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Discrete Simulation of NC Machining 1 

Robert L. (Scot) Drysdale, 111, 2 Robert B. Jerard, 3 Barry Schaudt, 2 
and Ken Hauck 2 

Abstract. We describe a method for simulating and verifying the correctness of Numerical Control 
(NC) programs. NC programs contain the sequence of cutting tool movements which machine raw 
stock into a finished object. Our method is based on a discrete approximation of the object by a set 
of points. A vector is passed through each of the points and machining is simulated by finding the 
intersections of tool movements with these vectors. We present a point-selection method and an 
analysis that shows that the error introduced by the approximation can be made as small as desired. 
The run time is inversely proportional to the allowable error and the size of the cutting tool, and 
directly proportional to the distance that the cutting tool moves. 
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1. Introduction. The machining of sculptured surfaces with numerical control 
(NC) is a common practice in many industries. Sculptured surfaces arise in the 
design of car bodies, ship hulls, aircraft, and other applications where smooth 
surfaces are needed to reduce resistance from air or water or simply for esthetic 
reasons. Coons patches [Co], B6zier curves [B], B-splines [GR], and other 
methods have been invented to represent such surfaces. Most commercial com- 
puter-aided geometric design systems have a sculptured surface capability. Once 
a surface has been designed, it is usually necessary to create a numerically 
controlled milling program to cut the surface on a milling machine. Either a 
human programmer or a fully or semiautomated process creates the NC program. 
A number of automated systems are described in the literature [Ar], [ACd], 
[DM], [SJW], [ZB]. However, NC programs created by humans and automated 
systems have errors where they cut too deeply or leave too much material. 
Therefore an important practical problem is finding the answer to the question, 
"Given a mathematically defined surface and a file of NC tool movements, does 
the shape that the tool cuts match the mathematical shape to within a given 
tolerance ?" Fridshal [FCDZ] claims that "Current methods of verifying NC part 
programs result in one of the highest nonrecurring cost factors in producing NC 
machined parts within the aerospace industry." 
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One approach to solving this problem is to start with a solid model representa- 
tion of the block of material and to simulate the movements of the cutting tool. 
As each cut is made, the solid model representation is updated. Unfortunately, 
if there are thousands of tool movements, this becomes computationally infeasible. 
Furthermore, there is still the difficult problem of determining if the cut surface 
model matches the mathematically defined surface. Even checking to see i f  a 
particular tool trajectory intersects a particular patch of a sculptured surface is 
far from trivial. 

We have developed a new approach for simulating NC machining of sculptured 
surfaces [JHD], [JDH], [DJ]. The method replaces the exact representation of 
a surface by a carefully chosen sample of points on that surface. We have 
developed algorithms and data structures for rapidly simulating the actions of 
the cutting tool on this discrete set of points. We then use these results to determine 
if any part of the surface is out of tolerance. Unlike some previous approaches 
which can only detect gouging, this method can find both gouging and areas 
where excess material remains. A version of the system is being used by the Ford 
Motor Company. 

This idea of simulating machining at a discrete set of points is not new [AEF], 
[Ch], [OG], [O], IV], [WW]. However, a problem with the approach is that the 
cut surface is only known at the selected points, and it may be possible for all 
of  the chosen points to be cut correctly while substantial cutting errors exist at 
points not chosen. None of these other papers address the question of how large 
an error might be missed. They simply choose enough points (usually all points 
corresponding to pixels on a graphics screen) so that it seems unlikely that large 
errors will be missed. With our system, the user selects an allowable error and 
the program chooses enough points to guarantee that level of accuracy. For the 
common case of a ball-end cutting t0ol, the number of sample points and running 
time increase only linearly with the desired accuracy. The running time of  the 
simulation is also proportional to the total distance that the tool moves and 
inversely proportional to the ball radius. Similar results are true for a toroida!-end 
cutting tool. 

One aspect of this work is engineering considerations--the system, its 
implementation, the graphical user interface, etc. These questions are explored 
in detail in two conference papers [JHD], [JDH] and in a paper in press [JDHSM]. 
Photographs of cut objects color-coded to show areas within tolerance, gouged 
areas, and areas with excess material are included in these papers. A second 
aspect of this work is algorithmic analysis and Computational geometry--error 
bounds on the simulation and analysis of running times for the algorithms. This 
second area is the topic of this paper. It is an expanded version of a conference 
paper [DJ], and it contains some ideas and results not reported in that paper. 

This paper first outlines our basic approach and describes our system. It then 
analyzes sources of simulation error and derives error bounds. It uses these 
bounds to motivate a method of selecting points so that simulation error can be 
bounded. Even though we know the cut surface only at a finite set of points, we 
can guarantee tolerances at every point on the surface. The paper ends by 
discussing alternate approaches and future work. 
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1.1. Machining Strategy. In sculptured surface machining objects are often cut 
on a 3-axis mill with a ball-end cutting tool. Those not familiar with NC machining 
are referred to [GZ], [FP], [M], and [G]. The geometry of the part is often 
defined by blending parametric curves such as B6zier and B-spline forms [RA]. 
The blending can be accomplished in many different ways and most standard 
computer graphics references give explanations [FV]. The parameter space is 
defined by u and v coordinates which vary between zero and one. Each choice 
of u and v parameters determines a point in 3-space. The resulting surface is 
called a "'patch." A complex sculptured surface is often comprised of multiple 
patches. The surface is defined precisely at all points and slopes and outer normal 
vectors can be calculated. 

Once an object is defined by such surfaces, the goal is to machine it. Machine 
tool paths that will correctly and efficiently mill the surface must be generated. 
This is often a semiautomated process done by parametric indexing over each 
patch [FP]. What is important  for this paper  is the fact that these "programs" 
of tool  path movements often have errors. Either excess material is left or the 
tool gouges the surface too deeply. A common difficulty is that a tool movement 
intended to cut one patch accidentally gouges a different patch. Another is using 
a tool too large for the local curvature. Work has been done on detecting these 
sorts of problems directly ( for  example, Kuttner uses a method of "truncated 
surfaces" to avoid gouging nearby patches [KMS] and Forrest computes local 
curvature to detect an oversized tool [F]), bu t  problems still arise in practice. 

The current practice in industry is to debug an NC program by milling a test 
block and then manually examining it for gouges or excess material. The test 
block is usually wood or dense foam rather than metal because it is cheaper than 
metal, can be cut faster, and serious "bugs" are less catastrophic to the machine. 
Too often this process misses errors, and weeks can be spent cutting an expensive, 
hardened block of steel into a stamping die of the wrong shape. A computer 
simulation that could detect and identify errors would be very useful. 

1.2. Related Work. Several commercial CAD systems (for example, Computer- 
vision and CATIA) contain the capability to do limited verification of NC 
programs for sculptured surfaces. The system verifies that no interference has 
occurred between the cutter and the desired surface. Duncan and Mair [DM] 
report on one such approach, where a polygonal approximation of the surface 
is used to both plan cutting tool paths and to verify that no interference occurs. 
These verification techniques are undoubtedly valuable but they do not meet our 
definition of "simulation." Simulation implies that a model  of  the current state 
of the machined object is always present. The conventional verification techniques 
can find gouges but they are incapable of  finding areas where excess material 
remains. With a model of  the machined object always present during the simula- 
tion it is just as easy to find areas of unremoved material as it is to find gouges. 
The model could also be used to calculate the material removal rate and from 
that determine optimum feed rates. Tool deflection and chatter effects can be 
simulated. If  the tool is determined to be outside the remaining solid it can move 
at top speed. 
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There have been relatively few systems which do simulation. Voelcker and 
Hunt did an exploratory study of the feasibility of using the PADL constructive 
solid geometry (CSG) modeling system for simulation of NC programs [VH], 
[HV]. Fridshal at General Dynamics has modified the TIPS solid modeling 
package to do simulation [FCDZ]. 

The problem with using the solid modeling approach for sculptured surfaces 
is that it is slow. The cost of simulation using the CSG approach is reported to 
be proportional to the fourth power of the number of tool movements [HV]. A 
typical program for sculptured surface machining could contain ten thousand 
movements, making the computation intractable. 

An alternate approach for simulating 3-axis machining was invented by 
Anderson [An]. He was concerned with planning NC programs that were free 
of "fouling." Fouling occurs when the cutter assembly collides with the partially 
cut object. To detect this, he divides the base of the object into squares, and 
keeps track of the cut height above each square. He calls this structure a 
three-dimensional histogram, and represents it as a two-dimensional array of 
heights. Each square starts with the value of  the height of the stock. Each tool 
movement updates the heights of the squares it passes over if it cuts lower than 
the currently stored height. The regular square grid makes it easy to determine 
quickly which squares lie under the tool path and which can be ignored. Note 
that there are a range of heights above each square, but he chooses the highest 
value so that the actual part is always within his representation and no fouling 
will be missed. He notes that, "Logically the smallest area worth considering has 
a side equal to the smallest increment that the cutter assembly can make. However, 
this would require an excessive amount of computer storage . . . .  Thus the cell 
size has to be a compromise between accuracy and the practical requiremehts of 
computation. In practice a size of the order of 0.1 to 0.2 of the cutter diameter 
has proved a reasonably good value." 

An alternate approach is the "point-vector" technique of Chappel [Ch]. The 
surfaces of the part are approximated by selecting a set of points lying on the 
surface. Direction vectors are created normal to the surface at each point. A 
vector extends until it reaches the boundary of the original stock or intersects 
with another surface of the part. To simulate the cutting caused by a tool movement 
the intersection of each vector with that tool movement's envelope is found. The 
length of a vector is reduced if it intersects the envelope. An analogy can be 
made to mowing a field of  grass. Each vector in the simulation corresponds to 
a blade of grass "growing" from the desired object. As the simulation progresses 
the blades are "mowed down." The length of  the final vectors correspond to the 
amount of  excess material (if above the surface) or the depth of the gouge (if 
below the surface) at that point. Chappel's paper gives a detailed algorithm for 
computing the intersection between a vector and a randomly oriented cylinder 
that represents the cutting tool. However, he does not present methods to select 
the points. 

Oliver and Goodman at Michigan State University developed a system that 
uses a graphical image to select the points [OG], [O]. Their approach starts with 
a computer graphics image of the desired surface. The user can choose the area 
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of interest and the view. The image space is then used as the basis for the 
simulation. Each pixel on the screen is projected back onto the object surface, 
and this set of points becomes the approximation to the object. Then their 
simulation proceeds like Chappel's. The large number of vectors generated would 
lead to a very slow system if every vector had to be separately intersected with 
every tool envelope. They avoid this problem by using heuristics for quickly 
eliminating many of the vectors from consideration. 

Wang [WW] developed a different image-space approach that uses an extended 
Z buffer. The standard Z buffer algorithm is used for elimination of hidden 
surfaces in computer graphics [FV]. A vector is drawn at each pixel that is 
normal to the plane of the screen. For each pixel the Z height of the front of 
the surface is saved. (In the lawn-mowing analogy, each blade of grass is 
vertical and its Z value corresponds to its height.) Wang's extended Z buffer is 
unconventional in that both the front and back Z values of the volume are 
stored. If the vector enters and leaves a volume several times, then a list of 
front and back Z values are saved. This allows his method to handle 5-axis 
machining. 

Wang is able to take the swept volume of a tool movement and replace it by 
a polyhedral approximation. A scan-line plane intersected with this polyhedron 
determines the Z depth of each pixel associated with the graphic image of the 
swept volume. Scan-line techniques allow him to compute Z values for all pixels 
on a scan line fairly quickly. The workpiece Z buffer is then modified by comparing 
it with the swept volume Z buffer. Each fool movement changes the graphic 
image of the workpiece to show the cutting action. Upon completion of the 
simulation the Z buffer of the workpiece and that of the desired mathematically 
defined surface can be easily compared to find unacceptable differences. Wang 
reports average calculation times of about 1 second of VAX 11/780 time for each 
swept voltlme tool movement, although the times must certainly be a function 
of the complexity of the swept volume. 

Van Hook [V] also developed an extended Z buffer. His method differs from 
Wang's in that instead of intersecting scan lines with swept-volume envelopes he 
precomputes a pixel image of the cutting tool and performs Boolean subtractions 
of the cutter from the workpiece as he steps along a tool path. This limits his 
method to 3-axis cutting, where the orientation of the cutting tool does not change. 
(Otherwise each orientation has a different pixel image, so he cannot precompute 
the image to save time.) Atherton [AEF] has extended Van Hook's approach to 
handle 5-axis machining, although his paper does not explain the details of his 
method. 

These point-vector techniques have several advantages over the solid-modeling 
approach. Their run time grows linearly with the number of tool movements, so 
they can handle sculptured surfaces with tens of thousands of tool movements. 
This promises to make them useful in practical systems. They also provide an 
easy way to measure exactly the differences between the cut surface and the 
desired surface. They can determine if any of the selected points is cut out of 
tolerance. Solid-modeling methods can represent the final object, but comparing 
it with the desired object is computationally expensive. 
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One drawback is that approximating the surface by a set of  points introduces 
errors. Some of the methods used for  computing intersections between vectors 
and tool paths introduce further errors. This is not a problem as long as the size 
of  the error introduced is small enough for a given application. Unfortunately, 
none of these methods give a direct method for determining or controlling the 
size of  this error. The point selection is either unspecified or derived from an 
image-space view of the object. The viewer can change the amount  of  error 
introduced by changing the viewpoint,  but cannot easily determine how much 
error is introduced by a given view. 

2. Our Approach. Our approach is also a point-vector approach.  Its point- 
se lec t ion  methods differ from the approaches described above in two important 
ways. First, �9 our method is object-based rather than image-based. All the 
approaches mentioned above that specify their point-selection method choose 
their surface points by projecting pixels from the graphics screen down onto the 
object. We choose our surface points based on object curvature and on interpoint 
spacing. Mapping our object into image space for viewing is a final step designed 
for viewer convenience. It need not be done at all, because points that are out 
of  tolerance are written to an error file. Second, this approach gives us control 
over the amount  of  error introduced by the simulation. We can choose coarse 
error bounds  to perform rapid simulations that test for gross errors or we can 
choose very tight error bounds to perform extremely accurate (but slower) 
simulations to be certain that an NC program is correct. 

A major  emphasis of  our work is analyzing how point spacing, tool size, and 
local curvature affect the amount  of  error introduced by the simulation. The 
techniques described in this paper  could be used to determine the maximum 
simulation error introduced by the point-selection schemes used for one of the 
other systems, if that were desired. However, our point-selection techniques are 
motivated by this analysis. They pick more points in areas where they are needed 
and fewer points in areas where they are not needed. This is a major reason that 
the system runs as quickly as it does. 

For efficiency reasons we use a simple Z buffer approach. It is relatively simple 
to find the intersection of the normals from the x - y  plane at the selected points 
with the path of  the ball-end cutter, because all vectors intersect the bot tom (as 
opposed to the sides) of  the tool envelope. The z value of the cut surface at each 
point is stored (Zcut). At the start of  the simulation all the Zcut values are set 
equal to the top of  the raw stock. The simulation processes all the cutter location 
(CL) file commands and modifies a Zcut value whenever a cutting-tool movement  
would remove additional material above that point. Whenever a cut modifies the 
Zcut value at a point, the number  of  that cut in the CL file is saved also. When 
the simulation is finished the Zcut values can be compared with the z value of 
the desired surface. Discrepancies can be found and the number  of  the cut which 
last changed the Zcut value can be written to an error file. 

It is tempting to simply choose points on a regular square grid, an approach 
similar to Anderson's  [An]. That makes it easy to design an algorithm which 
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only checks the points which lie under the shadow of the tool path. Such 
localization is a key to efficiency in this approach. 

Despite its appealing simplicity, a regular x - y  grid has a number of flaws. The 
first is the number of points required. Areas with high curvature require close 
spacing to represent the surface accurately. Flatter areas allow wider point spacing. 
The uniform-spacing method requires that the spacing needed for the few small 
areas of high curvature be replicated everywhere, greatly increasing the space 
and time requirements for the algorithm. 

A second problem is that points are given in x - y  coordinates rather than 
parametric coordinates. The x - y  normals must be projected onto the surface 
patch to find the correct value of z for comparison with Zcut. Projecting x - y  
normals onto the surface is nontrivial and normally requires a trial-and-error 
algorithm to go from cartesian to parametric space. This can be time consuming. 
This problem is the same one faced by ray tracing rendering of curved 
surfaces IT]. 

We can solve the latter problem if we select points in parametric space rather 
than cartesian space. It is easy to transform from parametric space to cartesian 
space, but hard to invert the function. The first problem can be solved by using 
surface-curvature and tool-size information to calculate an irregular spacing 
between parameter values that greatly decreases the number of required points. 
Closer spacing is used in areas of high curvature. Therefore, a solution that solves 
both problems is to select points in irregularly spaced parametric coordinates 
rather than regularly spaced x - y  coordinates. Techniques for computing 
appropriate spac!ng and choosing points will be discussed in a later section. 

This solution creates a new problem. How can we compute efficiently which 
points lie under the cutting tool? The regular grid made it easy to compute the 
points from the tool location. If we only have a list of points in parametric 
coordinates we might have to check every point for every toolpath,  which is 
clearly unacceptable. Localization is required for efficiency. 

This problem can be solved by sorting the points into "buckets" based on their 
x - y  coordinates. Instead of our regular grid of sample points in x - y  space, we 
will have a regular grid of rectangles in x - y  space. These rectangles can be 
thought of as "buckets" containing sample points (see Figure 1). Where curvature 
is high and sample points are dense, each rectangle will contain many sample 

�9 points. Where the surface is fiat, each rectangle will contain few (possibly even 
zero) points. The points falling in a given rectangle will be stored in a linked list 
corresponding to that rectangle. A given tool path passes over a certain set of 
rectangles and all points lying within these rectangles must be examined. These 
rectangles are easy to compute, because their boundaries are a regular x - y  grid 
(see Figure 2). If their dimensions are comparable to the tool size the number 
of points not lying under the tool path but contained within the rectangles will 
be proportional to the number of points examined. They will be the points in 
rectangles that overlap the boundary of the cutting path which do not lie beneath 
the cutting path. We can roughly approximate the ratio of the unneeded points 
to needed points by the area of the parts of intersected rectangles lying outside 
the cutting path to the area of the cutting path. 
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B u c k e t s  i n  X - Y P l a n e  

Fig. 1. Points calculated in parameter space are sorted into buckets with regular x - y  spacing. 

s p h e r i c a l  
cut ter  

B u c k e t s  in  X - Y P l a n e  

Fig. 2. Projection of the shadow of  the cutting tool onto the buckets. Only points in those buckets 
are examined. 
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The calculation time is directly proportional to the number of  intersection 
calculations, a number that can be estimated by multiplying the projected area 
of the tool path on the x - y  plane times the point density. Therefore, run time 
grows linearly with the number of tool movements in the CL file, provided that 
the average tool movement length and point density remain relatively constant. 

3. Bounding Simulation Error. In order to simulate machining efficiently we 
must be able to choose points with proper spacing. The object of the simulation 
is to detect places where the surface is undercut by more than Ti or remaining 
material is higher than T O above the desired surface, where T~ and To are 
user-defined tolerances into and out of the surface. Deviations outside the toler- 
ance range are "cutting errors." Unfortunately, the discretization of  the surface 
makes it possible that cutting errors may be undetected. Our simulation may 
determine that the surface is within tolerance at every sample point, but there 
may be gouging or excess material at points where we did not sample. We call 
the distance that the cut surface can differ from the true surface without differences 
detectable at the sample points "simulation error." This section shows how 
sample-point spacing influences the simulation error. 

Our technique effectively replaces the entire surface by a sample of points 
whose cut values are computed. This approximation introduces simulation errors 
in three ways. First, our only representation of  the true surface is an interpolation 
based on the sample points. Effectively we have replaced the surface by a 
polyhedral approximation obtained by triangulating the points. This approxima- 
tion is not exact, so the true surface differs from the polyhedral approximation. 
These differences are a source of  error. Errors of  this type are reduced by choosing 
more sample points in areas of high curvature. The test for deciding if more 
points must be chosen in a given area is "is the distance between the interpolated 
surface and the true surface small in this region?" 

The second source of simulation error comes from the fact that we know the 
cut surface height only at the sample points. It may seem that this gives little 
information about other points on the surface, but this is not the case as long as 
the sample-point spacing is small compared with the radius of  the ball-end mill. 
In this case the ball locally appears almost fiat. The amount that the tool can 
protrude into the polyhedral surface without a cutting error being detected is a 
function of the tool radius and distance between points. If  the sample points are 
chosen correctly the height of excess material is a function of  the same two factors. 

A third type of simulation error comes from the fact that the differences between 
the Zcut and z of the surface is a vertical distance. The actual cutting error is 
the distance from the cut surface to the closest point on the desired surface. If  
the surface is nearly vertical, the difference between the closest point and the z 
distance can be quite large. The true shortest distance from a point to the desired 
surface will always be less than or equal to the distance in the z direction. 
Therefore this type of  simulation error will not cause any undetected cutting 
errors. Unfortunately, it can cause our program to warn that points are out of 
tolerance when in fact they are not. We are currently looking at postsimulation 
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analysis and other approaches to try to get a truer estimate of  the distance from 
the cut point to the desired surface than simply measuring the z distance. 

We desire to select points in a manner that allows us to bound the size of  the 
first two types of  simulation error. The next sections quantify bounds on each 
type of error. 

We note that other errors are introduced because our method does not exactly 
model the real-world cutting process. Tool movements in the CL files that our 
system is designed to use are described as parabolas. Some NC tools approximate 
these parabolas by line segments while others attempt to follow the parabolas 
exactly. We approximate the parabolas by line segments. We do not compute 
the effects of  deflections caused by forces acting on the cutting tool and workpiece. 
We do not simulate tool wear or tool runout. These limitations are independent 
of our method of representing a surface by discrete points. 

3.1. Distance Between Surface and Polyhedral Approximation. The first type of  
error, es, is the distance between the true surface and the polyhedron obtained 
by triangulating the points in our sample. It is the maximum distance from any 
point on the true surface to its nearest neighbor on the polyhedron. Each triangle 
has a region of points which are closer to it than to any other triangle, and the 
error for that triangle is the maximum distance from the triangle to any point in 
its region. Actually measuring this error requires analytical knowledge of  the 
particular surface definition technique and /or  numerical search techniques. It 
may be computationally easier to get some conservative bound on the error than 
to try to compute the exact error. (For example, a Brzier surface patch always 
lies within the convex hull of  its control points.) The methods depend strongly 
on the exact method of  representing the surface, and are beyond the scope of  
this paper. See, for instance, [BFK] for a survey of surface representations and 
subdivision algorithms. If  a "very high probability" of errors being detected is 
sufficient, this type of  error could be estimated by measuring the distance between 
the true surface and a number of  points on the triangle. This trades off guaranteed 
error bounds for implementation ease and efficiency. 

This is one of only two places that our algorithm needs information about the 
representation of the surface. It also needs to know how to map a (u, v) point 
in parameter space to an (x,) ;  z) point in object space. Thus our method reduces 
questions about the distances between cut surfaces and mathematical surfaces 
to questions about distances between triangles and mathematical surfaces and 
intersections between vertical rays and tool-movement envelopes. 

3.2. Tool Protrusion into the Polyhedral Approximation. We want to find out how 
far below the surface of  the polyhedral approximation the cutting tool can 
protrude without an error being detected at the vertices of  the polyhedron. We 
call this the protrusion error ep. We first derive a formula that will prove useful. 

LEMMA 1. Let S be a sphere with radius r and P be a plane cutting through S. 
Then the maximum distance between P and spherical cap cut off by P is 

h = r -  rv~- s 2, 

where s is the radius of  the spherical cap. 
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Fig. 3. Side view of sphere shows that the tool protrudes distance h for spherical cap of radius s. 

PROOF. Look at Figure 3 and apply the Pythagorean theorem. [] 

We use this fact to prove the following theorem: 

'THEOREM 1. Let TP be a triangulated polyhedron, no edge of  which is longer than 
d. Let S be a sphere of  radius r> d/x~3. The maximum distance that S can protrude 
beneath the surface of  TP without containing any vertices of  TP is 

ep = r - ~ / - ~ -  d2/3 

and this bound can be achieved for an equilateral triangle. 

PROOF. We want to show that any point on S that lies interior to TP lies within 
distance ep of one of TP's triangular faces. We do this by considering the ways 
that S can protrude beneath the surface of TP. Note that in general S may 
protrude through several different triangles of  TP. Our proof  examines each 
protrusion through a triangle and establishes that the protrusion cannot lead to 
a point of  S that is further than ep from the surface of TP. 

There are two cases to consider. The first is when c, the center of  the sphere, 
lies directly above a triangle through which it protrudes (in the sense that the 
closest point on the triangle to c is in the interior of  the triangle). The second 
case is when the closest point in the triangle to c lies on an edge between two 
triangles (so the ball is protruding through the edge rather than the face~. Figures 
4 and 5 show the two cases. 

Case 1. We want to find the deepest protrusion possible. This will be a "p roof  
by gravity." We first rotate the polyhedron and sphere so that the triangle we are 
protruding through is horizontal and see what the sphere does if we let it fall. I f  
the sphere touches no vertices, it will protrude further if it falls until it touches 
one. I f  it touches only one vertex, it will protrude deeper if it is allowed to fall 
further, pivoting at the vertex. This fall will continue until the ball touches a 
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c 

T 1 

(edge on) 

Fig. 4. Side view of ball and triangle T 1 . Center of the ball lies above T 1 . 

second vertex or its center moves from above the triangle. If  it touches a second 
vertex first, the ball will then pivot about the line between the vertices until it 
touches the third vertex or the center moves from above the triangle. 

If the center moves from above the triangle in either case, we will have found 
a deeper Case 2 protrusion, So the Case 2 bound will work for this case also. 
This happens on obtuse triangles. 

For acute triangles, the ball will be supported by the three vertices of the 
triangle and will have a spherical cap cut off by the plane of  the triangle. From 
Lemma 1 we see that the protrusion will be greatest when the spherical cap has 
the largest possible radius. This is equivalent to finding the acute triangle 
(maximum edge length d) that has the largest circumcircle. This occurs when 
the triangle is equilateral, and the radius of the circle will be s = d/x~3. Plugging 
this value for s into the formula from Lemma 1 gives the formula for ep. 

Case 2. If  the sphere is not touching two vertices, it will protrude deeper if it 
is moved so that it touches both endpoints Vl and v2 of the nearest edge to c (see 

e I (~ 
I 
I t, )T,,, 

T 2 %i / (edge on) I 

\ 

Fig. 5. Side view of ball and triangles T 1 and T 2. Center of the ball lies above neither triangle. 
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Figure 5). Let x be the point of intersection between the sphere and the radius 
that is perpendicular to vlv2. We construct a plane P tangent to the sphere at x. 
All points of  the sphere lie to one side of  P. Therefore the part of the sphere that 
protrudes through the triangles T1 and T2 does so within the triangular prism 
bounded by the plane P and the planes containing triangles 7"1 and T2. But no 
point in that prism is further than h from either the plane containing T~ or the 
plane containing T2, where h is the distance from x to edge v~v2. This distance 
can be computed from Lemma 1 by observing that the spherical cap cut off by 
a plane parallel to P through Vl and v2 has VlV2 as its diameter. The length of 
v~v2 is at most d. Plugging d /2  in the formula for this case gives us a bound of 

ep = r - x / r  2 -  d2/4, 

which is smaller than the bound from Case 1. [] 

In practice it is likely that th6 user will want to decide the allowable simulation 
error e -  ep+ es and the tool radius r, and then compute a value of d which will 
guarantee that simulation error is less than e. We therefore want to solve for d 
in terms of the user-defined values: 

(1) d = x/6rep- 3e 2. 

When ep is small with respect to r (which is usually the case), d can be 
(conservatively) approximated as 

d ~ ~ 6 - ~ p .  

This means that the spacing between points grows as the square root of both the 
radius of  the cutting tool and the simulation error allowed. The number of points 
is proportional to the inverse of the square of the distance between points. 
Therefore the number of  points (and thus cutting time) grows linearly in both 
the inverse of  the radius and the inverse of the desired accuracy. 

To give some feel for what this means, assume a cutting tool with a radius of 
1.0 and an allowable simulation error of 0.01. Then the spacing d between points 
can be as large as 0.245. I f  the allowable simulation error is reduced by a factor 
of  100 to 0.0001, then the spacing between points is reduced by a factor of 10 to 
0.0245. 

3.3. Computing Remaining Material. Another type of  error is the height of the 
material remaining above the plane of a triangle, which we call er. It is hard to 
get an absolute bound on er by looking only at the height of the sample points. 
The most difficuiL case is a steep tower with a flat top. The angle between the 
walls and the top is nearly 90 ~ . The cutter could approach the tower from the 
side and cut the entire edge of  the flat top to the correct height by cutting with 
the side of  the ball without cutting any material above the center of the flat top. 
All the edges would be exact, but the center would extend to the top of the stock. 
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If the fiat top were a single triangle in our approximation (or even a group of  
triangles with all vertices on the edge), the error above the center of the triangle 
could be unbounded. 

This situation can only occur when the angle between a triangle and some of 
the neighboring triangles is large. When a ball-end cutter cuts with its side its 
lowest point is far below the surface of  the triangle. It avoids gouging neighboring 
triangles only if they drop off steeply. One approach that we considered was 
examining the angles between a triangle and each of its neighbors. We still 
consider this to be a promising approach and are trying to find a way to get an 
appropriate bound using this approach. We hope to get a bound that will work 
for the vast majority of triangles, and then to use other techniques for those few 
triangles where all neighboring triangles form a large angle with the given triangle. 

The problem is simply that the cut height at the vertices gives too little 
information about what is happening over the center of  a triangle. One way to 
get more information is to add a sample point in the interior of  the triangle at 
the center of  the largest inscribed circle (in-center). 

To see how this helps, consider Figure 6. R S T  is a triangle and P is in its 
interior. Our goal is to cut R, S, T, and P to their correct height while leaving 
as much excess material as possible somewhere above RST. In other words, we 
want to find the placement of  a sphere touching P and not containing any of R, 
S, or T in its interior that maximizes the vertical distance from a point of R S T  
to the sphere. 

Our first observation is that the maximum height will always occur at a vertex 
of RST. We call the circular projection of the sphere onto the plane of  the triangle 
the "sphere's shadow." If  one of the vertices does not lie within the sphere's 
shadow, then the height above that vertex is infinite so will be a maximum. If  
all three vertices lie within the sphere's shadow, then all points in the triangle 
lie with the shadow by convexity of the circle and the triangle. The height of the 
sphere above any line segment lying within its shadow is a unimodal function, 
with a single minimum. Therefore local maxima of  this height function can only 
occur at endpoints of  segments, never in its interior. Any point in the triangle 
except a vertex is contained in the interior of  some segment lying in the triangle, 

Tq S C 

Fig. 6. Top view of ball and triangle with extra point in its interior. 
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T p ~  

Fig. 7. Side view of ball and triangle showing the height of remaining material above T. 

so cannot be a local maximum. This implies that the maximum height must occur 
at a vertex. 

We therefore can assume without loss of  generality that we want to cut P to 
the correct height while leaving as much material as possible above T. To do this 
we start with the ball touching P, and then tip it away from T until it touches R 
and S. C is the center of  the circle passing through R, S, and P. We can compute 
the height of  the ball above T if we can compute the two distances [CP[ (the 
radius of  the circle) and I CT]. 

Figure 7 shows the side view. The plane of the triangle cuts off a spherical cap 
of  the ball. The size of  the circle [CP] determines the height of  the spherical cap 
as was shown in Lemma 1. As we move out from this circle toward T, the ball 
rises above the plane. Its height above the plane when it gets to T is the difference 
in heights between spherical caps with radii ]CT] and I CP]. Applying Lemma 1, 
we get 

(2) e r =,/r ~ [ CPI 2 - , / r  2 _ I CTI 2. 

For a given triangle and a given interior point it is straightforward to compute 
these two lengths. However,  our goal here is to get an upper  bound on this height 
over all triangles. 

We can increase er in two ways. The first is to increase the difference between 
]CT t and ]CP[. The second is to increase ]CP[, the size of  the circle, so that we 
are out on a steeper part  of  the sphere. We increase ]CP] when we increase ]RS], 
when we move P nearer to the perpendicular  bisector of  RS while keeping it the 
same distance from RS, or when we reduce the distance from P to RS. 

The first three of  these methods can only increase er by a bounded amount. 
The difference between [ CT[ and I CP[ can be at most d, the maximum edge length 
in the polyhedron. [RS[ can be at most d. P can be moved so it sits on the 
perpendicular  bisector to R$. However, we can put P arbitrarily close to RS, 
thus making the circle arbitrarily large. I f  the radius of  the circle becomes larger 
than r, the radius of  the ball, there will be no bound on the height of  the material 
above T. (The ball can cut P from the side without touching R or $.) 
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S 

Fig. 8. Worst-case triangle for remaining material above T. 

This implies that we should choose P so it is far from any edge. The in-center 
is by definition the point farthest from its nearest edge. However, by making 
skinny triangles we can still force P arbitrarily close to RS. Therefore any bound 
we derive will have to take into account the "fatness" of the triangle. The "fatness" 
parameter that we use is 

S - -  
(distance of P from nearest edge) 

(length of longest edge) 

Figure 8 shows the worst possible triangle of fatness s, obtained by maximizing 
all factors simultaneously. IRS[ = d, T is distance d away from IRSI, and P is 
distance h = sd from R S  and is on its perpendicular bisector. In fact, this triangle 
cannot occur in our polyhedron, because edges R T  and R S  are longer than d. 
(There is a tradeott between maximizing IRS4 and maximizing the distance of T 
from RS.) However, a bound for this triangle is certainly worse than a bound 
for any acceptable triangle of fatness s. 

Some geometry and trigonometry give us the following edge lengths: 

ICQI = ( d 2 - 4 h 2 ) / 8 h ,  

ICPI = (d2 + 4h2)/Sh : (1 +4s2)d/(8s) = kid, 

I f r l  = (d  2 - 4 h 2 ) / 8 h  + d = (1 - 4s  2 + 8 s ) d / ( 8 s )  = k2d. 

The latter two lines substitute sd for h and then implicitly define the constants 
kl and k2. Plugging into the formula for er derived above gives 

e~ = ,Jr --~S- k2d 2 - x / r  2 - k2d 2. 

Solving for d in this formula gives 

2 2 2 2 2 2  2 2 2 2  
- e r ( k  I q- k2) + 2 e J k l k 2 e ~  + (k l  - k2) r 

d = (k 2_ k22)2 
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For e' small relative to r, this simplifies to 

(3) d -x/(2err) /[k  2 -  k~(:  x/-C~err 

for 

C = 8s/(1 +4s  - 4s2). 

We noted that this triangle cannot ever occur. The worst acceptable triangle 
appears to be similar to the one in Figure 8, but with the sides R T  and S T  
reduced to length d. The same calculations for this triangle give 

C = 16s/(4s + v /3-  4x~s2). 

(C = 2 for an equilateral triangle, and gets smaller as s decreases.) This growth 
rate has the same form as the gouging case, but the constant is worse. 

3.4. Combining the Errors To Obtain a Bound on Simulation Error. We have 
analyzed three types of errors: the separation distance e~, the protrusion distance 
ep, and remaining excess material height er. However, our goal is to find the 
overall simulation error introduced by a given set of points. We break this analysis 
into two parts. The first is ei, the amount that a cut point can lie inside the true 
surface even if all selected points are cut exactly. The second is eo, the amount 
that a cut point can lie outside the true surface even if all selected points are cut 
exactly. 

The maximum distance that the ball can protrude inside the surface is es+ ep, 
which occurs when the tool protrudes inside a triangle of the polyhedron and 
the surface lies outside the triangle, as shown in Figure 9(a). However, we can 
sometimes do better than this. If the surface lies completely inside the triangle 
of the polyhedron, then the protrusion distance and the separation distance can 
cancel, as shown in Figures 9(b) and (c). They certainly cannot combine. Therefore 
when we can prove that we are in this case, the appropriate formula is max(e~, ep). 
Therefore the error introduced by a given triangle is 

(4) 
e < ~max(es, ep) if the surface lies entirely inside the triangle, 

- [ es + ep otherwise. 

The bounds for eo are symmetric: 

(5) 
I max(es, er) if the surface lies entirely outside the triangle, 

e~ <: ( e s + e r otherwise. 

4. Method for Selecting Points.  The user choose s  bounds bi and bo as the 
maximum acceptable values of the errors el and Co. We want to select our points 
in a way that guarantees that e i - b i  and eo-< bo for all triangles. Our general 
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A p p r o x i m a t i o n  
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ting Tool 

e i -- e s 
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Points 

Fig. 9. Ways that ep and e s can interact to get e~. 

approach is to generate a triangulated polyhedron, all of whose vertices are on 
the surface. We then subdivide triangles into smaller triangles (again with all 
vertices on the surface) until the triangulation is good enough to guarantee the 
bounds using formulas (4) and (5). The vertices of the triangulation become our 
set of points. The triangles themselves play no part in the simulation (although 
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they are used to display the surface graphically). We first describe a method that 
guarantees that e~-< bi and eo <-bo. We then describe a method that uses many 
fewer points for the special case where we only guarantee that e~ < b i . 

4.1. Guarantee Both Protrusion and Excess Material Bounds. The analyses of 
both protrusion and excess material express the error in terms of the longest side 
of the triangle. In both cases the closer our triangles are to equilateral, the fewer 
points we will need to achieve given bounds on protrusion and excess material. 
(This is especially true for the excess material bounds, because of the "fatness" 
parameter.) Therefore we want our initial triangulation to consist of nearly 
equilateral triangles, and ideally each triangle will just barely pass the appropriate 
error test. For those that do not, we want a subdivision method which breaks 
nearly equilateral triangles into smaller triangles that are still nearly equilateral. 

How long should the edges of the nearly equilateral triangles in the initial 
triangulated polyhedron be? Formulas (1) and (3) can be used to get an estimate 
on an edge length d that will guarantee that both ep_< bi and e r -  bo. (Formula 
(1) is easy to use, but formula (3) requires an estimate of the fatness parameter. 
However, if we are optimistic and simply use C--2 ,  no real harm is done. The 
program will later subdivide triangles that are not small enough.) By choosing 
an edge length a bit shorter than this d, most of the triangles in relatively flat 
areas will need no further subdivision (because es will be small). 

The triangulation is actually generated in parameter space and then mapped 
into object space to avoid having to invert the mapping from parameter space 
to object space. A unit square in parameter space is mapped onto a bounded 
surface patch in object space. We initially triangulate each patch so that the 
triangles in object space will all be t he  same size and nearly equilateral. As 
illustrated in Figure 10, we start by dividing each patch's parameter space into 
strips. Each strip is initially triangulated so that the object-space triangles are as 
close to equilateral as possible and have sides less than 95% of the d calculated 
from formulas (1) and (3). To avoid creating excess points each strip is initially 
triangulated so that the vertices of triangles on adjacent strips coincide. 

Fig. 10. Surface is triangulated by dividing the patch into strips of equal-sized triangles. 
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(a) (b) (c) 

Fig. 11. Subdivision of triangles by subdividing three sides (a), two sides (b), and one side (c). 

To perform the subdivision described in the preceding paragraph we estimate 
the width and length of the patch in cartesian space (by measuring the distances 
between the corners of  the patch) and use this information to decide how many 
strips are needed and how many triangles can fit within each strip. We then divide 
the patch into that many equal-sized strips, and divide each strip into the right 
number of  equal-sized triangles. 

For each triangle we apply a testing routine to see if it meets the error bound. 
This routine first tests to see if the triangle satisfies error bounds in formulas (4) 
and (5). If  it does, then the routine adds a point at the in-center of the triangle 
(needed for the excess material bound to work) and returns. 

If the triangle does not meet its error bound, then it must be subdivided. Do 
this by barycentrically subdividing it (connect the midpoints of  the three sides 
in parameter space as shown in Figure 11 (a)). The barycentric subdivision divides 
one triangle into four similar triangles of half the size, so it meets the requirement 
that nearly equilateral triangles be divided into smaller triangles that. are still 
nearly equilateral. Then recursively apply the testing routine to each of the four 
subtriangles to see if it meets the error bound (and subdivide it if  it does not). 
When the procedure finishes its recursive calls, all triangles meet the error bounds. 

This method of doing all subdivisions in parameter space is computationally 
easy to perform, but it depends strongly on the fact that equal-sized triangles in 
parameter space usually map into equal-sized triangles in cartesian space. 
Automobile body parts appear to meet this requirement, so it works well for our 
specific application. If  the surfaces were not as well behaved an iterative method 
might be required to obtain the nearly equilateral triangles in the initial subdivision 
and to make the barycentric subdivision divide a triangle into four approximately 
equal-sized subtriangles. 

4.2. Guaranteeing Only Protrusion Bounds. Guaranteeing excess material 
bounds using our current analysis requires many more points than guaranteeing 
protrusion bounds. The d value computed by formula (1) is at least v~  larger 
than the d value computed by formula (3), if bi = bo. Reducing triangle size by 
this amount approximately triples the number of  triangles. Because most points 
are shared by six triangles while only three points appear in each triangle, the 
number of triangles is about double the number of points. This means that adding 
a point to the center of each triangle approximately triples the number of points. 
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Therefore we can get by with fewer points if we only guarantee ei and have no 
provable bound on eo. 

There is the potential for further savings. When the object is a cylinder or a 
similar shape with high curvature in one direction and low curvature in the other 
direction, triangles that are long in the direction of low curvature but narrow in 
the direction of high curvature can approximate the surface very closely. Fewer 
of these long, narrow triangles are required to closely approximate the surface 
than of  the nearly equilateral triangles produced by barycentric subdivision. 

Because the bound on e r depends on a fatness parameter, breaking up a fat 
triangle into long, skinny triangles with the same maximum edge length as the 
original can cause er to increase. Therefore we had to keep the triangles nearly 
equilateral. However, splitting a fat triangle into long, skinny triangles with the 
same maximum edge length as the original does not increase ep. This observation 
leads to the following modifications of the subdivision algorithm: 

(1) Generate the original triangulation as described in Section 4.1, but use only 
formula (1) to determine d. 

(2) For the recurs~ve error bounds test routine, test the triangle to see if it passes 
the error bounds test in (4). If  it passes, then the routine returns. 

Otherwise we want to determine if the problem is with ep or with es. If ep is 
larger than bi or only slightly smaller, then ep is the problem and we barycentrically 
subdivide the triangle as before, Otherwise we are trying to reduce es, and dividing 
all three sides may not be necessary. 

Generate the (parametric) midpoint of  each edge and find the distance from 
that midpoint to the surface. If  that distance plus ep is smaller than bi then that 
edge is not a problem. Subdivide only those edges that fail this test. The sub- 
divisions for three, two, and one edges are shown in Figure 11. (If  all three edges 
pass the test while the triangle as a whole fails, then it is not clear which edge 
is the problem. Barycentrically subdivide in this case.) Recursively apply this 
error bounds test to each subtriangle. 

The amount that nonbarycentric subdivision reduces the number of points 
required to simulate milling depends on the shape of the object. For a trunk lid 
example discussed in the next section, it reduced the number of points by a factor 
of two. 

This analysis shows that it would be extremely useful to find a method for 
bounding excess material that did not add extra points in the in-center of triangles 
and did not require fat triangles. 

5. Current Cutting-Simulation System. Our current cutting simulation imple- 
ments the system described in Section 4.2. We decided that the benefit of a 
guaranteed bound on excess material was not worth the extra run time. If that 
judgment changed, it would not be difficult to modify the program to follow the 
algorithm in Section 4.1. 

We do not analytically calculate es. Ford's surface representation scheme is 
both very complex and proprietary. Therefore we did not consider it worth the 
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Table 1. Cutting simulation system performance for four test cases. Results show the number of 
points and the CPU minutes on a SUN III/160 workstation for four different user-specified accuracies. 

Tool movements Maximum simulation error in mm (in.) 

Patches Parabolic Linear 2.5 (0.1) 0.75 (0.029) 0.33 (0.013) 0.25 (0.01) 

Trunk 20 3,500 18,855 Points 2,301 8,315 16,667 23,824 
Minutes 4.1 11.0 19.2 28.1 

Bumper 263 8,100 45,411 Points 7,172 17,363 34,815 46,871 
Minutes 12.0 21.4 39.6 49.7 

Handle 100 4,500 27,883 Points 1,889 4,518 9,091 11,177 
Minutes 4.7 7.5 i2.6 15.0 

Hood 24 700 5,765 Points 956 3,550 7,421 10,026 
Minutes 3.5 9.9 17.2 23.2 

effort to derive a guaranteed bound, we  chose to implement a heuristic based 
on a sampling of points. This technique has proven adequate for the well-behaved 
surfaces used in automotive styling but may not be generally applicable. We test 
the perpendicular distance from the triangle to the surface at the midpoint of 
each edge and at a point in the center of the triangle (where the midpoints and 
center were computed in parameter space). The maximum of these distances is 
our estimate for es. If  all the points lie above or below the triangle, we decide 
that the surface lies above or below the triangle for the purpose of  the error 
bounds test. Despite the fact that these tests do not guarantee that the surface is 
really close to the triangle they appear to be a good heuristic. In fact, for our 
sample surfaces we very rarely found a case where including the point in the 
center of  the triangle caused a different result for an error bounds test than just 
using the midpoints of the edges. We therefore slightly reduced our run time by 
eliminating the center test. 

We tested the system on actual NC program files supplied by the Ford Motor 
Company. Table 1 shows results for four simulations done with different accuracy 
requirements. The four files cut the dies for a trunk lid, a bumper, a door handle, 

and a hood. The maximum possible simulation errors shown are for worst-case 
gouging errors using a ball-end tool. The radii of the tools were determined by 
the tool sizes requested in the files: 50 mm for the trunk, 10 mm for the bumper, 
4 mm for the handle, and 38 mm for the hood. The time to generate the surface 
points was generally 10-20% of the total time required for the simulation. The 
table shows the number of surface patches in the design file, the number of 
parabolic tool movements in the file, and the number of  linear tool movements 
derived from the parabolic movements. The linearization of parabolic tool 
movements was accurate to within 0.0254 mm (0.001 inches). 

6. Further Modifications: Deal with Triangles Rather than Points. The approach 
above keeps track of only points. We generated triangles in the process of 
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subdividing the surface, but we do not use them (although we will keep triangles 
in order to graphically display the surface). This section explores ways of using 
the triangle information to reduce the number  of  points chosen and speed up 
the algorithm. We are planning to implement these methods to see if they are 
faster than the ones described above. 

6.1. An Alternate Way To Find Excess Material. The approach described above 
for detecting excess material has its drawbacks. First, the d value needed to 
detect this type of error is smaller than the d value needed to detect gouging for 
the same allowed error. Second, the number  of  center points added to triangles 
is large. This may prove to be an expensive way to test for a type of error that 
is probably less frequent than gouging. (It can only come from miscomputing or 
missing a tool path, not from interference from other patches.) Points from 
adjacent triangles should help, b u t  we are still trying to find how to use them 
effectively. 

Therefore we propose a different approach.  For each triangle in the approxima- 
tion we will find either a small number  of  cutting paths that remove all excess 
material above that triangle or else a point above which excess material remains. 
Either way we will know for certain if the triangle has excess material remaining 
above it. 

Our method depends on the fact that after the simulation we know both the 
Zcut height at each sample point and the cutting-tool movement  that cut that 
sample point most deeply. I f  any vertex of a triangle has a Zcut height which is 
too high, that point is out of  tolerance. I f  not, we will test the interior of  the 
triangle. The three tool movements  that cut the three vertices of  the triangle most 
deeply probably remove all excess material above the triangle. We test this by 
direct computation.  (The test involves finding the intersection of  the three tool  
movements  with a translated copy of the triangle lifted above the original triangle 
by a distance equal to the allowed error. Often a single movement  most deeply 
cuts more than one vertex of the triangle. In this case fewer than three intersections 
need to be done.) 

I f  the three cuts eliminate all excess material, the test is done. I f  they do not, 
that triangle may still be in tolerance. A cut which passed over the center of  the 
triangle but was not the deepest cut at any vertex may have eliminated the 
apparent  excess material. To eliminate these "false positives," we generate a new 
point in the area that appears  to have excess material remaining. The new points 
generated by all out-of-tolerance triangles become a new sample of  points and 
the cutting simulation is run on just these points. I f  any point is out of  tolerance, 
so is its triangle. I f  not, a new cut has been discovered, and it can be added to 
the set of  movements  that removed material from the triangle. I f  this new cut 
eliminates the remaining excess material, we are done. Otherwise the process is 
repeated. Since we repeat only when we discover a cut not in our set of  movements 
that removed material f rom the triangle, the process terminates when we run out 
of  tool paths over the triangle. 

Note that during the simulation of tool movements we are dealing only with 
points. It is only when that part  is done that we must deal with the more complex 



56 R.L. Drysdale, III, R. B. Jerard, B. Schaudt, and K. Hauck 

intersections of cutting paths with triangles. Furthermore, intersecting with 
triangles will be much faster than intersecting with the exact representation of  
the surface. 

6.2. An Alternate Way To Detect Gouging. Large triangles can accurately 
approximate flat surfaces. However, to detect gouging we must make the triangles 
fairly small. It would be convenient if the larger triangles could be used. 

The method suggested above for excess material detection is not adequate for 
detecting gouging. This is because of a basic asymmetry between detecting excess 
material and detecting gouging. If excess material is removed by a cut, the material 
is gone. Subsequent cuts cannot restore the excess material. Therefore when we 
find a set of cuts that eliminates all excess material, we are done. On the other 
hand, when a surface is ungouged, any subsequent cut may gouge it. Therefore 
all cuts above a surface must be tested to guarantee that there is no gouging. 

However, a modification of the excess material approach will work and may 
help. In the recursive subdivision step, split a triangle only if it is too far from 
the surface (i.e., test for es and ignore ep). Instead of  remembering only the 
points, remember the triangles also. When the tool passes over a triangle, "cut"  
the triangle by finding the deepest penetration of the tool below its surface. By 
remembering this information for each triangle, we can keep track of gouges 
even for huge triangles. (We need only save the depth of  the gouge and the tool 
movement number, not the location where the gouge occurred.) The code for 
intersecting the tool and the triangle is more complex than for computing the z 
height of a point, so each individual computation would be more expensive. 
However, if the triangles are large enough the time savings may be worth the 
effort. (In theory it would be better still to intersect the tool with the actual 
mathematical surface, but this is a much more difficult computation than inter- 
secting the tool with a triangle.) 

7. Other Modifications 

7.1. Improved Bucketing Strategy. The method of "bucketing" for determining 
which points to  examine has proven to be quite efficient, but even larger savings 
are possible. A ball-end mill making final cuts will usually only be cutting with 
a small portion of its surface. Therefore it will pass over a number of  points 
without actually cutting them. To avoid examining buckets where no Zcut values 
will change it is possible to store for each bucket the maximum Zcut value 
associated with any point in the bucket. Given the borders of  the bucket and the 
cutting tool path, we can compute the minimum z height of  any part of the tool 
over the bucket. If this minimum z height is higher than the maximum z value 
in the bucket, no points in the bucket need be examined. Otherwise the points 
in the bucket should be cut and a new maximum computed. In areas where the 
buckets are small and the point density is high, this could save a lot of  computation. 
In areas where the point density is low, it might be faster to test the points than 
compute the minimum z height over the bucket. The choice could be made 
depending on the number of points in the bucket. 
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7.2. Simulating Flat-end and Torodial-end Cutting Tools. The error analysis is 
quite dependent  on the Shape of the ball-end mill. With a fiat-end mill (a cylinder), 
no upper  bound on the amount  of  excess material left is possible if we examine 
only the heights of  points in the sample. This is because the mill has a sharp 
edge and vertical sides. No matter how close together the sample points are on 
a perfectly flat surface, it is possible to cut into each corner of  some triangle 
from the outside, leaving an arbitrarily high spike in the middle. (We can guarante e 
that no such spike is thicker than d, the maximum point separation.) However, 
our alternate method would work as well for fiat-end cutters as for ball-end ones. 

The amount  of  undercutting can at least be bounded,  but the bound is not as 
good as for a ball-end mill. The problem is again the sharp edge of the mill. I f  
the mill approaches a long, skinny triangle that is slanted at a 45 ~ angle, it can 
cut depth d /2  from the surface of the triangle without gouging any vertices (see 
Figure 12). Therefore in this case e = d/2  and d = 2e. This implies that the number  
of  points grows quadratically as the inverse of  the desired error, which is much 
worse than linear growth. 

A toroidal-end (also called fillet-end) cutting tool is a cylinder with a rounded 
edge. Two parameters are needed to specify such a cutter shape, the cylindrical 
radius R and the edge radius r. The amount  of  gouging and excess material is a 
function of both radii, but the worst case is when R = r. In this case the mill is 
simply a ball-end mill! From Theorem 1, we saw that the error can be at most 

ep = r - x/-~- d2/3. 

Increasing R reduces the curvature in one direction, which reduces the amount  
that the tool can protrude through a triangle. A similar argument shows that 
increasing the radius of  R decreases the bound on undetected excess material. 
This means that the bounds derived above for the ball-end mill apply directly to 
the toroidal-end mill, as long as we use the edge radius r in those formulas. 

In fact, this estimate is fairly tight. As the ratio R / r  approaches infinity the 
rounded edge looks locally like the side of  a cylinder. The argument in Case 2 

Cutter ~ Surface 

Fig. 12. Maximum error due to protrusion of a cylindrical cutter through a triangle. 
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of the proof  of  Theorem 1 shows that the side of  a cylinder can cause a gouge 
as deep as 

ep = r -x / r  2 -  d2/4. 

This means that changing the value of R can at most decrease the d2/3 in the 
formula for ep to d2/4. 

7.3. Parallel Algorithms. Our technique is still quite CPU intensive. However, 
the general approach lends itself very nicely to parallel processing. This is because 
the sample points can be processed independently in arbitrary order. In particular, 
if each point had its own processor an entire cutting tool movement  could be 
performed in constant time. I f  material removal rate is not being computed,  the 
movements in the CL file can also be processed in arbitrary order. Parallelism 
can be used in generating the set of  points as well as in running the simulation. 
(Each of the triangles to be tested for subdivision could be assigned a different 
processor.) Bucketing was added for efficiency and would become unnecessary 
if every point had its own processor. 

With some additional effort the true normal could be used for each point 
instead of  the z distance. The tool-movement-envelope calculation would be only 
slightly more complicated than the current method if we are dealing with 3-axis 
machining. The standard Z buffer would no longer be adequate because a vector 
could enter and leave the object several times. However, Wang's extended Z 
buffer would solve this problem [WW]. 

8. Future Work. Our first areas of work are the obvious ones of  exploring more 
efficient simulation techniques, better point-selection techniques, and better 
bounds. We want to find where our current approach can be improved and make 
it better. In particular, we want to find a better method for bounding the amount 
of  excess material that uses adjacent triangles rather than additional points. We 
also want to explore ways of reducing the amount that we overestimate errors 
due to the fact that we measure distances in the z direction rather than normal 
to the surface. 

Next, we would like to extend our method to handle 5-axis machining. A major 
drawback to our approach is that it can only handle surfaces which can be 
oriented so that the surface is a function in x and y. That is, there can only be 
a single z height for any (x, y) coordinate. For 3-axis machining this is not usually 
a problem, because this is normally the only type of surface that a 3-axis mill 
can cut. However,  5-axis machines can mill ledges, horizontal holes, and other 
shapes which cause the cut object to have multiple z values for a single (x, y) value. 

There are three basic difficulties with extending our method so that it can 
handle 5-axis machines. The first is that a simple Z buffer is no longer sufficient, 
because a vector can enter and leave the object several times. Fortunately, Wang's 
extended Z buffer is designed to handle this problem [WW]. 

The second difficulty is that a 5-axis milling tool sweeps out a much more 
complex envelope than a 3-axis mill, because its orientation can change as it 
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moves. We need to find the intersection of a vector with this more complex 
envelope. Wang's  method of approximating the volume by a polyhedron is one 
approach,  but we would like to consider other approaches as well. 

The third problem is localization. Our bucketing strategy depends on all vectors 
being parallel. We can continue to use this strategy if we use Wang's extended 
Z buffer. However,  our simulation would be more accurate if we were able to 
use normal vectors instead of having all vectors point in a single direction. In 
this case our bucketing strategy then breaks down completely. (Note that for a 
parallel 5-axis simulation this is not a problem, because we no longer need to 
localize.) 

One approach that we are considering is to use "approximate  normals." Instead 
of  having one extended Z buffer with a single Z direction, we could have a 
number  of  buffers. Each would choose a different direction as its Z direction. 
For example,  we could use three extended Z buffers, one with its vectors parallel 
to the X axis, one with its vectors parallel to the Y axis, and a third with its 
vectors parallel to the Z axis. A point would be placed into a bucket in only one 
of the buffers. The one chosen would be the one whose Z direction was closest 
to the normal direction for the point. By increasing the number  of  extended Z 
buffers, we could guarantee that the angle between the true normal and the 
"approximate  normal"  used by its extended Z buffer was small. 
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