 111, 2 Robert B. Jerard, 3 Barry Schaudt, 2
and Ken Hauck 2

Abstract. We describe a method for simulating and verifying the correctness of Numerical Control
(NC) programs. NC programs contain the sequence of cutting tool movements which machine raw
stock into a finished object. Our method is based on a discrete approximation of the object by a set
of points. A vector is passed through each of the points and machining is simulated by finding the
intersections of tool movements with these vectors. We present a point-selection method and an
analysis that shows that the error introduced by the approximation can be made as small as desired.
The run time is inversely proportional to the allowable error and the size of the cutting tool, and
directly proportional to the distance that the cutting tool moves.

Key Words. Numerical control, CAD/CAM, NC verification, NC simulation.

1. Introduction. The machining of sculptured surfaces with numerical control
(NC) is a common practice in many industries. Sculptured surfaces arise in the
design of car bodies, ship hulls, aircraft, and other applications where smooth
surfaces are needed to reduce resistance from air or water or simply for esthetic
reasons. Coons patches [Co], B6zier curves [B], B-splines [GR], and other
methods have been invented to represent such surfaces. Most commercial com-
puter-aided geometric design systems have a sculptured surface capability. Once
a surface has been designed, it is usually necessary to create a numerically
controlled milling program to cut the surface on a milling machine. Either a
human programmer or a fully or semiautomated process creates the NC program.
A number of automated systems are described in the literature [Ar], [ACd],
[DM], [SJW], [ZB]. However, NC programs created by humans and automated
systems have errors where they cut too deeply or leave too much material.
Therefore an important practical problem is finding the answer to the question,
"Given a mathematically defined surface and a file of NC tool movements, does
the shape that the tool cuts match the mathematical shape to within a given
tolerance ?" Fridshal [FCDZ] claims that "Current methods of verifying NC part
programs result in one of the highest nonrecurring cost factors in producing NC
machined parts within the aerospace industry."

1 This research was supported in part by the National Science Foundation under Contract No. DMC
8512621 and by the Ford Motor Company.
2 Department of Mathematics and Computer Science, Dartmouth College, Hanover, NH 03755, USA.
3 Department of Mechanical Engineering, University of New Hampshire, Durham, NH 032824, USA.

Received July 1, 1987; revised January 29, 1988. Communicated by Chee-Keng Yap.

34 R.L. Drysdale, III, R. B. Jerard, B. Schaudt, and K. Hauck

One approach to solving this problem is to start with a solid model representa-
tion of the block of material and to simulate the movements of the cutting tool.
As each cut is made, the solid model representation is updated. Unfortunately,
if there are thousands of tool movements, this becomes computationally infeasible.
Furthermore, there is still the difficult problem of determining if the cut surface
model matches the mathematically defined surface. Even checking to see i f a
particular tool trajectory intersects a particular patch of a sculptured surface is
far from trivial.

We have developed a new approach for simulating NC machining of sculptured
surfaces [JHD], [JDH], [DJ]. The method replaces the exact representation of
a surface by a carefully chosen sample of points on that surface. We have
developed algorithms and data structures for rapidly simulating the actions of
the cutting tool on this discrete set of points. We then use these results to determine
if any part of the surface is out of tolerance. Unlike some previous approaches
which can only detect gouging, this method can find both gouging and areas
where excess material remains. A version of the system is being used by the Ford
Motor Company.

This idea of simulating machining at a discrete set of points is not new [AEF],
[Ch], [OG], [O], IV], [WW]. However, a problem with the approach is that the
cut surface is only known at the selected points, and it may be possible for all
of the chosen points to be cut correctly while substantial cutting errors exist at
points not chosen. None of these other papers address the question of how large
an error might be missed. They simply choose enough points (usually all points
corresponding to pixels on a graphics screen) so that it seems unlikely that large
errors will be missed. With our system, the user selects an allowable error and
the program chooses enough points to guarantee that level of accuracy. For the
common case of a ball-end cutting t0ol, the number of sample points and running
time increase only linearly with the desired accuracy. The running time of the
simulation is also proportional to the total distance that the tool moves and
inversely proportional to the ball radius. Similar results are true for a toroida!-end
cutting tool.

One aspect of this work is engineering considerations--the system, its
implementation, the graphical user interface, etc. These questions are explored
in detail in two conference papers [JHD], [JDH] and in a paper in press [JDHSM].
Photographs of cut objects color-coded to show areas within tolerance, gouged
areas, and areas with excess material are included in these papers. A second
aspect of this work is algorithmic analysis and Computational geometry--error
bounds on the simulation and analysis of running times for the algorithms. This
second area is the topic of this paper. It is an expanded version of a conference
paper [DJ], and it contains some ideas and results not reported in that paper.

This paper first outlines our basic approach and describes our system. It then
analyzes sources of simulation error and derives error bounds. It uses these
bounds to motivate a method of selecting points so that simulation error can be
bounded. Even though we know the cut surface only at a finite set of points, we
can guarantee tolerances at every point on the surface. The paper ends by
discussing alternate approaches and future work.

Discrete Simulation of NC Machining 35

1.1. Machining Strategy. In sculptured surface machining objects are often cut
on a 3-axis mill with a ball-end cutting tool. Those not familiar with NC machining
are referred to [GZ], [FP], [M], and [G]. The geometry of the part is often
defined by blending parametric curves such as B6zier and B-spline forms [RA].
The blending can be accomplished in many different ways and most standard
computer graphics references give explanations [FV]. The parameter space is
defined by u and v coordinates which vary between zero and one. Each choice
of u and v parameters determines a point in 3-space. The resulting surface is
called a "'patch." A complex sculptured surface is often comprised of multiple
patches. The surface is defined precisely at all points and slopes and outer normal
vectors can be calculated.

Once an object is defined by such surfaces, the goal is to machine it. Machine
tool paths that will correctly and efficiently mill the surface must be generated.
This is often a semiautomated process done by parametric indexing over each
patch [FP]. What is important for this paper is the fact that these "programs"
of tool path movements often have errors. Either excess material is left or the
tool gouges the surface too deeply. A common difficulty is that a tool movement
intended to cut one patch accidentally gouges a different patch. Another is using
a tool too large for the local curvature. Work has been done on detecting these
sorts of problems directly (for example, Kuttner uses a method of "truncated
surfaces" to avoid gouging nearby patches [KMS] and Forrest computes local
curvature to detect an oversized tool [F]), bu t problems still arise in practice.

The current practice in industry is to debug an NC program by milling a test
block and then manually examining it for gouges or excess material. The test
block is usually wood or dense foam rather than metal because it is cheaper than
metal, can be cut faster, and serious "bugs" are less catastrophic to the machine.
Too often this process misses errors, and weeks can be spent cutting an expensive,
hardened block of steel into a stamping die of the wrong shape. A computer
simulation that could detect and identify errors would be very useful.

1.2. Related Work. Several commercial CAD systems (for example, Computer-
vision and CATIA) contain the capability to do limited verification of NC
programs for sculptured surfaces. The system verifies that no interference has
occurred between the cutter and the desired surface. Duncan and Mair [DM]
report on one such approach, where a polygonal approximation of the surface
is used to both plan cutting tool paths and to verify that no interference occurs.
These verification techniques are undoubtedly valuable but they do not meet our
definition of "simulation." Simulation implies that a model of the current state
of the machined object is always present. The conventional verification techniques
can find gouges but they are incapable of finding areas where excess material
remains. With a model of the machined object always present during the simula-
tion it is just as easy to find areas of unremoved material as it is to find gouges.
The model could also be used to calculate the material removal rate and from
that determine optimum feed rates. Tool deflection and chatter effects can be
simulated. If the tool is determined to be outside the remaining solid it can move
at top speed.

36 R.L. Drysdale, Ill, R. B. Jerard, B. Schaudt, and K. Hauck

There have been relatively few systems which do simulation. Voelcker and
Hunt did an exploratory study of the feasibility of using the PADL constructive
solid geometry (CSG) modeling system for simulation of NC programs [VH],
[HV]. Fridshal at General Dynamics has modified the TIPS solid modeling
package to do simulation [FCDZ].

The problem with using the solid modeling approach for sculptured surfaces
is that it is slow. The cost of simulation using the CSG approach is reported to
be proportional to the fourth power of the number of tool movements [HV]. A
typical program for sculptured surface machining could contain ten thousand
movements, making the computation intractable.

An alternate approach for simulating 3-axis machining was invented by
Anderson [An]. He was concerned with planning NC programs that were free
of "fouling." Fouling occurs when the cutter assembly collides with the partially
cut object. To detect this, he divides the base of the object into squares, and
keeps track of the cut height above each square. He calls this structure a
three-dimensional histogram, and represents it as a two-dimensional array of
heights. Each square starts with the value of the height of the stock. Each tool
movement updates the heights of the squares it passes over if it cuts lower than
the currently stored height. The regular square grid makes it easy to determine
quickly which squares lie under the tool path and which can be ignored. Note
that there are a range of heights above each square, but he chooses the highest
value so that the actual part is always within his representation and no fouling
will be missed. He notes that, "Logically the smallest area worth considering has
a side equal to the smallest increment that the cutter assembly can make. However,
this would require an excessive amount of computer storage Thus the cell
size has to be a compromise between accuracy and the practical requiremehts of
computation. In practice a size of the order of 0.1 to 0.2 of the cutter diameter
has proved a reasonably good value."

An alternate approach is the "point-vector" technique of Chappel [Ch]. The
surfaces of the part are approximated by selecting a set of points lying on the
surface. Direction vectors are created normal to the surface at each point. A
vector extends until it reaches the boundary of the original stock or intersects
with another surface of the part. To simulate the cutting caused by a tool movement
the intersection of each vector with that tool movement's envelope is found. The
length of a vector is reduced if it intersects the envelope. An analogy can be
made to mowing a field of grass. Each vector in the simulation corresponds to
a blade of grass "growing" from the desired object. As the simulation progresses
the blades are "mowed down." The length of the final vectors correspond to the
amount of excess material (if above the surface) or the depth of the gouge (if
below the surface) at that point. Chappel's paper gives a detailed algorithm for
computing the intersection between a vector and a randomly oriented cylinder
that represents the cutting tool. However, he does not present methods to select
the points.

Oliver and Goodman at Michigan State University developed a system that
uses a graphical image to select the points [OG], [O]. Their approach starts with
a computer graphics image of the desired surface. The user can choose the area

Discrete Simulation of NC Machining 37

of interest and the view. The image space is then used as the basis for the
simulation. Each pixel on the screen is projected back onto the object surface,
and this set of points becomes the approximation to the object. Then their
simulation proceeds like Chappel's. The large number of vectors generated would
lead to a very slow system if every vector had to be separately intersected with
every tool envelope. They avoid this problem by using heuristics for quickly
eliminating many of the vectors from consideration.

Wang [WW] developed a different image-space approach that uses an extended
Z buffer. The standard Z buffer algorithm is used for elimination of hidden
surfaces in computer graphics [FV]. A vector is drawn at each pixel that is
normal to the plane of the screen. For each pixel the Z height of the front of
the surface is saved. (In the lawn-mowing analogy, each blade of grass is
vertical and its Z value corresponds to its height.) Wang's extended Z buffer is
unconventional in that both the front and back Z values of the volume are
stored. If the vector enters and leaves a volume several times, then a list of
front and back Z values are saved. This allows his method to handle 5-axis
machining.

Wang is able to take the swept volume of a tool movement and replace it by
a polyhedral approximation. A scan-line plane intersected with this polyhedron
determines the Z depth of each pixel associated with the graphic image of the
swept volume. Scan-line techniques allow him to compute Z values for all pixels
on a scan line fairly quickly. The workpiece Z buffer is then modified by comparing
it with the swept volume Z buffer. Each fool movement changes the graphic
image of the workpiece to show the cutting action. Upon completion of the
simulation the Z buffer of the workpiece and that of the desired mathematically
defined surface can be easily compared to find unacceptable differences. Wang
reports average calculation times of about 1 second of VAX 11/780 time for each
swept voltlme tool movement, although the times must certainly be a function
of the complexity of the swept volume.

Van Hook [V] also developed an extended Z buffer. His method differs from
Wang's in that instead of intersecting scan lines with swept-volume envelopes he
precomputes a pixel image of the cutting tool and performs Boolean subtractions
of the cutter from the workpiece as he steps along a tool path. This limits his
method to 3-axis cutting, where the orientation of the cutting tool does not change.
(Otherwise each orientation has a different pixel image, so he cannot precompute
the image to save time.) Atherton [AEF] has extended Van Hook's approach to
handle 5-axis machining, although his paper does not explain the details of his
method.

These point-vector techniques have several advantages over the solid-modeling
approach. Their run time grows linearly with the number of tool movements, so
they can handle sculptured surfaces with tens of thousands of tool movements.
This promises to make them useful in practical systems. They also provide an
easy way to measure exactly the differences between the cut surface and the
desired surface. They can determine if any of the selected points is cut out of
tolerance. Solid-modeling methods can represent the final object, but comparing
it with the desired object is computationally expensive.

38 R.L. Drysdale, III, R. B. Jerard, B. Schaudt, and K. Hauck

One drawback is that approximating the surface by a set of points introduces
errors. Some of the methods used for computing intersections between vectors
and tool paths introduce further errors. This is not a problem as long as the size
of the error introduced is small enough for a given application. Unfortunately,
none of these methods give a direct method for determining or controlling the
size of this error. The point selection is either unspecified or derived from an
image-space view of the object. The viewer can change the amount of error
introduced by changing the viewpoint, but cannot easily determine how much
error is introduced by a given view.

2. Our Approach. Our approach is also a point-vector approach. Its point-
se lec t ion methods differ from the approaches described above in two important
ways. First, �9 our method is object-based rather than image-based. All the
approaches mentioned above that specify their point-selection method choose
their surface points by projecting pixels from the graphics screen down onto the
object. We choose our surface points based on object curvature and on interpoint
spacing. Mapping our object into image space for viewing is a final step designed
for viewer convenience. It need not be done at all, because points that are out
of tolerance are written to an error file. Second, this approach gives us control
over the amount of error introduced by the simulation. We can choose coarse
error bounds to perform rapid simulations that test for gross errors or we can
choose very tight error bounds to perform extremely accurate (but slower)
simulations to be certain that an NC program is correct.

A major emphasis of our work is analyzing how point spacing, tool size, and
local curvature affect the amount of error introduced by the simulation. The
techniques described in this paper could be used to determine the maximum
simulation error introduced by the point-selection schemes used for one of the
other systems, if that were desired. However, our point-selection techniques are
motivated by this analysis. They pick more points in areas where they are needed
and fewer points in areas where they are not needed. This is a major reason that
the system runs as quickly as it does.

For efficiency reasons we use a simple Z buffer approach. It is relatively simple
to find the intersection of the normals from the x - y plane at the selected points
with the path of the ball-end cutter, because all vectors intersect the bot tom (as
opposed to the sides) of the tool envelope. The z value of the cut surface at each
point is stored (Zcut). At the start of the simulation all the Zcut values are set
equal to the top of the raw stock. The simulation processes all the cutter location
(CL) file commands and modifies a Zcut value whenever a cutting-tool movement
would remove additional material above that point. Whenever a cut modifies the
Zcut value at a point, the number of that cut in the CL file is saved also. When
the simulation is finished the Zcut values can be compared with the z value of
the desired surface. Discrepancies can be found and the number of the cut which
last changed the Zcut value can be written to an error file.

It is tempting to simply choose points on a regular square grid, an approach
similar to Anderson's [An]. That makes it easy to design an algorithm which

Discrete Simulation of NC Machining 39

only checks the points which lie under the shadow of the tool path. Such
localization is a key to efficiency in this approach.

Despite its appealing simplicity, a regular x - y grid has a number of flaws. The
first is the number of points required. Areas with high curvature require close
spacing to represent the surface accurately. Flatter areas allow wider point spacing.
The uniform-spacing method requires that the spacing needed for the few small
areas of high curvature be replicated everywhere, greatly increasing the space
and time requirements for the algorithm.

A second problem is that points are given in x - y coordinates rather than
parametric coordinates. The x - y normals must be projected onto the surface
patch to find the correct value of z for comparison with Zcut. Projecting x - y
normals onto the surface is nontrivial and normally requires a trial-and-error
algorithm to go from cartesian to parametric space. This can be time consuming.
This problem is the same one faced by ray tracing rendering of curved
surfaces IT].

We can solve the latter problem if we select points in parametric space rather
than cartesian space. It is easy to transform from parametric space to cartesian
space, but hard to invert the function. The first problem can be solved by using
surface-curvature and tool-size information to calculate an irregular spacing
between parameter values that greatly decreases the number of required points.
Closer spacing is used in areas of high curvature. Therefore, a solution that solves
both problems is to select points in irregularly spaced parametric coordinates
rather than regularly spaced x - y coordinates. Techniques for computing
appropriate spac!ng and choosing points will be discussed in a later section.

This solution creates a new problem. How can we compute efficiently which
points lie under the cutting tool? The regular grid made it easy to compute the
points from the tool location. If we only have a list of points in parametric
coordinates we might have to check every point for every toolpath, which is
clearly unacceptable. Localization is required for efficiency.

This problem can be solved by sorting the points into "buckets" based on their
x - y coordinates. Instead of our regular grid of sample points in x - y space, we
will have a regular grid of rectangles in x - y space. These rectangles can be
thought of as "buckets" containing sample points (see Figure 1). Where curvature
is high and sample points are dense, each rectangle will contain many sample

�9 points. Where the surface is fiat, each rectangle will contain few (possibly even
zero) points. The points falling in a given rectangle will be stored in a linked list
corresponding to that rectangle. A given tool path passes over a certain set of
rectangles and all points lying within these rectangles must be examined. These
rectangles are easy to compute, because their boundaries are a regular x - y grid
(see Figure 2). If their dimensions are comparable to the tool size the number
of points not lying under the tool path but contained within the rectangles will
be proportional to the number of points examined. They will be the points in
rectangles that overlap the boundary of the cutting path which do not lie beneath
the cutting path. We can roughly approximate the ratio of the unneeded points
to needed points by the area of the parts of intersected rectangles lying outside
the cutting path to the area of the cutting path.

40 R.L. Drysdale, III, R. B. Jerard, B. Schaudt, and K. Hauck

B u c k e t s i n X - Y P l a n e

Fig. 1. Points calculated in parameter space are sorted into buckets with regular x - y spacing.

s p h e r i c a l
cut ter

B u c k e t s in X - Y P l a n e

Fig. 2. Projection of the shadow of the cutting tool onto the buckets. Only points in those buckets
are examined.

Discrete Simulation of NC Machining 41

The calculation time is directly proportional to the number of intersection
calculations, a number that can be estimated by multiplying the projected area
of the tool path on the x - y plane times the point density. Therefore, run time
grows linearly with the number of tool movements in the CL file, provided that
the average tool movement length and point density remain relatively constant.

3. Bounding Simulation Error. In order to simulate machining efficiently we
must be able to choose points with proper spacing. The object of the simulation
is to detect places where the surface is undercut by more than Ti or remaining
material is higher than T O above the desired surface, where T~ and To are
user-defined tolerances into and out of the surface. Deviations outside the toler-
ance range are "cutting errors." Unfortunately, the discretization of the surface
makes it possible that cutting errors may be undetected. Our simulation may
determine that the surface is within tolerance at every sample point, but there
may be gouging or excess material at points where we did not sample. We call
the distance that the cut surface can differ from the true surface without differences
detectable at the sample points "simulation error." This section shows how
sample-point spacing influences the simulation error.

Our technique effectively replaces the entire surface by a sample of points
whose cut values are computed. This approximation introduces simulation errors
in three ways. First, our only representation of the true surface is an interpolation
based on the sample points. Effectively we have replaced the surface by a
polyhedral approximation obtained by triangulating the points. This approxima-
tion is not exact, so the true surface differs from the polyhedral approximation.
These differences are a source of error. Errors of this type are reduced by choosing
more sample points in areas of high curvature. The test for deciding if more
points must be chosen in a given area is "is the distance between the interpolated
surface and the true surface small in this region?"

The second source of simulation error comes from the fact that we know the
cut surface height only at the sample points. It may seem that this gives little
information about other points on the surface, but this is not the case as long as
the sample-point spacing is small compared with the radius of the ball-end mill.
In this case the ball locally appears almost fiat. The amount that the tool can
protrude into the polyhedral surface without a cutting error being detected is a
function of the tool radius and distance between points. If the sample points are
chosen correctly the height of excess material is a function of the same two factors.

A third type of simulation error comes from the fact that the differences between
the Zcut and z of the surface is a vertical distance. The actual cutting error is
the distance from the cut surface to the closest point on the desired surface. If
the surface is nearly vertical, the difference between the closest point and the z
distance can be quite large. The true shortest distance from a point to the desired
surface will always be less than or equal to the distance in the z direction.
Therefore this type of simulation error will not cause any undetected cutting
errors. Unfortunately, it can cause our program to warn that points are out of
tolerance when in fact they are not. We are currently looking at postsimulation

42 R.L. Drysdale, III, R. B. Jerard, B. Schaudt, and K. Hauck

analysis and other approaches to try to get a truer estimate of the distance from
the cut point to the desired surface than simply measuring the z distance.

We desire to select points in a manner that allows us to bound the size of the
first two types of simulation error. The next sections quantify bounds on each
type of error.

We note that other errors are introduced because our method does not exactly
model the real-world cutting process. Tool movements in the CL files that our
system is designed to use are described as parabolas. Some NC tools approximate
these parabolas by line segments while others attempt to follow the parabolas
exactly. We approximate the parabolas by line segments. We do not compute
the effects of deflections caused by forces acting on the cutting tool and workpiece.
We do not simulate tool wear or tool runout. These limitations are independent
of our method of representing a surface by discrete points.

3.1. Distance Between Surface and Polyhedral Approximation. The first type of
error, es, is the distance between the true surface and the polyhedron obtained
by triangulating the points in our sample. It is the maximum distance from any
point on the true surface to its nearest neighbor on the polyhedron. Each triangle
has a region of points which are closer to it than to any other triangle, and the
error for that triangle is the maximum distance from the triangle to any point in
its region. Actually measuring this error requires analytical knowledge of the
particular surface definition technique and /or numerical search techniques. It
may be computationally easier to get some conservative bound on the error than
to try to compute the exact error. (For example, a Brzier surface patch always
lies within the convex hull of its control points.) The methods depend strongly
on the exact method of representing the surface, and are beyond the scope of
this paper. See, for instance, [BFK] for a survey of surface representations and
subdivision algorithms. If a "very high probability" of errors being detected is
sufficient, this type of error could be estimated by measuring the distance between
the true surface and a number of points on the triangle. This trades off guaranteed
error bounds for implementation ease and efficiency.

This is one of only two places that our algorithm needs information about the
representation of the surface. It also needs to know how to map a (u, v) point
in parameter space to an (x,) ; z) point in object space. Thus our method reduces
questions about the distances between cut surfaces and mathematical surfaces
to questions about distances between triangles and mathematical surfaces and
intersections between vertical rays and tool-movement envelopes.

3.2. Tool Protrusion into the Polyhedral Approximation. We want to find out how
far below the surface of the polyhedral approximation the cutting tool can
protrude without an error being detected at the vertices of the polyhedron. We
call this the protrusion error ep. We first derive a formula that will prove useful.

LEMMA 1. Let S be a sphere with radius r and P be a plane cutting through S.
Then the maximum distance between P and spherical cap cut off by P is

h = r - rv~- s 2,

where s is the radius of the spherical cap.

Discrete Simulation of NC Machining 43

Fig. 3. Side view of sphere shows that the tool protrudes distance h for spherical cap of radius s.

PROOF. Look at Figure 3 and apply the Pythagorean theorem. []

We use this fact to prove the following theorem:

'THEOREM 1. Let TP be a triangulated polyhedron, no edge of which is longer than
d. Let S be a sphere of radius r> d/x~3. The maximum distance that S can protrude
beneath the surface of TP without containing any vertices of TP is

ep = r - ~ / - ~ - d2/3

and this bound can be achieved for an equilateral triangle.

PROOF. We want to show that any point on S that lies interior to TP lies within
distance ep of one of TP's triangular faces. We do this by considering the ways
that S can protrude beneath the surface of TP. Note that in general S may
protrude through several different triangles of TP. Our proof examines each
protrusion through a triangle and establishes that the protrusion cannot lead to
a point of S that is further than ep from the surface of TP.

There are two cases to consider. The first is when c, the center of the sphere,
lies directly above a triangle through which it protrudes (in the sense that the
closest point on the triangle to c is in the interior of the triangle). The second
case is when the closest point in the triangle to c lies on an edge between two
triangles (so the ball is protruding through the edge rather than the face~. Figures
4 and 5 show the two cases.

Case 1. We want to find the deepest protrusion possible. This will be a "p roof
by gravity." We first rotate the polyhedron and sphere so that the triangle we are
protruding through is horizontal and see what the sphere does if we let it fall. I f
the sphere touches no vertices, it will protrude further if it falls until it touches
one. I f it touches only one vertex, it will protrude deeper if it is allowed to fall
further, pivoting at the vertex. This fall will continue until the ball touches a

44 R. L. Drysdale, III, R. B. Jerard, B. Schaudt, and K. Hauck

c

T 1

(edge on)

Fig. 4. Side view of ball and triangle T 1 . Center of the ball lies above T 1 .

second vertex or its center moves from above the triangle. If it touches a second
vertex first, the ball will then pivot about the line between the vertices until it
touches the third vertex or the center moves from above the triangle.

If the center moves from above the triangle in either case, we will have found
a deeper Case 2 protrusion, So the Case 2 bound will work for this case also.
This happens on obtuse triangles.

For acute triangles, the ball will be supported by the three vertices of the
triangle and will have a spherical cap cut off by the plane of the triangle. From
Lemma 1 we see that the protrusion will be greatest when the spherical cap has
the largest possible radius. This is equivalent to finding the acute triangle
(maximum edge length d) that has the largest circumcircle. This occurs when
the triangle is equilateral, and the radius of the circle will be s = d/x~3. Plugging
this value for s into the formula from Lemma 1 gives the formula for ep.

Case 2. If the sphere is not touching two vertices, it will protrude deeper if it
is moved so that it touches both endpoints Vl and v2 of the nearest edge to c (see

e I (~
I
I t,)T,,,

T 2 %i / (edge on) I

\

Fig. 5. Side view of ball and triangles T 1 and T 2. Center of the ball lies above neither triangle.

Discrete Simulation of NC Machining 45

Figure 5). Let x be the point of intersection between the sphere and the radius
that is perpendicular to vlv2. We construct a plane P tangent to the sphere at x.
All points of the sphere lie to one side of P. Therefore the part of the sphere that
protrudes through the triangles T1 and T2 does so within the triangular prism
bounded by the plane P and the planes containing triangles 7"1 and T2. But no
point in that prism is further than h from either the plane containing T~ or the
plane containing T2, where h is the distance from x to edge v~v2. This distance
can be computed from Lemma 1 by observing that the spherical cap cut off by
a plane parallel to P through Vl and v2 has VlV2 as its diameter. The length of
v~v2 is at most d. Plugging d /2 in the formula for this case gives us a bound of

ep = r - x / r 2 - d2/4,

which is smaller than the bound from Case 1. []

In practice it is likely that th6 user will want to decide the allowable simulation
error e - ep+ es and the tool radius r, and then compute a value of d which will
guarantee that simulation error is less than e. We therefore want to solve for d
in terms of the user-defined values:

(1) d = x/6rep- 3e 2.

When ep is small with respect to r (which is usually the case), d can be
(conservatively) approximated as

d ~ ~ 6 - ~ p .

This means that the spacing between points grows as the square root of both the
radius of the cutting tool and the simulation error allowed. The number of points
is proportional to the inverse of the square of the distance between points.
Therefore the number of points (and thus cutting time) grows linearly in both
the inverse of the radius and the inverse of the desired accuracy.

To give some feel for what this means, assume a cutting tool with a radius of
1.0 and an allowable simulation error of 0.01. Then the spacing d between points
can be as large as 0.245. I f the allowable simulation error is reduced by a factor
of 100 to 0.0001, then the spacing between points is reduced by a factor of 10 to
0.0245.

3.3. Computing Remaining Material. Another type of error is the height of the
material remaining above the plane of a triangle, which we call er. It is hard to
get an absolute bound on er by looking only at the height of the sample points.
The most difficuiL case is a steep tower with a flat top. The angle between the
walls and the top is nearly 90 ~ . The cutter could approach the tower from the
side and cut the entire edge of the flat top to the correct height by cutting with
the side of the ball without cutting any material above the center of the flat top.
All the edges would be exact, but the center would extend to the top of the stock.

46 R.L. Drysdale, III, R. B. Jemrd, B. Schaudt, and K. Hauck

If the fiat top were a single triangle in our approximation (or even a group of
triangles with all vertices on the edge), the error above the center of the triangle
could be unbounded.

This situation can only occur when the angle between a triangle and some of
the neighboring triangles is large. When a ball-end cutter cuts with its side its
lowest point is far below the surface of the triangle. It avoids gouging neighboring
triangles only if they drop off steeply. One approach that we considered was
examining the angles between a triangle and each of its neighbors. We still
consider this to be a promising approach and are trying to find a way to get an
appropriate bound using this approach. We hope to get a bound that will work
for the vast majority of triangles, and then to use other techniques for those few
triangles where all neighboring triangles form a large angle with the given triangle.

The problem is simply that the cut height at the vertices gives too little
information about what is happening over the center of a triangle. One way to
get more information is to add a sample point in the interior of the triangle at
the center of the largest inscribed circle (in-center).

To see how this helps, consider Figure 6. R S T is a triangle and P is in its
interior. Our goal is to cut R, S, T, and P to their correct height while leaving
as much excess material as possible somewhere above RST. In other words, we
want to find the placement of a sphere touching P and not containing any of R,
S, or T in its interior that maximizes the vertical distance from a point of R S T
to the sphere.

Our first observation is that the maximum height will always occur at a vertex
of RST. We call the circular projection of the sphere onto the plane of the triangle
the "sphere's shadow." If one of the vertices does not lie within the sphere's
shadow, then the height above that vertex is infinite so will be a maximum. If
all three vertices lie within the sphere's shadow, then all points in the triangle
lie with the shadow by convexity of the circle and the triangle. The height of the
sphere above any line segment lying within its shadow is a unimodal function,
with a single minimum. Therefore local maxima of this height function can only
occur at endpoints of segments, never in its interior. Any point in the triangle
except a vertex is contained in the interior of some segment lying in the triangle,

Tq S C

Fig. 6. Top view of ball and triangle with extra point in its interior.

Discrete Simulation of NC Machining 47

T p ~

Fig. 7. Side view of ball and triangle showing the height of remaining material above T.

so cannot be a local maximum. This implies that the maximum height must occur
at a vertex.

We therefore can assume without loss of generality that we want to cut P to
the correct height while leaving as much material as possible above T. To do this
we start with the ball touching P, and then tip it away from T until it touches R
and S. C is the center of the circle passing through R, S, and P. We can compute
the height of the ball above T if we can compute the two distances [CP[(the
radius of the circle) and I CT].

Figure 7 shows the side view. The plane of the triangle cuts off a spherical cap
of the ball. The size of the circle [CP] determines the height of the spherical cap
as was shown in Lemma 1. As we move out from this circle toward T, the ball
rises above the plane. Its height above the plane when it gets to T is the difference
in heights between spherical caps with radii]CT] and I CP]. Applying Lemma 1,
we get

(2) e r =,/r ~ [CPI 2 - , / r 2 _ I CTI 2.

For a given triangle and a given interior point it is straightforward to compute
these two lengths. However, our goal here is to get an upper bound on this height
over all triangles.

We can increase er in two ways. The first is to increase the difference between
]CT t and]CP[. The second is to increase]CP[, the size of the circle, so that we
are out on a steeper part of the sphere. We increase]CP] when we increase]RS],
when we move P nearer to the perpendicular bisector of RS while keeping it the
same distance from RS, or when we reduce the distance from P to RS.

The first three of these methods can only increase er by a bounded amount.
The difference between [CT[and I CP[can be at most d, the maximum edge length
in the polyhedron. [RS[can be at most d. P can be moved so it sits on the
perpendicular bisector to R$. However, we can put P arbitrarily close to RS,
thus making the circle arbitrarily large. I f the radius of the circle becomes larger
than r, the radius of the ball, there will be no bound on the height of the material
above T. (The ball can cut P from the side without touching R or $.)

48 1L L. Drysdale, III, R. B. Jerard, B. Schaudt, and K. Hauck

S

Fig. 8. Worst-case triangle for remaining material above T.

This implies that we should choose P so it is far from any edge. The in-center
is by definition the point farthest from its nearest edge. However, by making
skinny triangles we can still force P arbitrarily close to RS. Therefore any bound
we derive will have to take into account the "fatness" of the triangle. The "fatness"
parameter that we use is

S - -
(distance of P from nearest edge)

(length of longest edge)

Figure 8 shows the worst possible triangle of fatness s, obtained by maximizing
all factors simultaneously. IRS[= d, T is distance d away from IRSI, and P is
distance h = sd from R S and is on its perpendicular bisector. In fact, this triangle
cannot occur in our polyhedron, because edges R T and R S are longer than d.
(There is a tradeott between maximizing IRS4 and maximizing the distance of T
from RS.) However, a bound for this triangle is certainly worse than a bound
for any acceptable triangle of fatness s.

Some geometry and trigonometry give us the following edge lengths:

ICQI = (d 2 - 4 h 2) / 8 h ,

ICPI = (d2 + 4h2)/Sh : (1 +4s2)d/(8s) = kid,

I f r l = (d 2 - 4 h 2) / 8 h + d = (1 - 4s 2 + 8 s) d / (8 s) = k2d.

The latter two lines substitute sd for h and then implicitly define the constants
kl and k2. Plugging into the formula for er derived above gives

e~ = ,Jr --~S- k2d 2 - x / r 2 - k2d 2.

Solving for d in this formula gives

2 2 2 2 2 2 2 2 2 2
- e r (k I q- k2) + 2 e J k l k 2 e ~ + (k l - k2) r

d = (k 2_ k22)2

Discrete Simulation of NC Machining 49

For e' small relative to r, this simplifies to

(3) d -x/(2err) /[k 2 - k~(: x/-C~err

for

C = 8s/(1 +4s - 4s2).

We noted that this triangle cannot ever occur. The worst acceptable triangle
appears to be similar to the one in Figure 8, but with the sides R T and S T
reduced to length d. The same calculations for this triangle give

C = 16s/(4s + v /3- 4x~s2).

(C = 2 for an equilateral triangle, and gets smaller as s decreases.) This growth
rate has the same form as the gouging case, but the constant is worse.

3.4. Combining the Errors To Obtain a Bound on Simulation Error. We have
analyzed three types of errors: the separation distance e~, the protrusion distance
ep, and remaining excess material height er. However, our goal is to find the
overall simulation error introduced by a given set of points. We break this analysis
into two parts. The first is ei, the amount that a cut point can lie inside the true
surface even if all selected points are cut exactly. The second is eo, the amount
that a cut point can lie outside the true surface even if all selected points are cut
exactly.

The maximum distance that the ball can protrude inside the surface is es+ ep,
which occurs when the tool protrudes inside a triangle of the polyhedron and
the surface lies outside the triangle, as shown in Figure 9(a). However, we can
sometimes do better than this. If the surface lies completely inside the triangle
of the polyhedron, then the protrusion distance and the separation distance can
cancel, as shown in Figures 9(b) and (c). They certainly cannot combine. Therefore
when we can prove that we are in this case, the appropriate formula is max(e~, ep).
Therefore the error introduced by a given triangle is

(4)
e < ~max(es, ep) if the surface lies entirely inside the triangle,

- [es + ep otherwise.

The bounds for eo are symmetric:

(5)
I max(es, er) if the surface lies entirely outside the triangle,

e~ <: (e s + e r otherwise.

4. Method for Selecting Points. The user choose s bounds bi and bo as the
maximum acceptable values of the errors el and Co. We want to select our points
in a way that guarantees that e i - b i and eo-< bo for all triangles. Our general

50 R. L. Drysdale, IIl, R. B. Jerard, B. Schaudt, and K. Hauck

F ~ X" Cutting Tool

a r f a c ~ [-es
. . . . f-e

~'f~Polyhedral '*"*"~"~ ~
A p p r o x i m a t i o n e i = e s + ep

(a)

P o l y h e d r a l

, ~ ~ n " r--e~
%qtq%t i .~0" 0

e i =ep
(b)

A p p r o x i m a t i o n
/

Surface

O- Surface

ting Tool

e i -- e s
(c)

Points

Fig. 9. Ways that ep and e s can interact to get e~.

approach is to generate a triangulated polyhedron, all of whose vertices are on
the surface. We then subdivide triangles into smaller triangles (again with all
vertices on the surface) until the triangulation is good enough to guarantee the
bounds using formulas (4) and (5). The vertices of the triangulation become our
set of points. The triangles themselves play no part in the simulation (although

Discrete Simulation of NC Machining 51

they are used to display the surface graphically). We first describe a method that
guarantees that e~-< bi and eo <-bo. We then describe a method that uses many
fewer points for the special case where we only guarantee that e~ < b i .

4.1. Guarantee Both Protrusion and Excess Material Bounds. The analyses of
both protrusion and excess material express the error in terms of the longest side
of the triangle. In both cases the closer our triangles are to equilateral, the fewer
points we will need to achieve given bounds on protrusion and excess material.
(This is especially true for the excess material bounds, because of the "fatness"
parameter.) Therefore we want our initial triangulation to consist of nearly
equilateral triangles, and ideally each triangle will just barely pass the appropriate
error test. For those that do not, we want a subdivision method which breaks
nearly equilateral triangles into smaller triangles that are still nearly equilateral.

How long should the edges of the nearly equilateral triangles in the initial
triangulated polyhedron be? Formulas (1) and (3) can be used to get an estimate
on an edge length d that will guarantee that both ep_< bi and e r - bo. (Formula
(1) is easy to use, but formula (3) requires an estimate of the fatness parameter.
However, if we are optimistic and simply use C--2 , no real harm is done. The
program will later subdivide triangles that are not small enough.) By choosing
an edge length a bit shorter than this d, most of the triangles in relatively flat
areas will need no further subdivision (because es will be small).

The triangulation is actually generated in parameter space and then mapped
into object space to avoid having to invert the mapping from parameter space
to object space. A unit square in parameter space is mapped onto a bounded
surface patch in object space. We initially triangulate each patch so that the
triangles in object space will all be t he same size and nearly equilateral. As
illustrated in Figure 10, we start by dividing each patch's parameter space into
strips. Each strip is initially triangulated so that the object-space triangles are as
close to equilateral as possible and have sides less than 95% of the d calculated
from formulas (1) and (3). To avoid creating excess points each strip is initially
triangulated so that the vertices of triangles on adjacent strips coincide.

Fig. 10. Surface is triangulated by dividing the patch into strips of equal-sized triangles.

52 R.L. Drysdale, III, R. B. Jerard, B. Schaudt, and K. Hauck

(a) (b) (c)

Fig. 11. Subdivision of triangles by subdividing three sides (a), two sides (b), and one side (c).

To perform the subdivision described in the preceding paragraph we estimate
the width and length of the patch in cartesian space (by measuring the distances
between the corners of the patch) and use this information to decide how many
strips are needed and how many triangles can fit within each strip. We then divide
the patch into that many equal-sized strips, and divide each strip into the right
number of equal-sized triangles.

For each triangle we apply a testing routine to see if it meets the error bound.
This routine first tests to see if the triangle satisfies error bounds in formulas (4)
and (5). If it does, then the routine adds a point at the in-center of the triangle
(needed for the excess material bound to work) and returns.

If the triangle does not meet its error bound, then it must be subdivided. Do
this by barycentrically subdividing it (connect the midpoints of the three sides
in parameter space as shown in Figure 11 (a)). The barycentric subdivision divides
one triangle into four similar triangles of half the size, so it meets the requirement
that nearly equilateral triangles be divided into smaller triangles that. are still
nearly equilateral. Then recursively apply the testing routine to each of the four
subtriangles to see if it meets the error bound (and subdivide it if it does not).
When the procedure finishes its recursive calls, all triangles meet the error bounds.

This method of doing all subdivisions in parameter space is computationally
easy to perform, but it depends strongly on the fact that equal-sized triangles in
parameter space usually map into equal-sized triangles in cartesian space.
Automobile body parts appear to meet this requirement, so it works well for our
specific application. If the surfaces were not as well behaved an iterative method
might be required to obtain the nearly equilateral triangles in the initial subdivision
and to make the barycentric subdivision divide a triangle into four approximately
equal-sized subtriangles.

4.2. Guaranteeing Only Protrusion Bounds. Guaranteeing excess material
bounds using our current analysis requires many more points than guaranteeing
protrusion bounds. The d value computed by formula (1) is at least v~ larger
than the d value computed by formula (3), if bi = bo. Reducing triangle size by
this amount approximately triples the number of triangles. Because most points
are shared by six triangles while only three points appear in each triangle, the
number of triangles is about double the number of points. This means that adding
a point to the center of each triangle approximately triples the number of points.

Discrete Simulation of NC Machining 53

Therefore we can get by with fewer points if we only guarantee ei and have no
provable bound on eo.

There is the potential for further savings. When the object is a cylinder or a
similar shape with high curvature in one direction and low curvature in the other
direction, triangles that are long in the direction of low curvature but narrow in
the direction of high curvature can approximate the surface very closely. Fewer
of these long, narrow triangles are required to closely approximate the surface
than of the nearly equilateral triangles produced by barycentric subdivision.

Because the bound on e r depends on a fatness parameter, breaking up a fat
triangle into long, skinny triangles with the same maximum edge length as the
original can cause er to increase. Therefore we had to keep the triangles nearly
equilateral. However, splitting a fat triangle into long, skinny triangles with the
same maximum edge length as the original does not increase ep. This observation
leads to the following modifications of the subdivision algorithm:

(1) Generate the original triangulation as described in Section 4.1, but use only
formula (1) to determine d.

(2) For the recurs~ve error bounds test routine, test the triangle to see if it passes
the error bounds test in (4). If it passes, then the routine returns.

Otherwise we want to determine if the problem is with ep or with es. If ep is
larger than bi or only slightly smaller, then ep is the problem and we barycentrically
subdivide the triangle as before, Otherwise we are trying to reduce es, and dividing
all three sides may not be necessary.

Generate the (parametric) midpoint of each edge and find the distance from
that midpoint to the surface. If that distance plus ep is smaller than bi then that
edge is not a problem. Subdivide only those edges that fail this test. The sub-
divisions for three, two, and one edges are shown in Figure 11. (If all three edges
pass the test while the triangle as a whole fails, then it is not clear which edge
is the problem. Barycentrically subdivide in this case.) Recursively apply this
error bounds test to each subtriangle.

The amount that nonbarycentric subdivision reduces the number of points
required to simulate milling depends on the shape of the object. For a trunk lid
example discussed in the next section, it reduced the number of points by a factor
of two.

This analysis shows that it would be extremely useful to find a method for
bounding excess material that did not add extra points in the in-center of triangles
and did not require fat triangles.

5. Current Cutting-Simulation System. Our current cutting simulation imple-
ments the system described in Section 4.2. We decided that the benefit of a
guaranteed bound on excess material was not worth the extra run time. If that
judgment changed, it would not be difficult to modify the program to follow the
algorithm in Section 4.1.

We do not analytically calculate es. Ford's surface representation scheme is
both very complex and proprietary. Therefore we did not consider it worth the

54 R.L. Drysdale, III, R. B. Jerard, B. Schaudt, and K. Hauck

Table 1. Cutting simulation system performance for four test cases. Results show the number of
points and the CPU minutes on a SUN III/160 workstation for four different user-specified accuracies.

Tool movements Maximum simulation error in mm (in.)

Patches Parabolic Linear 2.5 (0.1) 0.75 (0.029) 0.33 (0.013) 0.25 (0.01)

Trunk 20 3,500 18,855 Points 2,301 8,315 16,667 23,824
Minutes 4.1 11.0 19.2 28.1

Bumper 263 8,100 45,411 Points 7,172 17,363 34,815 46,871
Minutes 12.0 21.4 39.6 49.7

Handle 100 4,500 27,883 Points 1,889 4,518 9,091 11,177
Minutes 4.7 7.5 i2.6 15.0

Hood 24 700 5,765 Points 956 3,550 7,421 10,026
Minutes 3.5 9.9 17.2 23.2

effort to derive a guaranteed bound, we chose to implement a heuristic based
on a sampling of points. This technique has proven adequate for the well-behaved
surfaces used in automotive styling but may not be generally applicable. We test
the perpendicular distance from the triangle to the surface at the midpoint of
each edge and at a point in the center of the triangle (where the midpoints and
center were computed in parameter space). The maximum of these distances is
our estimate for es. If all the points lie above or below the triangle, we decide
that the surface lies above or below the triangle for the purpose of the error
bounds test. Despite the fact that these tests do not guarantee that the surface is
really close to the triangle they appear to be a good heuristic. In fact, for our
sample surfaces we very rarely found a case where including the point in the
center of the triangle caused a different result for an error bounds test than just
using the midpoints of the edges. We therefore slightly reduced our run time by
eliminating the center test.

We tested the system on actual NC program files supplied by the Ford Motor
Company. Table 1 shows results for four simulations done with different accuracy
requirements. The four files cut the dies for a trunk lid, a bumper, a door handle,

and a hood. The maximum possible simulation errors shown are for worst-case
gouging errors using a ball-end tool. The radii of the tools were determined by
the tool sizes requested in the files: 50 mm for the trunk, 10 mm for the bumper,
4 mm for the handle, and 38 mm for the hood. The time to generate the surface
points was generally 10-20% of the total time required for the simulation. The
table shows the number of surface patches in the design file, the number of
parabolic tool movements in the file, and the number of linear tool movements
derived from the parabolic movements. The linearization of parabolic tool
movements was accurate to within 0.0254 mm (0.001 inches).

6. Further Modifications: Deal with Triangles Rather than Points. The approach
above keeps track of only points. We generated triangles in the process of

Discrete Simulation of NC Machining 55

subdividing the surface, but we do not use them (although we will keep triangles
in order to graphically display the surface). This section explores ways of using
the triangle information to reduce the number of points chosen and speed up
the algorithm. We are planning to implement these methods to see if they are
faster than the ones described above.

6.1. An Alternate Way To Find Excess Material. The approach described above
for detecting excess material has its drawbacks. First, the d value needed to
detect this type of error is smaller than the d value needed to detect gouging for
the same allowed error. Second, the number of center points added to triangles
is large. This may prove to be an expensive way to test for a type of error that
is probably less frequent than gouging. (It can only come from miscomputing or
missing a tool path, not from interference from other patches.) Points from
adjacent triangles should help, b u t we are still trying to find how to use them
effectively.

Therefore we propose a different approach. For each triangle in the approxima-
tion we will find either a small number of cutting paths that remove all excess
material above that triangle or else a point above which excess material remains.
Either way we will know for certain if the triangle has excess material remaining
above it.

Our method depends on the fact that after the simulation we know both the
Zcut height at each sample point and the cutting-tool movement that cut that
sample point most deeply. I f any vertex of a triangle has a Zcut height which is
too high, that point is out of tolerance. I f not, we will test the interior of the
triangle. The three tool movements that cut the three vertices of the triangle most
deeply probably remove all excess material above the triangle. We test this by
direct computation. (The test involves finding the intersection of the three tool
movements with a translated copy of the triangle lifted above the original triangle
by a distance equal to the allowed error. Often a single movement most deeply
cuts more than one vertex of the triangle. In this case fewer than three intersections
need to be done.)

I f the three cuts eliminate all excess material, the test is done. I f they do not,
that triangle may still be in tolerance. A cut which passed over the center of the
triangle but was not the deepest cut at any vertex may have eliminated the
apparent excess material. To eliminate these "false positives," we generate a new
point in the area that appears to have excess material remaining. The new points
generated by all out-of-tolerance triangles become a new sample of points and
the cutting simulation is run on just these points. I f any point is out of tolerance,
so is its triangle. I f not, a new cut has been discovered, and it can be added to
the set of movements that removed material from the triangle. I f this new cut
eliminates the remaining excess material, we are done. Otherwise the process is
repeated. Since we repeat only when we discover a cut not in our set of movements
that removed material f rom the triangle, the process terminates when we run out
of tool paths over the triangle.

Note that during the simulation of tool movements we are dealing only with
points. It is only when that part is done that we must deal with the more complex

56 R.L. Drysdale, III, R. B. Jerard, B. Schaudt, and K. Hauck

intersections of cutting paths with triangles. Furthermore, intersecting with
triangles will be much faster than intersecting with the exact representation of
the surface.

6.2. An Alternate Way To Detect Gouging. Large triangles can accurately
approximate flat surfaces. However, to detect gouging we must make the triangles
fairly small. It would be convenient if the larger triangles could be used.

The method suggested above for excess material detection is not adequate for
detecting gouging. This is because of a basic asymmetry between detecting excess
material and detecting gouging. If excess material is removed by a cut, the material
is gone. Subsequent cuts cannot restore the excess material. Therefore when we
find a set of cuts that eliminates all excess material, we are done. On the other
hand, when a surface is ungouged, any subsequent cut may gouge it. Therefore
all cuts above a surface must be tested to guarantee that there is no gouging.

However, a modification of the excess material approach will work and may
help. In the recursive subdivision step, split a triangle only if it is too far from
the surface (i.e., test for es and ignore ep). Instead of remembering only the
points, remember the triangles also. When the tool passes over a triangle, "cut"
the triangle by finding the deepest penetration of the tool below its surface. By
remembering this information for each triangle, we can keep track of gouges
even for huge triangles. (We need only save the depth of the gouge and the tool
movement number, not the location where the gouge occurred.) The code for
intersecting the tool and the triangle is more complex than for computing the z
height of a point, so each individual computation would be more expensive.
However, if the triangles are large enough the time savings may be worth the
effort. (In theory it would be better still to intersect the tool with the actual
mathematical surface, but this is a much more difficult computation than inter-
secting the tool with a triangle.)

7. Other Modifications

7.1. Improved Bucketing Strategy. The method of "bucketing" for determining
which points to examine has proven to be quite efficient, but even larger savings
are possible. A ball-end mill making final cuts will usually only be cutting with
a small portion of its surface. Therefore it will pass over a number of points
without actually cutting them. To avoid examining buckets where no Zcut values
will change it is possible to store for each bucket the maximum Zcut value
associated with any point in the bucket. Given the borders of the bucket and the
cutting tool path, we can compute the minimum z height of any part of the tool
over the bucket. If this minimum z height is higher than the maximum z value
in the bucket, no points in the bucket need be examined. Otherwise the points
in the bucket should be cut and a new maximum computed. In areas where the
buckets are small and the point density is high, this could save a lot of computation.
In areas where the point density is low, it might be faster to test the points than
compute the minimum z height over the bucket. The choice could be made
depending on the number of points in the bucket.

Discrete Simulation of NC Machining 57

7.2. Simulating Flat-end and Torodial-end Cutting Tools. The error analysis is
quite dependent on the Shape of the ball-end mill. With a fiat-end mill (a cylinder),
no upper bound on the amount of excess material left is possible if we examine
only the heights of points in the sample. This is because the mill has a sharp
edge and vertical sides. No matter how close together the sample points are on
a perfectly flat surface, it is possible to cut into each corner of some triangle
from the outside, leaving an arbitrarily high spike in the middle. (We can guarante e
that no such spike is thicker than d, the maximum point separation.) However,
our alternate method would work as well for fiat-end cutters as for ball-end ones.

The amount of undercutting can at least be bounded, but the bound is not as
good as for a ball-end mill. The problem is again the sharp edge of the mill. I f
the mill approaches a long, skinny triangle that is slanted at a 45 ~ angle, it can
cut depth d /2 from the surface of the triangle without gouging any vertices (see
Figure 12). Therefore in this case e = d/2 and d = 2e. This implies that the number
of points grows quadratically as the inverse of the desired error, which is much
worse than linear growth.

A toroidal-end (also called fillet-end) cutting tool is a cylinder with a rounded
edge. Two parameters are needed to specify such a cutter shape, the cylindrical
radius R and the edge radius r. The amount of gouging and excess material is a
function of both radii, but the worst case is when R = r. In this case the mill is
simply a ball-end mill! From Theorem 1, we saw that the error can be at most

ep = r - x/-~- d2/3.

Increasing R reduces the curvature in one direction, which reduces the amount
that the tool can protrude through a triangle. A similar argument shows that
increasing the radius of R decreases the bound on undetected excess material.
This means that the bounds derived above for the ball-end mill apply directly to
the toroidal-end mill, as long as we use the edge radius r in those formulas.

In fact, this estimate is fairly tight. As the ratio R / r approaches infinity the
rounded edge looks locally like the side of a cylinder. The argument in Case 2

Cutter ~ Surface

Fig. 12. Maximum error due to protrusion of a cylindrical cutter through a triangle.

58 R.L. Drysdale, III, R. B. Jerard, B. Schaudt, and K. Hauck

of the proof of Theorem 1 shows that the side of a cylinder can cause a gouge
as deep as

ep = r -x / r 2 - d2/4.

This means that changing the value of R can at most decrease the d2/3 in the
formula for ep to d2/4.

7.3. Parallel Algorithms. Our technique is still quite CPU intensive. However,
the general approach lends itself very nicely to parallel processing. This is because
the sample points can be processed independently in arbitrary order. In particular,
if each point had its own processor an entire cutting tool movement could be
performed in constant time. I f material removal rate is not being computed, the
movements in the CL file can also be processed in arbitrary order. Parallelism
can be used in generating the set of points as well as in running the simulation.
(Each of the triangles to be tested for subdivision could be assigned a different
processor.) Bucketing was added for efficiency and would become unnecessary
if every point had its own processor.

With some additional effort the true normal could be used for each point
instead of the z distance. The tool-movement-envelope calculation would be only
slightly more complicated than the current method if we are dealing with 3-axis
machining. The standard Z buffer would no longer be adequate because a vector
could enter and leave the object several times. However, Wang's extended Z
buffer would solve this problem [WW].

8. Future Work. Our first areas of work are the obvious ones of exploring more
efficient simulation techniques, better point-selection techniques, and better
bounds. We want to find where our current approach can be improved and make
it better. In particular, we want to find a better method for bounding the amount
of excess material that uses adjacent triangles rather than additional points. We
also want to explore ways of reducing the amount that we overestimate errors
due to the fact that we measure distances in the z direction rather than normal
to the surface.

Next, we would like to extend our method to handle 5-axis machining. A major
drawback to our approach is that it can only handle surfaces which can be
oriented so that the surface is a function in x and y. That is, there can only be
a single z height for any (x, y) coordinate. For 3-axis machining this is not usually
a problem, because this is normally the only type of surface that a 3-axis mill
can cut. However, 5-axis machines can mill ledges, horizontal holes, and other
shapes which cause the cut object to have multiple z values for a single (x, y) value.

There are three basic difficulties with extending our method so that it can
handle 5-axis machines. The first is that a simple Z buffer is no longer sufficient,
because a vector can enter and leave the object several times. Fortunately, Wang's
extended Z buffer is designed to handle this problem [WW].

The second difficulty is that a 5-axis milling tool sweeps out a much more
complex envelope than a 3-axis mill, because its orientation can change as it

Discrete Simulation of NC Machining 59

moves. We need to find the intersection of a vector with this more complex
envelope. Wang's method of approximating the volume by a polyhedron is one
approach, but we would like to consider other approaches as well.

The third problem is localization. Our bucketing strategy depends on all vectors
being parallel. We can continue to use this strategy if we use Wang's extended
Z buffer. However, our simulation would be more accurate if we were able to
use normal vectors instead of having all vectors point in a single direction. In
this case our bucketing strategy then breaks down completely. (Note that for a
parallel 5-axis simulation this is not a problem, because we no longer need to
localize.)

One approach that we are considering is to use "approximate normals." Instead
of having one extended Z buffer with a single Z direction, we could have a
number of buffers. Each would choose a different direction as its Z direction.
For example, we could use three extended Z buffers, one with its vectors parallel
to the X axis, one with its vectors parallel to the Y axis, and a third with its
vectors parallel to the Z axis. A point would be placed into a bucket in only one
of the buffers. The one chosen would be the one whose Z direction was closest
to the normal direction for the point. By increasing the number of extended Z
buffers, we could guarantee that the angle between the true normal and the
"approximate normal" used by its extended Z buffer was small.

Acknowledgments. John Magewick and others at Ford Motor Company provided
valuable suggestions and supplied examples of Ford NC programs for us to use
as test data. A referee for this paper made a number of useful suggestions and
pointed out previous work in the area.

[ACd]

[AEF]

[An]

[Ar]

[B]
[BFK]

[Ch]

[Co]

[D J]

References

G. T. Armstrong, G. C. Carey, and A. dePennington, Numerical Code Generation from
a Geometric Modeling System, in Solid Modeling by Computers: From Theory to Applica-
tions, M. S. Pickett and J. W. Boyse, eds., Plenum, New York, 1984.
P. Atherton, C. Earl, and C. Fred, A Graphical Simulation System for Dynamic 5-Axis
NC Verification, Autofact Show of the Society of Manufacturifig Engineers, Detroit,
November 1987, 2-1-2-12.
R. O. Anderson, Detecting and Eliminating Collisions in NC Machining, Computer-Aided
Design, 10(4) (1978), 231-237.
G. T. Armstrong, A Study of Automatic Generation of Non-lnvasive Machine Paths from
Geometric Models, Ph.D. Dissertation, University of Leeds, October 1982.
P. B6zier, Numerical Control--Mathematics and Applications, Wiley, London, 1972.
W. BShm, G. Farin, and J. Kahmann, A Survey of Curve and Surface Methods in CAGD,
Computer-Aided Geometric Design, 1 (1984), 1-60.
I. T. Chappel, The Use of Vectors to Simulate Material Removed by Numerically
Controlled Milling, Computer-Aided Design, 15(3) (1983), 156-158.
S. A. Coons, Surfaces for Computer-Aided Design of Space Forms, Tech. Rep. MAC-TR-
41, MIT, Cambridge, MA, June 1967.
R. L. Drysdale and R. B. Jerard, Discrete Simulation of NC Machining, Proceedings of
the Third Annual ACM Symposium on Computational Geometry, June 1987, 126-135.

60 R.L. Drysdale, III, R. B. Jerard, B. Schaudt, and K. Hauck

[DM]

IF]
[FCDZ]

[FP]

[FV]

[G]

[GR]

[GZ]

[HV]

[JDH]

[JDHSM]

[JHD]

[KMS]

[M]

[O]

[OG]

IRA]

[SJW]

[T]

IV]

[VH]

[WW]

[ZB]

J. P. Duncan and S. G. Mair, Sculptured Surfaces in Engineering and Medicine, Cambridge
University Press, Cambridge, 1983.
A. R. Forrest, On the Rendering of Surfaces, ACM SIGGRAPH, 13 (1979), 253-259.
R. Fridshal, K. P. Cheng, D. Duncan, and W. Zucker, Numerical Control Part Program
Verification System, Proceedings of Conference on CAD/CAM Technology in Mechanical
Engineering, MIT, March 1982, MIT Press, Cambridge, MA, 236-254.
I. D. Faux and M. J. Pratt, Computational Geometry for Design and Manufacture, Ellis
Horwood, Chichester, 1979.
J. D. Foley and A. VanDam, Fundamentals of Interactive Computer Graphics, Addison-
Wesley, Reading, MA, 1982.
D. D. Grossman, Opportunities for Research on Numerical Control Machining, Com-
munications of the ACM, 29(6) (1986), 515-522.
W. J. Gordon and R. F. Riesenfeld, B-Spline Curves and Surfaces, in Computer-Aided
Geometric Design, R. Barnhill and R. Riesenfeld, eds., Academic Press, New York, 1974,
95-126.
M. P. Groover and E. W. Zimmers, CAD/CAM: Computer-Aided Design and Manufactur-
ing, Prentice-Hall, Englewood Cliffs, NJ, 1984.
W. A. Hunt and H. B. Voelcker, An Exploratory Study Of Automatic Verification of
Programs for Numerically Controlled Machine Tools, Production Automation Project
Tech. Memo. No. 34, University of Rochester, January 1982.
R. B. Jerard, R. L. Drysdale, and K. Hauck, The Use of Computer Graphics as a Tool
for Detecting Errors in Numerical Control Machining of Sculptured Surfaces, Proceedings
of NCGA's Computer Graphics '87, March 1987, 290-299.
R. B. Jerard, R. L. Drysdale, K. Hauck, B. Schaudt, and J. Magewick, Methods for
Detecting Errors in Numerically Controlled Machining of Sculptured Surfaces, IEEE
Computer Graphics and Applications, to appear.
R. B. Jerard, K. Hauck, and R. L Drysdale, Simulation of Numerical Control Machining
of Sculptured Surfaces, Paper no. 86057, 15th International Symposium on Automotive
Technology and Automation (ISATA), Flims, Switzerland, October 6-10, 1986.
B. C. Kuttner, D. S. Majcher, and P. B. Snedecor, Systematic Processing: Aa Approach
to Fully Automatic NC Tool Path Generation, Proceedings of Autofact '85 Conference,
SME, November 1985, 18-7-18-22.
A. E. Middleditch, Survey of Numerical Controller Technology, Production Automation
Project TR-1-D, University of Rochester, August 1973.
J. H. Oliver, Graphical Verification of Numerically Controlled Milling Programs for
Sculptured Surface Parts, Ph.D. Thesis, Michigan State University, 1986.
J. H. Oliver and E. D. Goodman, Color Graphic Verification of NC Milling Programs
for Sculptured Surfaces, Proceedings of the lOth Annual Automotive Computer Graphics
Conference and Exposition, Engineering Society of Detroit, December 1985.
D. F. Rogers and J. A. Adams, Mathematical Elements for Computer Graphics, McGraw-
Hill, NewaYork, I976.
S. M. Staley, R. B. Jerard, and P. R. White, Computer-Aided Design of Curved Surfaces
with Automatic Model Generation, Trans. ASMEJ. Mech. Design, 104(4) (1982), 817-824.
D. L. Toth, On Ray Tracing Parametric Surfaces, ACM SIGGRAPH, 19(3) (1985),
171-179.
T. Van Hook, Real-Time Shaded NC Milling Display, ACM SlGGRAPH, 20(4) (1986),
15-20.
H. B. Voelcker and W. A. Hunt, The Role of Solid Modeling in Machining--Process
Modeling and NC Verification, SAE Technical Paper 810195, 1981.
W. P. Wang and K. K. Wang, Geometric Modeling for Swept Volume of Moving Solids,
IEEE Computer Graphics and Applications, 6(12) (1986), 8-17.
D. Zhang and A. Bowyer, CSG Set-Theoretic Solid Modeling and NC Machining of
Blend Surfaces, Proceedings of the 2nd Annual ACM Conference on Computational
Geometry, June 1986, 236-245.

