
Algorithmica (1989) 4:3-32 Algorithmica
�9 1989 Springer-Verlag New York Inc.

Primitives for the Manipulation of Three-Dimensional
Subdivisions I

David P. Dobkin 2 and Michael J. Laszlo 3

Abstract. Algorithms for manipulating three-dimensional cell complexes are seldom implemented
due to the lack of a suitable data structure for representing them. Such a data structure is proposed
here along with the primitive operations necessary to make it useful. Applications of the structure
are also given.

Key Words. Three-dimensional cell complexes, Data structures, Computational geometry.

I. Introduction. A major impediment to the implementation of algorithms that
manipulate three-dimensional cell complexes and subdivisions is the lack of a
suitable data structure. What is needed is a data structure powerful enough to
model such objects yet simple enough to allow their manipulation in well-defined
ways. We focus attention here on the development of such a data structure. Our
structure is analogous (though one dimension higher) to the winged-edge [Ba],
[BHS], [EW] and quad-edge [GS] data structures which are widely accepted for
modeling 2-manifolds. Just as these structures can be used to represent both
planar polygonal cell complexes in R 2 and surfaces of polyhedra, our data
structure can model polyhedral complexes in R 3 and surfaces of 4-polyhedra.

Our results can be viewed as similar to the work done by Guibas and Stolfi in
deriving the quad-edge structure. Lifting the results one dimension higher
increases the complexity of our data structure. They consider an edge as their
atom, and consider the edge rings to which it belongs. We consider a polygon-edge
pair as an atom, and consider the polygon ring and edge ring to which it belongs.
The quad-edge atom could be considered to connect two vertices and two
polygons. Similarly, our atom connects two vertices and two polyhedra. We
simplify our structure by treating only complexes that are orientable, and whose
cells do not puncture the interior of other cells.

There are numerous applications we envision for such a data structure. One
application we consider is that of decomposing a polyhedron into tetrahedra
[WS]. We rederive and model one of his applications in our system. A second
application we consider is the implementation of an algorithm for incrementally

This work was supported in part by the National Science Foundation under Grant No. DCR85-05517.
2 Department of Computer Science, Princeton University, Princeton, NJ 08544, USA.
3 Department of Electrical Engineering and Computer Science, University of Illinois at Chicago,
Chicago, ILL 60680, USA.

Received April 15, 1987; revised March 14, 1988. Communicated by Chee-Keng Yap.

4 D.P. Dobkin and M. J. Laszlo

computing the Delaunay triangulation of a three-dimensional point set [AB],
[Bh]. Further applications are also possible. For one, our data structure provides
an ~ approach to an efficient divide-and-conquer algorithm for building three-
dimensional Voronoi diagrams. A second possibility is for modeling the motion
of a three-dimensional polyhedron through time, which can be viewed as a
four-dimensional polyhedron (in x, y, z, t space) where hidden surface removal
is done by projecting into x, y, t space and taking t cross-sections to determine
individual scenes.

What we attempt to achieve in this paper is a blend between a derivation of
the data structure and a small set of primitive operators for its manipulation, the
development of macro operations f rom these primitives, and the use of these
macros in the first two applications mentioned above. The results of this paper
are implementable (see [La] for details).

2. Definitions and Prerequisites. In this section we define the class of objects to
be manipulated by our data structure. It is assumed the reader is familiar with
some basic concepts of point-set topology.

2.1. Basic Definitions. Where T is a topological space, a k-cell is a subspace
of T whose interior is homeomorphic to R k, and whose boundary is nonnull. In
this paper we assume that T- - g 3, though our results hold for more general T.
W e call a 0-cell a vertex, a 1-cell an edge, a 2-cell a polygon or a facet, and a
3-cell a polyhedron. Note that a cell may be unbotmded; for instance, an edge
can be a closed segment (bounded by two vertices) or a ray (bounded by one
vedex).

A cell complex of T is a finite collection C of cells of T such that:

(i) the relative interiors of cells of C are pairwise disjoint,
(ii) for each cell c c C, the boundary bd c of cell c is the union of elements

of C,
(iii) if c, d e C and c c~ d ~ O, then c r~ d is the union of elements of C.

We let ~//(C) be the union of the cells of C, and consider C a subdivision of
~//(C). An n-dimensional complex for which every k-cell is contained in (the
boundary of) some n-cell is called an n-complex.

The combinatorial boundary of cell c of C, denoted Oc, is defined to be the
set of cells of C contained in bd c. Note that ~l(Oc) = b d c. The combinatorial
boundary OC of complex C is defined as the set of cells of C contained in
bd ~//(C). An open cell d c c is said to be a face of c; if in addition c ~ d, then
d is a proper face of c. I f one of c or d is a proper face of the other, c and d
are said to be incident. For instance, a polyhedron is incident with each vertex,
edge, and facet that lies in its boundary. The star of a cell c, denoted star c, is
the subset of C consisting of the cells of which c is a face.

Given n-complex C, by convention these exists one (null) (n + 1)-cell of which
every n-cell of C is a face; likewise there exists one (null)(-1)-cell which is a
face of every vertex. Distinct k-cells c and d (for 0 - < k - n) are then said to be

Primitives for the Manipulation of Three-Dimensional Subdivisions 5

adjacent if (i) there exists some (k - 1)-cell of C that is a face of both c and d,
and (ii) there exists some (k + 1)-cell of C of which each of c and d is a face.
For instance, two vertices connected by an edge are adjacent; in addition, two
facets incident to the same polyhedron and the same edge are adjacent.

2.2. Space-Duality. The space-dual of a complex C of space T is a second
complex C* of T for which there exists a one-to-one mapping �9 from C onto
C* such that:

(i) the image of a k-cell under �9 is an (n - k)-cell, and
(ii) cells c and d are adjacent in C iff cells ~ (c) and ~ (d) are adjacent in C*.

In particular, with respect to 3-complexes C and C*, each vertex (edge) of
one corresponds to a polyhedron (facet) of the other, and adjacency relations
between cells are preserved. The space-dual of cell c, denoted c*, is that cell
which corresponds to c under ~ .

The complex C* space-dual to C is by no means unique. However, up to the
topological property which we intend our data structure to represent--adjacency
relations between cel ls-- the numerous complexes that serve as space-dual to C
in T are identical. For our puposes, C* is well defined. Furthermore, (C*)* = C.

The 3-complexes treated in this paper are regarded as subdivisions of the
three-dimensional sphere S 3= {(x, y, z, w)llx2+y2+ z2+ w 2= 1}, which is R 3 plus
a point at infinity. A subdivision C of the closed ball D 3 is obtained by omitting
one 3-cell c. The space-dual C*, a subdivision of R 3, is obtained by ornitting the
vertex c* from S 3.

3. Traversal Functions. In this section we present the five traversal functions
Fnext, Enext, Spin, Clock, and Sdual. We call these traversal functions because
they provide the means of traversing or moving about the cells of a complex.
The first two traversal functions are used to move from cell to adjacent cell. Spin
and Clock are used to change a local sense of rotation, so Fnext and Enext know
the direction in which each is to traverse. The function Sdual is used to move
between a complex and its space-dual. Since edges and facets interchange in the
space-dual, the roles of Fnext and Enext are interchanged in going between C
and C*.

3.1. Basic Traversal Functions. Let f be a facet of complex C. The combinatorial
boundary o f f contains a ring of edges e ~ �9 .e n-1 where edges e i and e i+1 are
adjacent in C (addition modulo n). We call this ring, denoted gy, the edge-ring
of facet f. gy can be assigned either of two senses of rotation whereby we can
distinguish between the two edges belonging to the ring that are adjacent to edge
e ~. The particular sense of rotation assigned to gf is called the orientation of
facet f We write ~f = (e ~ �9 �9 �9 e "-1) to indicate the edge-ring with sense of rotation

6 D.P. Dobkin and M. J. Laszlo

such that, of the two edges e i-I and e i+1 of ~qf adjacent to e ~, e i-1 precedes and
e i+1 follows, edge e ~.

Similarly we define the facet-ring of edge e, denoted o%e, to be the ring of facets
0%~ = (f o . . . f m - 1) incident to e in C. Facets f ~-~ a n d f i+1 of Jze are adjacent to
facet f i , and f i -1 precedes, while f~+l follows, facet f~.

The atomic unit on which queries are formulated is called a facet-edge pair.
This is a pair consisting of a facet f and an edge e, such that f and e are incident.
The edge component e of a is denoted ea, and the facet component f of a is
denoted f~. The facet-edge pair a determines two rings in C, these being edge-ring
~jo and facet-ring O~e: There are four versions of a which derive from the two
senses of rotation that each of its two rings can assume. Henceforth by facet-edge
pair we mean one such version--each of the two rings determined by the facet-edge
pair has a fixed sense of rotation. ~a denotes the edge-ring ~yo with sense of
notation determined by a; facet-ring o%a is similarly defined.

Given facet-edge pair a, it is useful to distinguish between the two vertices
incident to ea (its endpoints), and between the two polyhedra incident to f , . To
distinguish between the endpoints, observe that the orientation of ~a directs edge
e, in a natural way. We call that vertex which serves as the endpoint both to ea
and to the edge that precedes ea in ~,, the origin of e,, denoted aOrg. Similarly,
the destination aDest of e, is that vertex incident both to e, and to the edge that
follows ea in ~f,.

To distinguish between the polyhedra incident to f~, we assume edge e~
possesses a sense of rotation, called the spin of a. When the edge is viewed from
destination toward origin, its spin is left-handed (right-handed) if its sense of
rotation appears clockwise (counterclockwise). Where the spin of a is left-handed
(right-handed), we define H~ + to be that open half-space determined by facet fa
from which the orientation of ~, appears clockwise (counterclockwise). We then
define the positive polyhedron of a, denoted aPpos, to be that polyhedron p of
C incident to f~ for which points of the interior of p arbitrarily close to the
relative interior o f f , lie in H~ +. The negative polyhedron aPneg of a is the other
polyhedron of C incident to f , . Figure 1 illustrates some of the definitions
presented so far in this section.

We are now able to define the traversal functions Fnext, Enext, Spin, and Clock.
Each is applied to some facet-edge pair and returns a new facet-edge pair.

Fnext is defined by a ' = aFnext where e~, = ea and facet fa , follows f~ in the
facet-ring 0%0- The sense of rotation in the rings of 0%,, is assigned so that ~ , = 0%a
and a'Org = aOrg. In particular, a and a' have the same spin.

Enext is defined by a' = aEnext where f~, =fa and edge ea, follows edge e, in
the edge-ring ~ . The rings of a' are directed so that ~ , = ~a and a'Ppos = aPpos.
Observe that a and a' necessarily have the same orientation.

Spin is defined by a ' = aSpin where a' and a are different versions of the same
facet-edge pair - - that is, e,, = e~ and f , , = f , - - f o r which the sense of rotation of
0%a' is opposite that of ffa, and the senses of rotation of ~,, and ~ are the same.

Clock is defined by a ' = aClock where a' and a are different versions of the
same facet-edge pair, for which the senses of rotation of ~,, and ~ , are opposite
those of ~a and 0%~, respectively.

Primitives for the Manipulation of Three-Dimensional Subdivisions 7

e ~ aDest

e 3

aOrg

Fig. 1. We call this a handcuff diagram. It pictures a region of some complex. The "handcuff"
represents facet-edge pair a. The placement and direction of its circular loop indicates the clocked
facet component fa, and its elliptical loop the space-oriented edge component e a. In this example,
~ = (f o . . . f3) and ~a = (e ~ eS), where fa = f o and e a = e ~ Polyhedron aPpos lies above the
page and contains facets f o and f l , while aPneg lies behind the page and contains f 0 and f3.

Figure 2 illustrates these various traversal functions. Traversal functions Spin
and Clock can be viewed as follows. Let a be a facet-edge pair with orientation
and spin. The effect of Spin is to reverse spin. This reverses the sense of rotation
in the facet=ring. The effect of Clock is to reverse orientation. This reverses the
direction of edge ea, as well as the sense of rotation in both facet- and edge-rings.
Each of the four versions of a facet-edge pair has unique orientation and spin.
Its orientation and spin are used as handles to manipulate the sense of rotation
in its two rings.

o ,,ext G ') ' " (") a ex,

aClock

aSpin

Fig. 2. This handcuff diagram illustrates the four traversal functions Clock, Spin, Fnext, and Enext.
The region pictured is a winged-edge, consisting of five edges and (part of) two facets (to the left
and right of the vertically drawn line). We assume these two facets to belong to a common polyhedron
that lies behind the plane of the page, this being aPpos in this figure.

8 D.P. Dobkin and M. J. Laszlo

Traversal functions F n e x t and Enex t enable us to move from facet-edge pair
to adjacent facet-edge pair. Facet-edge pairs a and b are said to be adjacent if
either:

(i) f~ andJ~ are adjacent in the facet-ring ff~ (=fib),
(ii) e, and eb are adjacent in the edge-ring ~ (= ~b).

The facet-edge pair a is adjacent to the facet-edge pairs aFnext , a F n e x t -1, aEnex t ,

and a E n e x t -~.

The following relations hold among the traversal functions:

(A1)
(A2)
(A3)
(A4)
(A5)
(A6)
(A7)
(A8)
(A9)

(A10)
(Al l)
(A12)
(A13)
(A14)

aSpin 2= a.

aC lock 2 = a.

aSp inClock = aClockSpin .

a F n e x t - ~ = aClockFnex tClock .

a F n e x t -1 = aSpinFnextSpin .

a E n e x t -1 = aClockEnex tC lock .

a E n e x t -1 = aClockSp inEnex tClockSp in .

a C l o c k F n e x t i ~ a for any i.
a S p i n E n e x t ~ # a for any i.
a C l o c k E n e x t ~ # a for any i.
aSpinFnex, t ~ # a for any i.
a ~ C iff a F n e x t ~ C.

a c C iff aClock ~ C.

a ~ C iff aSpin ~ C.

3.2. Space-Dual i ty . The traversal function Sdua l is applied to a facet-edge pair
a of complex C, and returns a second facet-edge pair aSdua l belonging to C*.
The edge component of a S d u a l is easd,a~ = f ~ , and its facet component iSfasduaZ =

e~. In order to define the particular version of a S d u a l - - t h a t is, the sense of
rotation of its two rings--we first extend the notion of space-duality to facet-
and edge-rings.

Given edge-ring ~ = (e ~ �9 �9 e~ -1) of C, its space-dual is the facet-ring (~,)* =
(e ~ �9 �9 e,~ -1.) of C*. The space-dual of a facet-ring is similarly defined. The rings
of aSdua l are then assigned a sense of rotation such that

$~Sd .a i= (~) * and W%s~u~(=(G)*.

The relation between a and aSdua l can be grasped by imaging the two facet-edge
pairs superimposed, edge ea piercing facet faSdual orthogonally, and facet fo
pierced by edge eaSdual orthogonally. Edge easau,t is directed from aPneg toward
aPpos. Facet-ring J:~saual moves from aOrg toward aDest , so aDes t is the space-
dual of aSduaIPpos. Facet-edge pairs a and a S d u a l necessarily have the same
orientation. This is depicted in Figure 3.

Primitives for the Manipulation of Three-Dimensional Subdivisions

aSdual

Fig. 3. This diagram depicts the relation between facet-edge pairs a and aSdual. Facet fa is a square
protruding from the page, and so appears foreshortened.

The following relations hold between Sdual and the other traversal functions:

(A15) aSdual 2 = a.

(A16) aClockSdual = aSduaIClock.

(A17) aSpinSdual = aSdualClockSpin.

(A18) aFnext = aSdualEnextSdual.

(A19) aEnext = aSduaIFnextSdual.

(A20) a ~ C iff aSdual ~ C*.

Relation (A16) indicates that changing the sense of rotation in both ffa and ga
corresponds to changing the sense of rotation in both ~aSdu~t and g,Sdua~. Relation
(A17) implies that a change in the sense of rotation of 9r~ in C corresponds to
a change in the sense of rotation of g~sa,at in C*. Relation (A18) indicates that
the rings ~ r and gaSduat rotate in the same direction. Relation (A19) defines
Enext in terms of Fnext and Sdual, so maintaining the facet-rings in both C and
C*, as well as the correspondence between each cell and its space-dual, is sufficient
to maintain the edge-rings in both complexes. The facet-edge data structure uses
this fact.

4. The Facet-Edge Data Structure. In this section we present the facet-edge data
structure. The scheme for representing a polyhedral subdivision and simul-
taneously its dual is described. The implementation of the facet-edge functions
is presented. For the implementation, it is useful to first introduce a new operator
called Srot.

4.1. Traversal Function Srot. Operator Srot (for Space ROTation) is defined by

aSrot = aSdualSpin = aSpinClockSduaL

Facet-edge pair aSrot is called the rotated version of a. Its edge component is
directed from aPneg toward aPpos, and its spin is opposite the spin of a. Observe

10 D.P. Dobkin and M. J. Laszlo

the following relations:

aSrot 2 = aSduaISpinSpinClockSdual

= aClock,

astor 3 = aClockSrot

= aClockSpinClockSdual

= aSpinSdual

= aSrot -~,

aSrot 4 = a.

Srot plays a significant role in the facet-edge structure. Given facet-edge pair
a, the two facet-edge pairs of ~a adjacent to a are of the form aSrot~ and"
aSrot2Fnext = aFnext- lClock. The two facet-edge pairs of ~a adjacent to a are
of the form aSrot 1FnextSrot = aEnex t - 1 Clock and aSrot 3 FnextSrot = aEnext.

By associating with a the facet-edge pairs aSrotrFnext for r = 0, 1, 2, 3, we can
obtain the four facet-edge pairs adjacent to a (assuming we can move easily
between a subdivision and its dual). By storing the aSrotrFnext in a facet-edge
node associated with a, the four facet-edge pairs adjacent to a are available in
constant time.

4.2. Implementation o f the Traversal Functions. Polyhedral subdivision C (and
simultaneously subdivision C*) are represented by the facet-edge data structure.
The facet-edge pairs (with spin and direction) comprising C and C* may be
partitioned into groups of eight, Where facet-edge pair a is an arbitrary member
of some group, the facet-edge pairs of the group are of the form aSrotrSpin s
where re{0 , 1,2,3} and so{0, 1}. An arbitrary member ~i of each group is
designated the canonical representative of the group.

A group is represented by a facet-edge node n, an array consisting of elements
n[0] through n[3]. Element n[r] corresponds to the facet-edge pair ~Srot r. The
facet-edge pair ~SrotrSpin s is represented by the triplet (n, r ,s) , where r e
{0, 1, 2, 3} and s c {0, 1}. Such a triplet is called a facet-edge reference. The facet-
edge reference can be viewed as a pointer to the array element n[r], plus a bit
s indicating whether Spin is to be applied to the facet-edge pair ~Srot r which
corresponds to n[r].

Each element n[r] of the facet-edge node contains two fields, data and next.
Field data is used to hold application-dependent information corresponding to
~Srot r such as geometry, and need not concern us. Field next contains a facet-edge
reference to aSrotrFnext. Given arbitrary facet-edge reference (n, r, s), the func-
tions Srot, Spin, and Fnext are given by the formulas

(n, r, s)Srot

(n, r, s)Spin

(n, r, s) Fnext

where the r and s components

= (n , r + l + 2 s , s),

= (n , r , s + l) ,

= (n[r + 2s].next)Srot2SSpin s,

are computed modulo 4 and 2, respectively.

Primitives for the Manipulation of Three-Dimensional Subdivisions

Observe that in the third formula, we have

(n, r, O) Fnex t = (n [r]. next)

and

(n, r, 1) Fnex t = (n[r + 2] .next) Srot2 Spin

= (n, r + 2, O) FnextSrot2Spin

= (n, r + 2, O) FnextClockSpin

= (n, r, O)ClockFnextClockSpin

= (n, r, O)Fnext-XSpin.

11

The last equation indicates that moving forward around a facet-ring is the same
as moving backward around the same ring given with a reverse sense of rotation.

The remaining traversal functions are defined in terms of Srot, Spin, and Fnex t
as follows. Observe that all traversal queries take constant time.

(n, r, s) Clock = (n, r, s) Srot 2

= (n, r + 1 +2s, s)Sro t

= (n, (r + l + 2 s) + l + 2 s , s)

= (n , r + 2 , s).

(n, r, s) F n e x t -~ = (n, r, s)ClockFnex tClock .

(n, r, s) Sdua l = (n, r, s) SrotSpin

= (n , r + 1 +2s, s + l) .

(n, r, s) Enex t = (n, r, s) SdualFnex tSdual .

(n, r, s) E n e x t -1 = (n, r, s) ClockEnextClock .

5. Primitive Construction Operators. In this section we present the primitive
construction operators make_face t_edge , splice_facets, and splice_edges. T he first
operator obtains and initializes a new facet-edge node, and returns a facet-edge
reference to one of the eight facet-edge pairs represented by the node. Operators
splice_facets and splice_edges are used to modify the facet- and edge-rings of a
complex.

Two caveats accompany these operators. First, no class of complexes is closed
with respect to these operators: their use does not guarantee that complexes are
produced. Operator make_ face t_edge does not, in fact, create a complex at
a l l - -edge ea of the facet-edge pair a it returns is incident to facet fa and to no
other facet, and so does not belong to the boundary of a polyhedron. Furthermore,
misuse of splice_facets or splice_edges can lead to nonsense objects. Second, these
primitives are not easy to use in constructing complexes of complexity. The reader
need not be vexed. In Section 6 we define higher-level operators in terms of these

12 D.P. Dobkin and M. J. Laszlo

primitives which make the task of construction quite feasible (if not also easy).
Because of this, we make no attempt to protect the user who prefers to create
objects from these most primitive operators.

To help describe these primitives, we introduce some notation for manipulating
rings. The notation allows us to describe the manipulation of complexes in terms
of the essentially one-dimensional manipulation of rings. Let qb = (a l . . . am) and
qb'= (am+l" " "an) be two rings with all ai distinct. Then concat(d9, d~') represents
the ring

concat(dg, r = (al �9 �9 �9 an).

The operation split(alP, ap) represents the pair of rings

split(alP, ap) = ((al" "" ap_~), (ap. . �9 am)),

where 0 < p-< m + 1. Operations f irst and second are used to access the first and
second rings of the pair split(alp, ap), respectively. Furthermore, rings qb and qb'
are equivalent, denoted qb =-- alp', if they represent the same cycle of elements--that
is, where = n, there exists an integer j such that, for each 1 - i-< n, the
ith element o f ~ is identical to the (i + j) th element o f~ ' , modulo n. By convention,
~-~ denotes the ring ~-a = (a F n e x t ~ -1 �9 �9 �9 aFnex t n- l) where [~a[= n. ~a is
similarly defined.

5.1. Make_face t_edge . Construction primitive make_face t_edge returns a facet-
edge reference to a new (canonical) facet-edge & Relations (A) of Section 3 hold
among the eight facet-edge pairs aSrotrSpin s, where r ~ {0, 1, 2, 3} and s c {0, 1}.

Primitive make_ face t_edge is implemented as follows. Operation
make_ face t_edge() obtains a free node n. Element n i t] is assigned the facet_edge
reference (n, r, 0) for re{0 , 1, 2, 3}. In [La] it is shown that relations (A) hold
over the eight versions of the facet-edge pair d.

5.2. Splice_facets. The operation splice_facets(a, b) takes as arguments two
facet-edge pairs, and returns no value. The operation affects the facet-rings ~-a
and ~b as follows:

(a) if the two rings are distinct, it combines them into one ring;
(b) if the rings are identical, it breaks the ring into two distinct rings.

The arguments determine where the facet-rings are to be cut and joined. In rings
~-a and ~b, the cuts occur immediately after facets fa and fb, respectively. If the
two rings are distinct, the distinct edges ea and eb are coalesced into one edge,
and the two rings combined at the cuts. If the two rings are identical, the edge
ea (= eb) is cleaved lengthwise into' two new edges, and each serves as pivot to
one of the two new facet-rings resulting from the cuts. The operator is illustrated
in Figure 4.

Primitives for the Manipulation of Three-Dimensional Subdivisions 13

O b , , ~

~ splice_facets

Fig. 4. This diagram illustrates the effect operator splice_facets has upon facet rings.

The operation can be viewed as a way of replacing certain facet-rings with
others.

splice_facets(a, b)
{
if(~o-= ~b)

replace ffa by the two rings split(~aFnext, bFnext);
else

replace ~a and fib by concat(~aFnext, ~bFnext);
}

Operation splice_facets(a, b) is accomplished by interchanging the value of
aFnext with bFnext. The operation affects the Fnext relation in complexes Ca
and Cb (where by Ca we mean the complex to which cells fa and ea belong). Let
Fnext denote the Fnext relation immediately after the operation is performed.
Where a = aFnextClock and /3 = bFnextClock, relations Fnext (immediately
before the operation) and Fnext are related as follows:

(B1) aFnext = bFnext.
(B2) bFnext = aFnext.
(B3) aFnext = flFnext.
(B4) flFnext = aFnext.
(B5) aClockSpinFnext = flSpin.
(B6) bClockSpinFnext = c~Spin.
(B7) c~ClockSpinFnext = bSpin.
(B8) ~ClockSpinFnext = aSpin.
(B9) yFnext = yFnext for all other facet-edge pairs y.

The implementation for splice_facets(a, b) is quite simple. In the following we
assume the last four assignments are performed simultaneously; in practice, some
temporary variables would be used when swapping values.

14 D.P. Dobkin and M. J. Laszlo

splice_facets(a, b)
{
assume (n, r, s) = a;
assume (n', r', s') = b;
(v, p, tr) ~ aFnextClock;
(v', p', o-') ,:- bFnextClock;
n [r + 2s]. next ~ bFnextClockSSpin s;
n'[r' + 2s']. next ~- aFnextClockS'Spin ~';
v[p + 2tr].next ~- bClock~+l Spin'~;
v ' [p '+ 2tr'].next ~ aClock'~'+l Spin~';
}

Correctness of implementation is shown by proving that the procedure
splice_facets results in the (B) relations. This is done formally in [La].

5.3. Splice_edges. The operation splice_edges(a, b) takes as arguments two
facet-edge pairs, and returns no Value. The operation modifies the edge-rings ~a
and Sb as follows:

(a) if the two rings are distinct, it combines them into one ring;
(b) if the rings are equivalent, it breaks the ring into two rings.

As with splice_facets, the arguments to splice_edges determine where edge-rings
are to be cut and joined. In rings Sa and Sb, cuts occur immediately after edges
ea and e~,, respectively. Figure 5 illustrates the effect of splice_edges.

The operator can be seen as replacing certain edge-rings with others.

splice_edges(a, b)
{

replace $~ by the two rings split($~Enext, bEnext);
else

replace Sa and Sb by concat($~next, $b~ne~t);

~ splice_edges

Fig. 5. This diagram illustrates the effect operator splice-edges has upon edge-rings.

Primitives for the Manipulatio n of Three-Dimensional Subdivisions 15

Operation splice_edges(a, b) affects the Enext relation in complexes Ca and
Cb (or equivalently, the Fnext relation in C* and C*). Let Enex t denote the
Enex t relation immediately after the operation. Where a = aEnex tClock and
fl = bEnextClock, Enex t (before the operation) and Enext are related as follows:

(C1) aEnex t = bEnext.
(C2) bEnext = aEnext.
(C3) a E n e x t = ~Enext .
(C4) f lEnex t = aEnext .
(C5) aSpinEnext = flClockSpin.
(C6) bSpinEnext = aClockSpin.

(C7) aSpinEnex t = bClockSpin.

(C8) f lSpinEnext = aClockSpin.

(C9) yEnex t = yEnex t for all other facet-edge pairs 3'.

As we might expect, an edge-ring of one complex can be modified by operating
on the corresponding facet-ring of the dual complex. Indeed, splice_edges is
implemented in terms of splice_facets.

splice_ edges (a, b)
{
splice_facets(aSdual, bSdual);
}

To show correctness of this implementation, it suffices to show that the (C)
relations are satisfied by splice_facets(aSdual, bSdual). Below we show this for
(C2,4,6, 8); the remaining relations (except for (C9)) are shown similarly,
whereas (C9) holds since splice_facets affects no more than four facet-edge
mode fields.

Operation splice_facets(aSdual, bSdual) establishes the following relations,
where Fnex t denotes the Fnext relation immediately after the operation:

(B2') bSdualFnext = aSdualFnext .
(B4') bSduaIFnextClockFnext = aSdualClock.
(B6') bSduaISpinClockFnext = aSdualFnextClockSpin.
(B8') bSdualFnextSpinFnext = aSdualSpin.

Relation (Bi'), which derives from relation (Bi) of Section 5.2, is then used in
showing (Ci) below.

(C2) bEnext = bSdualFnext Sdual

= aSdualFnextSdual

= aEnext.

(C4) ~ Enex t = b Enex tClockEnex t

= bSdualFnextSdualClockSdualFnext Sdual

= bSduaIFnex tClockFnex tSdual

= aSduaIClockSdual

= aClock

= aEnext .

16

(C6)

(c8)

bSpinEnext = bSpinSdualFnext Sdual

= bSdualSpinClockFnextSdual

= aSdualFnextClockSpinSdual

= aSdualFnextSdualSpin

= aEnextSpin

= ceClockSpin.

~SpinEnext =

D. P. Dobkin and M. J. Laszlo

b Enext ClockSpin Enext

bSdualFnextSduaIClockSpinSduaIFnext Sdual

bSduaIFnextSpinFnext Sdual

aSduaISpinSdual

aClockSpin.

6. Manipulating Individual Polyhedra. It is worthwhile to be able to manipulate
the individual polyhedra of a complex that is represented by the facet-edge
structure. First, we would permit the traversal of the combinatorial boundary of
an arbitrary polyhedron, while ignoring the rest of the complex that contains the
polyhedron. Such traversal should be accomplished using functions appropriate
for moving around a two-dimensional subdivision--the facet-edge functions are
too general to be appropriate. In this section we reduce each of a small set of
such functions to the facet-edge functions. The set of functions we choose to
work with are the edge (traversal) functions of the quad-edge structure.

Second, we would permit the construction of the facet-edge representation of
a single (connected) polyhedron. The construction should be accomplished using
operators appropriate to the task the use of the facet-edge operators would be
overkill. In this section we reduce the edge (construction) operators of the
quad-edge structure to the facet-edge operators. Using these edge operators
implemented in terms of the facet-edge operators, polyhedra can be built that
are represented by the facet-edge structure. Each such polyhedron can be regarded
as a primitive complex.

Third, we would permit two polyhedra to be glued together along a polygon
of each. Tke complexes to which each belongs would thus be combined, or
modified if they are one and the same. With the meld operator primitive complexes
built with the edge operators can be combined to form nontrivial complexes.

6.1. Traversing the Boundary of a Polyhedron. In this subsection we concern
ourselves with traversal in the combinatorial boundary Op of an arbitrary polyhe-
dron p belonging to complex C or to C*. We first briefly present as background
the elements of the quad-edge structure that we will need. The presentation is
intended as a reminder to the reader, and at places applies only to traversal of

Primitives for the Manipulation of Three-Dimensional Subdivisions 17

orientable surfaces; the reader is encouraged to read [GS] if not already familiar
with this seminal work. We then present an edge representation scheme whereby
an edge e eap, viewed as a cell of the two-dimensional complex ap, can be
represented in terms of the facet-edge structure that models C and C*. The edge
representation scheme is then used as a basis for describing each edge function
in terms of its affect upon the facet-edge structure.

6.1.1. The Edge Functions. Where p is a polyhedron of complex C, the 2-
complex Q = ap is a subdivision of the sphere. Given edge e e Q, the orientation
(with respect to Q) and direction of e can be chosen independently, so there are
four oriented, directed versions of e. We write ~p to denote any such version, or
simply ~ when polyhedron p is known by context. Edge e e C is said to underlie
edge ~ in Q.

The direction of ~ ~ Q determines the edge's vertex of origin (~Org) and vertex
of destination (~Dest), in the natural way. In addition, the orientation and
direction of ~ together determine the edge's left polygon (~Left) and right polygon
(~Right). Specifically, where Q is coherently oriented under the orientation of d,
~Left is that polygon of Q incident to ~ whose orientation agrees with ~'s
direction; ~Right is the other polygon of Q incident to & The orientation of the
cells ~Org, ~Dest, ~Left, and ~Right are taken by definition to agree with that
of &

There are three primitive edge functions--Flip, Sym, and Onext--in terms of
which the remaining edge functions of the quad-edge structure (except for Dual)
are defined. The flipped version ~Flip of edge ~ has orientation opposite that of
e, but the two edges have the same direction. The symmetric version ~Sym of
has direction opposite that of ~, but the edges have the same orientation. Further-
more, considering the cycle of edges (in Q) incident to ~Org, we define dOnext
to be that edge that immediately follows ~ in that cycle, where the direction of
the cycle is induced by the orientation of &

The dual of Q=ap is defined to be a 2-complex Q* obtained from Q by
interchanging vertices and polygons, and which preserves incidence relations.
The dual of edge ~ e Q is an oriented and directed edge ~Dual e Q*, for which:

(D1) ~DualDual =
(D2) ~DuaISyrn = ~SymDual.
(D3) ~DualFlip = ~FlipSymDual.
(D4) ~DualOnext = ~OnextSymDual.

(This definition of dual is equivalent to that of [GS] where ~Lnext, the edge
following ~ in ~Left, is defined by ~Lnext = ~SymOnext-1.) Dual is extended to
vertices and polygons by defining (~Org)Dual= ~DualLeft and (~Left)Dual=
~DuaIOrg. Dual establishes a correspondence between the vertices (edges,
polygons) of Q, and the polygons (edges, vertices) of Q*.

Since ~ and ~Dual have opposite orientation, it is convenient to define a rotated
version ~Rot of ~, given by

~Rot = ~FlipDual = ~DualFlipSym.

18 D.P. Dobkin and M. J. Laszlo

Edge ~Rot is the dual of ~, directed from ~Right to ~Left, and oriented so that
moving around ~Right corresponds to moving around ~RotOrg.

To describe later how a subdivision may be modified, it is convenient to define
~Org to be the ring of edges in Q incident to ~'S vertex of origin. More formally,
~Org is the cycle under Onext of e. Polygon ~Left is defined in terms of the ring
of edges in Q* incident to the vertex dual to ~'s left polygon--~Left is defined
to be the ring ~OnextRotOrg.

6.1.2. The Edge Representation Scheme. Let p be a polyhedron of complex C
or C*, where C and C* are represented by the facet-edge structure. Where primal
edge ~p ~ ap and d ~ {0, 1}, edge ~pDual d is represented by the pair (a, d), called
an edge reference. The first component is a reference to the facet-edge pair a,
determined by the following:

(i) Edge ea underlies ~p.
(ii) Facet fa underlies ~pLeft.

(iii) The orientation of a coincides with the orientation of dp.
(iv) aPpos = p.

The second component d, called a duality bit, has value 0 (1) itt the edge being
represented is primal (dual), and is identical to the exponent d of ~pDual d. The
scheme is depicted in Figure 6.

Each edge ~pDual d, as p ranges over the polyhedra of C u C* and d ~ {0, 1},
is uniquely and unambiguously represented by an edge reference. Given edge
~pDual d, conditions (i) and (ii) uniquely determine the components of a, then
(iii) determines the orientation of a, then (iv) the orientation of a. On the other
hand, given (a, d), consider first the edge that (a, 0) represents. Conditions (i)
and (iv) together determine ~p, then (iii) determines the orientation of ~p, then
(ii) the direction of ~p. Finally, since ~p is unambiguously represented by (a, 0)
and edge ~pDual is well defined, (a, d) unambiguously represents edge ~pDual d.

6.1.3. Implementation of the Edge Functions. One purpose of the edge rep-
resentation scheme is to enable the traversal of the boundary of polyhedron p
using the underlying facet-edge structure. Each edge function can be described

Fig. 6. This diagram illustrates the edge-reference scheme. The winged-edge corresponds to a region
of Q = op, where p lies behind the page. The facet-edge pair a depicted by the handcuff is such that
edge ~ is given by (a, 0), and ~Dual by (a, 1).

Primitives for the Manipulation of Three-Dimensional Subdivisions 19

in terms of how it affects an edge reference. More precisely, for edge function
Op, there exists a sequence of facet-edge functions Op' for which

(a, d)Op =(aOp' , d) .

The following characterizes each edge operator in this fashion:

(El) (a, O) Flip = (aFnextSpin, 0).
(E2) (a, O)Sym = (aFnextClock, 0).
(E3) (a, O)Onext = (aEnext-~ FnextClock, 0).
(E4) (a, d)Dua l = (a, 1 - d).
(E5) (a, 1)Flip = (aSpinClock, 1).
(E6) (a, 1)Sym = (aFnextClock, 1).
(E7) (a, 1)Onext = (aEnext -~, 1).

The correctness of this scheme can be verified by showing that the edge operators
so characterized possess the properties stated in Section 2.3 of [GS]. For instance,
where ~ is represented by (a, 0), we have

~vtip 2 = (a, O) FtipFtip

= (aFnextSpinFnextSpin, O)

=(a, 0)

=~

The derivation of (El-7) is straightforward. Figure 7 pictorially motivates
equations (El-3). Equation (E4) follows from the edge representation scheme.

(

(

~ aFlip

) _ ~ agym

aOnext

Fig. 7. This diagram illustrates the use of facet-edge pairs to represent directed, clocked edges in the
boundary Q of a polyhedron. Each handcuff stands for facet-edge pair a where (a, 0) represents the
directed, clocked edge aOp with which the handcuff is labeled.

20 D.P. Dobkin and M. J. Laszlo

Equations (E5-7) follow from the relation developed so far in this section. For
instance, (E5) is derived as follows (see [La] for the remaining derivations):

(a, 1)Flip = (a, O)DuaIFlip (E4)

= (a, O)FlipSymDual (D3)

= (aFnextSpin, O)SymDual (El)

= (aFnextSpinFnextClock, O)Dual (E2)

= (aSpinClock, O)Dual (A1, A5)

= (aSpinClock, 1). (E4)

6.2. Constructing a Polyhedron. A polyhedron can be characterized by its com-
binatorial boundary, this being a two-dimensional subdivision of the sphere. A
facet-edge structure representing a single polyhedron is most easily created and
modified by manipulating the polyhedron's boundary. We choose the edge
operators of the quad-edge structure as the means of performing these manipula-
tions. These edge operators handle (in particular) the class of open subdivisions
of the sphere, of which the (closed) subdivisions may be regarded as a special
case. The construction of a polyhedron involves using the edge (construction)
operators to bullet open subdivisions incrementally until one is produced which
coincides with the boundary of the target polyhedron. In this section we describe
the effect each edge operator has upon the facet-edge structure by giving an
implementation of each operator in terms of the facet-edge operators.

During the construction of polyhedron p, open subdivision Q is maintained
under the edge-representation scheme. It is designated the primal subdivision,
and its cells, and only its cells, may eventually belong to the target Op.

6.2.1. Open Subdivisions. An open k-cell (for our purposes) is an open subspace
of the sphere S 2 homeomorphic to R k. An open complex S of S 2 is a finite
collection of open cells of S such that:

(i) the cells of S are pairwise disjoint,
(ii) for each cell c 6 S, bd c is the union of elements of S, and

(iii) if c, d ~ S and cl c n cl d # Q, then cl c n cl d is the union of elements of S.

Here cl c denotes the closure of cell c. An open complex whose union is S 2 is
an open subdivision (of the sphere).

Let S be an open subdivision such that for each cell c ~ S, the closure cl c is
a (closed) cell. S corresponds to a (closed) subdivision of the sphere, obtained
by replacing each cell c ~ S by its closure cl c. To build a polyhedron, the edge
operators are applied successively to construct new elementary open subdivisions,
and to combine and modify existing open subdivisions. The process proceeds
until an open subdivision is produced that corresponds to the boundary of the
target polyhedron.

Primitives for the Manipulation of Three-Dimensional Subdivisions 21

6.2.2. Elementary Open Subdivisions of a Sphere. There are two elementary
subdivisions of the sphere. The first consists of a single edge 8 that is not a loop,
and is denoted Se (subscript e stands for "edge"). Where 8 e St is some arbitrary
(but fixed) oriented and directed edge, we have 80rg ~ 8Dest and 8Left = 8Right,
The following properties hold in S~.

(F1) ~Onext = ~.
(F2) ~SymOnext = ~Sym.
(F3) 8FlipOnext = 8Flip.
(F4) 8FlipSymOnext = 8FlipSym.

The other elementary open subdivision of the sphere consists of a single edge
8' that is a loop, and is denoted S~ (subscript 1 stands for "loop"). S~ is dual to
open subdivision S~; there exists a version of 8' for which edges ~' and ~Sdual
represent identical open subdivisions. Since ~' is a loop, we have ~'Org = ~'Dest
and ~'Left ~ ~'Right. Writing ~Dual for ~', the following properties hold in $1:

(F5) 8DualOnext = dDuaISym.
(F6) ~DuaISymOnext = ~Dual.
'(F7) 8DualFlipOnext = 8DualFlipSym.
(F8) 8DuaIFlipSymOnext = 8DualFlip.

The operator make_edge builds a data structure representing both S~ and S~,
and returns an edge reference to one version of Sr (nonloop) edge. Open
subdivision S~ is primal. Its implementation is given as follows:

make_ edge ()
{
a ~- make_facet_edge();
b ~ make_facet_edge();
splice_facets (a, b);
splice_edges(a, bCtock);
return((a, 0));
}

The operation 8~ make_edge() obtains two new facet edge nodes. In one of
the nodes it designates a facet-edge pair a for which (a, 0) represents ~, while in
the other node it designates facet-edge pair b for which (bSpin, 0) represents
~Flip. Operation splice_facets(a, b) results in

(i) aFnext = b,
(ii) bFnext = a,

while operation splice_edges(a, bClock) results in

(iii) aEnext = bClock,
(iv) aEnext -1 = bClock.

Edge ~ under the edge-representation scheme is depicted in Figure 8.
Relations (i)-(iv) ensure that ~ ~ make_edge() does indeed build a facet-edge

structure representing both Se and S~, and that edge ~ is represented by (a, 0).

22 D.P. Dobkin and M. J. Laszlo

Fig. 8. This diagram depicts the open subdivisions under the edge-reference scheme. The left figure
depicts edges ~ c S e and ~' ~ $1, superimposed on the same sphere to suggest how they are related.
The center figure depicts the facet-edge representation for ~ where S e is primal (constructed by
make_edge), while the right figure depicts the facet-edge representation for loop ~' where Sj is primal
(constructed by make_loop).

This is verified by showing that relations (F1-8) are satisfied. For instance, (F1)
is shown as follows (for other proofs refer to [La]):

~Onext = (a, O) Onext

= (aEnex t - lFnex tClock , O)

= (bClockFnextCIock, 0) (iv)

= (bFnext 2, O)

= (a, 0) (i)

=~.

The opera tor make_loop also builds a facet-edge structure representing both
Se and S~, but it returns an edge-reference to that version o f S~'s loop that
corresponds to ~Dual (where ~<--make_edge()) . Open subdivision Sl is primal.
Its implementat ion is given as follows:

make_loop()
(
a *- make_facet_edge();
b ~ make_facet_edge();
splice_facets(a, b);
return ((a, 0));
}

The opera t ion ~Dual <-- make_loop() obtains two new facet-edge nodes. In one
node it designates facet-edge pair a for which (a, 0) represents edge ~Dual, and
in the other node a facet-edge pair b for which (bSpin, 0) represents ~DualFlip.
Operat ion splice_facets(a, b) results in

(i) aFnext = b,
(ii) bFnext = a,

while the absence o f a call to splice_edges results in

(iii) aEnext = a,
(iv) bEnext = b.

Primitives for the Manipulation of Three-Dimensional Subdivisions 23

Edge ~Dual under the edge-representation scheme is depicted in Figure 8.

6.2.3. Modifying Open Subdivisions. The operator splice is used to modify open
subdivisions. The operation splice(a, b) takes as arguments two edges a and b,
and returns no value. The operation affects the two rings aOrg and f)Org and,
independently, the two rings aLeft and bLeft. In each case, if the two rings are
distinct, splice combines them into one ring; and if the two rings are identical,
splice breaks it into two distinct rings. The arguments a and b determine where
the rings will be cut and joined. For rings ~Org and f)Org, the cuts occur
immediately after a and/~; for rings ~Left and bLeft, the cuts occur immediately
after aOnextRot and f)OnextRot.

Operation splice(g, b) is performed by interchanging the values of aOnext with
f)Onext, and ~Onext with ~Onext, where t~ = aOnextgot and /3 = f~OnextRot.
More formally, where Onext denotes the Onext relation immediately after the
operation, splice(a, f)) establishes the following relations between Onext and
Onext :

(G1) aOnext = f)Onext.
(G2) b Onext = aOnext.
(G3) ~O-n--e~ = ~Onext.

A A

(G4) fl Onext = aOnext.
(GS) ~Onext = r for all other edges ~ ~ Q u Q*.

Operation splice(a, ~) is implemented in terms of the facet-edge operator
splice_edges as follows:

splice((a, d), (b, d))
{
i f (d =0)

splice_edges(aClockSpin, bClockSpin);
else

splice_edges(aEnext -1, bEnext-1);
}

The duality bit d of the two arguments to splice are assumed to be identical--
splice(a, f)) is defined only if a and/~ are both primal, or both dual.

To show the correctness of the implementation, let Onext (Enext) denote the
Onext (Enext) relation immediately after splice(a,/~), given primal edges a and
/~ represented by (a, 0) and (b, 0). Operation splice_ edges (aClockSpin, b ClockSpin)
establishes:

(i) a ~ 1 = bEnext -1.
(ii) bE-n-e~-~ 1 -- aEnext -1.

(iii) aEnext -1ClockSpin-E-ne-~ 1 = bClockSpin.
(iv) bEnext -1ClockSpinEnext 1 = aClockSpin.

24 D.P. Dobkin and M. J. Laszlo

Relations (i)-(iv), which follow from the (C) relations of Section 5.3, are used
to show that values have been correctly swapped. To show (G1), we have

~-O-~xt = (a, O)Onext

= (a ~ ~ FnextClock, O)

= (bEnext- lFnextClock, O) (i)

= (b, O)Onext

= bOnext.

Similarly (ii) is used to show relation (F2). To show relation (F3), we have

Onext = (a, O) OnextRotOnext

= (aEnext- lFnextCIockFnextSpin, 1)Onext

= (aEnext-IClockSpin, 1)Onext

= (aEnex t - 1CloekSpin-ffn--e~- 1, 1)

= (bClockSpin, 1) (iii)

= (bEnext - lClockSpinEnext -1, 1)

= (bEnext -1ClockSpin, O)DualOnext

= (bEnext - ~ FnextClockFnextSpin, O) DualOnext

= (b, O) OnextFlipDualOnext

= bOnextRotOnext

= flOnext.

Similarly (iv) is used to show relation (H4). Notice that

splice_ edges (a ClockSpin, bClockSpin)

only modifies facet-rings of the complex dual to the complex to which ~ and/~
belong. Since each occurrence of Fnext in the derivations above apply only to
facet-rings of the complex to which a and/~ belong, we have been free to assume
(in the derivations) that Fnext has not been changed by splice_edges; no Fnext
is necessary in the derivations.

We have shown correctness of an implementation for splice when its
arguments are primal edges. Assume now that splice is passed two dual edges

and/~. To show correctness of implementation in this ease, we note that opera-
t ions splice(& b) and splice(dr, 13) are equivalent, where k = ~ O n e x t R o t and
fl = bOnextRot. Since edges ~ and fi are primal, it is sufficient to show that
splice_edges(~ClockSpin., ~ClockSpin) - - w h i c h implements splice(~, f i)mand
splice_edges(dEnext-r~ bEnext -~) are equivalent; this is done in [La].

Primitives for the Manipulation of Three-Dimensional Subdivisions 25

a bPos J

b
-"5

meld(a, b)

Fig. 9. This figure depicts a two-dimensional analogue of the effect of meld. Edges of the figure
correspond to facets, and polygons to polyhedra. Note that Ca ~ C b in the figure, but this need not
be the case.

6.3. Meld. The operator meld is used to glue a complex Ca to a second complex
Cb. With its use one melds an n-sided polygon f , e 0(?, to an n-sided polygon
fb e Cb, thereby locating complex Ca in the polyhedron bPneg of Cb. More
formally, it establishes the topological relations for

~ Ca) ~ bPneg and ~ c~ r = fb.

A two-dimensional analogue of the situation is depicted in Figure 9.
Let a and b be facet-edge pairs, and that their spin and orientation are chosen

so that Ca lies in bPneg and Cb lies in aPpos. Where ai = aEnext ~ and b~ = bEnext ~,
meld(a, b) identifies polygon fa with fb, and edge e~, with eb~ for 0 - < i - < n - 1 .
The operation first coalesces distinct edge rings ~, and ~b, forming a "pillow"
consisting of the edges of ~a (= ~b) and the polygons f~ and fb, and then removes
polygon f~ from the complex. The two polyhedra that end up incident to fb are
bPpos and aPneg.

The boundary of polyhedron aPneg is slightly changed to produce polyhedron
p- - face t fa is replaced by fb. In addition, polyhedra aPpos and bPneg are
combined to form a new polyhedron q, the effect of locating Ca inside bPneg.
We have

and

facets_of(p) = facets_of(aPneg) - f~ + fb

facets_of(q) = facets_of(bPneg) w facets_of(aPpos) - f~ - lb .

To build the facet-rings of the "pillow" formed by coalescing $~ and Sb,
facet-rings of Ca and Cb are combined as follows:

for i = O , . . . , n - 1

if ~ , ~ ~:b~
replace ~ra i and ~b, by concat(~;aiFnext, ~;biFnext)" ~

Facet f~ is removed as follows:

for i = 0 , . . . , n - 1
replace ~:~, by first(split(~;~:,ext, biFnext));

26 D.P . Dobkin and M. J. Laszlo

meld(a, b)
{
firsta ~ a;
do {

if (~ ~ ~b)
splice_facets(a, bFnext- l) ;

splice_facets(a, aFnext-1);
a ~- aEnext

b ~- bEnext

}until a = firsta;
}

Fig. 10. Procedure meld.

Operator meld, given in Figure 10, is implemented by a single loop in which
the construction of the "pillow" and removal off~ are interleaved. The necessary
facet-ring manipulations are done with splice_facets. Note that the facet-edge
pairs aiSrotrSpin s (where 0-< i -< n - 1, r ~ {0, 1, 2, 3}, and s c {0, 1}) are effectively
deleted from the data structure; the n facet-edge nodes representing these could
be garbage-collected.

7. Decomposing a Polyhedron. The process of partitioning a polyhedron into
simple r constituent polyhedra is called decomposition. One reason for decompos-
ing a polyhedron /~ is that /~ may possess properties that preclude certain
algorithms from being applied to i t - - for instance, it may be nonconvex, or possess
cavities or handles. Sometimes the difficulty may be overcome by decomposing
/~ into more amenable pieces, and then applying the algorithm to these [CD].
Alternatively, p may be well behaved but its volume might be too large to allow
the efficient solution of equations via finite element methods, and further
decomposition may be desired [JB].

There are various strategies for performing decomposition. We concern our-
selves with an incremental strategy in which polyhedra are iteratively detached
from the original polyhedron until nothing of the original remains. Each simpler
piece split off from the original is not subject to further decomposition, and
satisfies whatever "simplicity" criteria is required of the algorithm. Such an
algorithm maintains a current polyhedron S (initially/~), and a current collection
of constituent polyhedra C (initially 0) . The algorithm iteratively detaches a
polyhedron Pi (in iteration i) from S and transfers it to C. The process stops
when S represents a null polyhedron--collect ion C then represents the decompo-
sition of/~. In this section we show how collection C assembled during the course
of decomposition can be represented by the facet-edge structure. Each polyhedron
detached from S is attached to C by meld operations. For simplicity, we assume
that ff is polyhedral in the sense we have been using the word (that is, having
genus zero and no cavities), and that C always consists of zero or more ball
complexes.

Wrrdenweber uses this incremental strategy in [W/5] to decompose a polyhe-
dron into tetrahedra. He makes no attempt to assemble the pieces, but allows

Primitives for the Manipulat ion of Three-Dimensional Subdivisions 27

the sequence of operations by which they were detached to represent the resulting
decomposition. We refer the reader to [Wr] for a description of how the algorithm
selects a tetrahedron to be detached from the current polyhedron S in each
iteration. The actual removal of the tetrahedron from S is accomplished by one
of the fGur operators opO, opl, op2, or op3. Each opk modifies the polyhedron S
to reflect the removal of the tetrahedron. The index k of opk indicates how the
tetrahedron t that opk is designed to detach is connected to the rest of S: k is
the number of triangular facets that connect t to the rest of S, while 4 - k is the
number of t's exposed facets (that is, belonging to the boundary of S). In
modifying" 8, opk removes each of the 4 - k exposed facets of t, a consequence
of detaching t from S. In general, some of these facets correspond to facets of
C (in fact, to facets of aC); where f is such a facet, f denotes that facet of C
to which f corresponds. Facet f will have been created when S was modified in
some earlier iteration (say iteration j where j < i); the polyhedron p~ transferred
to C at that time contains)7 which was then cleaved from f. The rest of the 4 - k
exposed facets of t belong to the boundary of the original polyhedron p, and so
correspond to no facets of C. Let S' denote S immediately after being modified
by opk. S' contains k new facets, the "connecting" facets of t; these facets are
created by opk--again the consequence of deleting t from S- -and replace the
4 - k exposed facets removed by opk. Each of the k facets revealed by opk
corresponds to an exposed facet of the tetrahedron that has been added to C.
Figure 11 illustrates the effect each opk has upon S.

A decomposition algorithm employing the incremental strategy requires the
use of an operator op, analogous to Wrrdenweber 's opk operators, for transferring
a polyhedron pi from S to C. The operator must build a facet-edge representation
for p~, attach p~ to C (using calls to meld), and modify S (to reflect its loss of
p~). The operator's most formidable task is in determining exactly how pi is to
be attached to C- - tha t is, in determining the arguments to each of its calls to
meld. To guide op in attaching p~ to C, each facet f e S possesses a link pointer
link(f) which references that facet f c aC to which f corresponds. The facets of
S that belong to the boundary of the original polyhedron/5 do not correspond

-- ~ p o o l ! --:--- ~"
opO op2

opl

Fig. 11. This figure demonstrates how each opk locally modifies S to produce S'. Each drawing
depicts a patch on the boundary o f S or S'.

28 D.P. Dobkin and M. J. Laszlo

to any facet of C, and so have null link pointers. To elaborate, in iteration i, op
performs the following steps in succession:

(i) constructs a facet-edge representation for polyhedron p~, to be transferred
from S to C,

(ii) attaches p~ to C, thereby forming C' (to serve as C in the next iteration),
(iii) modifies S to reflect its loss of p~, thereby forming S' (to serve as S in the

next iteration), and
(iv) updates the link pointers of S'.

We do not elaborate on step (i); it is performed using the quad-edge operators,
whose implementation in terms of the facet-edge operators was given in Section
6. Assuming S is suitably represented--for concreteness we assume by the
quad-edge structure--step (iii) also need not be treated. Presumably the descrip-
tion of p~ handed to op is adequate for op to perform steps (i) and (iii). Steps
(ii) and (iv) do require elaboration. Henceforth denoting by p the polyhedron pg
constructed in step (i), we discuss in turn how we ascertain which facets of p are
to be melded to C, how the link pointer is used to guide each meld operation,
and how the link pointers are updated in S' to serve later iterations.

Consider the relation between p and S. That patch of p to be glued to C
coincides with subcomplex Sp =[_J {starf[fc S is removed by op}. (Here s ta f f
is the complex consisting of the faces of cell f ; in this case since f is a facet, it
consists o f f and the vertices and edges that bound f.) Subcomplex Sp is generally
a patch of S, homeomorphic to a closed disk. (In the final iteration, however, S
itself is transferred to C, in which case Sp = S.) We denote by ~(c) that cell of
p that coincides with cell c ~ Sp. The mapping ~ : Sp ~ p is an isomorphism, not
generally onto. Consider next the relation between p and S'. That patch o f p that

! _ _ lies in OC(after op has attached p to C) coincides with subcomplex S p -
~_J {starfl f~ S' is created by op}. (At the last iteration, however, S '= Sp = Q).
We denote by ~p'(c) that cell o f p that coincides with cell c ~ Sp; the isomorphism
~': S'p~p is not onto. The patches ~p(Sp) and ~p'(S~) cover polyhedron p. Their
intersection ~p(Sp) c~ r is a vertex-edge cycle in p, called the silhouette of p.
These notions are depicted in Figure 12.

To attach p to C, for each facet f ~ Sp, facet r p is melded to facet f ~ C.
Each facet of Sp is obtained by treating the dual 2-complex S* as a graph,
and performing a search in Sp*. Each vertex visited corresponds to a facet of Sp.
The silhouette of p is used to restrict the search to Sp*, prohibiting it from
passing into the rest of S*. Specifically, the search algorithm considers two
vertices adjacent iff the edge that connects them is not dual to a silhouette
edge of p. Pointer link(f) consists of two fields edge and pair, whose contents are
as follows:

link(f).edge: an edge reference to e c s such that eLeft =f.
link(f).pair: an edge reference to edge e' ~ OC such that:

(a) e'Left= f,
(b) e'Lnext ~= gLnext ~ for all i, and p~.

Primitives for the Manipulation of Three-Dimensional Subdivisions 29

c

/ I
s

C !

S'
Fig. 12. This figure depicts a two-dimensional analogue of the effect of op. Each edge of the figure
corresponds to a facet, and each polygon to a polyhedron.

When facet f ~
operation:

Sp is visited, facets ~o(f) and f are melded by the following

if link(f) ~ f~ {
e ,~ link(f).edge;
a ~-that facet-edge pair a for which (a, O) is r
b ~ link(f).pair;
meld(a, b);
}

Edge r required in the above block of code, is obtained by performing
an identical graph search in p*, coincident with the search in Sp*.

Having.attached p to C and modified S to produce S', the link pointers of S'
must be updated. This involves setting the link pointer of each facet created by
op (that is the facets of Sv); the link fields of the other facets of S' are still
correct. Much as before, we perform a graph search in Sp* and a coinciding
search in p*, using the silhouette of p to limit both searches. When we visit a
vertex of Sv*, dual say to facet f ~ Sp, link(f) is set by the following:

let e be an edge for which eLeft = f ;
link(f).edge ~ e;
link(f).pair*-a where ~o(e) is represented by (a, 0);

The isomorphisms ~ and ~0' are each computed on the fly by performing
identical searches in two distinct graphs. Each pair of searches must start at
coinciding cells for each isomorphism to be correctly computed. To do this, we
select some silhouette edge e--since e belongs to both Sp and Sp, it can be used
to compute the starting point for both pairs of searches. Let e ~ S be oriented
and directed so the eLeft ~ Sp, and let ~p(e)~p be oriented and directed so that
~p(e)Org = ~(eOrg) and ~p(e)Left= r The searches in S* and p* then
begin at vertices eLeftDual and r respectively. To compute ~p', we
note that coinciding cells of S~ and p have orientations that disagree: facets f
and q (f) appear to have the same orientation when viewed for instance from a
point beyond f but beneath ~p (f) , say from the interior of a convex p. To determine

30 D .P . Dobkin and M. J. Laszlo

002

Fig. 13. This diagram depicts a tetrahedron t transferred by W6rdenweber 's op2. The tetrahedron is
attached to C along the two facets behind the page, while the two facets in front of the page occur
in aC.

the starting points for the searches in S~* and p*, let edge e be oriented and
directed as above. Facet eLeft ~ S is replaced by eLeft c S'. The edge of S'
coinciding with e is then ~(e)Flip, so the searches of S~* and p* begin at the
vertices eLeftDual and ~(e)FlipLeftDual, respectively. This is illustrated for
Wrrdenweber 's op2 in Figure 13.

8. Incremental Construction of a Three-Dimensional Delaunay Triangulation. We
describe how to build the Delaunay triangulation DT(S) of a set S on n->4
points (called sites) of R 3, in general position. Since the facet-edge structure
represents both a complex and its dual, the algorithm also serves to construct
the Voronoi diagram of S. The strategy is first to construct some tetrahedron of
DT(S)--cal led a D-tetrahedron--to serve as an initial current complex C. C is
then grown by iteratively discovering, constructing, and melding a new D-
tetrahedron to one or more triangular facets on the boundary of C, until it is
known that C = DT(S). The algorithm is described in [AB], and under geometric
inversion that maps S to a set of points S' on a three-dimensional hypersphere
in R 4 [Br], corresponds to the gift-wrapping method of [CK] for building the
convex hull of S'. The process of finding an initial and subsequent D-tetrahedra
is described in [AB], so we describe this only briefly in the next paragraph, before
presenting the entire algorithm.

Assume triangle f of DT(S) is on the boundary of complex C, and that the
D-tetrahedron t incident to f is known. Operation find_tetrahedron(f, t) con-
structs the other D-tetrahedron t' adjacent to f (if it exists). Let Hy,,, denote that
open half-space determined by aft f which does not contain t. The vertices that
define t' are then the vertices o f f together with site q, where q ~ Hy,, is that site
for which the sphere determined by q and the vertices o f f is of minimal radius.
It is shown in [Bh] that the interior of this sphere contains no sites, hence t' is

�9 indeed a D-tetrahedron. If S n Hy, t is empty, then f lies on the convex hull of S
and t' does not exist.

An initial D-tetrahedron is found by first finding some triangular facet f on
the convex hull of S by the method of [CK]. The D-tetrahedron adjacent to f is
discovered using the strategy given above, where candidate sites q range over all
sites (except for the three that determine f) .

Primitives for the Manipulation of Three-Dimensional Subdivisions 31

delaunay(S)
{
t ~- an initial D-tetrahedron of S;
~ ~- facet_ edges_ of(t);
while (~-# ~Z) {

a ~- some element of ~;;
t ~-find_tetrahedron(f~, aPpos);
if (t does not exist)

~<-- ~-{a};
else {

for each a ~facet_edgesof(t) {
a ~ ~(d);
if (a = ~) {

~ - ~-{a};
a <-- align(d, aClock);
meld(a, 4);
}

else

}
}

}
}

Fig. 14. Procedure delaunay.

The algorithm delaunay of Figure 14 constructs the Delaunay triangulation
DT(S) of a finite set of sites S of R 3, in general position. The algorithm initializes
the current complex C to contain a D-tetrahedron, then iteratively melds D-
tetrahedra to C until, for every facet of C, a D-tetrahedron has been sought on
both sides of the facet.

Let F denote the set of facets for which a D-tetrahedron has been sought on
exactly one side of the facet. F consists of those facets belonging to the boundary
of the current complex C, less those facets that have been determined to lie on
the convex hull of S. Dictionary f f contains the triangles of F; more precisely,
it contains one facet-edge reference to a for each triangle f , of F. ~T(a) performs
a look-up in dictionary ~, returning that element of ~T whose determining vertices
are aOrg, aEnextOrg, and aEnext2Org if it exiSts, or Q if the dictionary contains
no such element. A scheme for addressing the elements of ~ using (the indices
of) the three vertices that determine its elements is easily concocted.

A tetrahedron t is represented by some facet-edge pair a such that aPpos = t.
The set face t_edges_of (t) contains one facet-edge pair d for each of the four
triangular facets of Ot, where dPpos = t; the set is easily derived by traversal from
that facet-edge pair a that represents t. Finally, align(a, b) denotes that facet-edge
bEnext i for which aOrg = bEnextiOrg; the algorithm ensures that some such i
exists for each use of align.

9. Conclusion. The applications presented here but scratch the surface of the
data structure's potential uses. Future research includes the development and

32 D.P. Dobkin and M. J. Laszlo

rederivation of applications that would markedly benefit from use of the structure.
Two examples of these were mentioned in the Introduction: a divide-and-conquer
algorithm for constructing three-dimensional Voronoi diagrams, and a scheme
for modeling the motion of three-dimensional polyhedra. Future research also
includes completely characterizing the class of complexes the data structure can
model, and developing sets of construe,ion operators with respect to which various
classes of complexes are closed.

Acknowledgment. We would like to thank the anonymous referee for clarifying
our exposition.

[Ba]

[Bhl

IBHS]

References

lAB] D. Avis and B. K. Bhattacharya, Algorithms for computing d-dimensional Voronoi diagrams
and their duals, in Advances in Computing Research, voL 1, F. P. Preparata, ed., JAI Press,
Greenwich, CT, 1983, pp. t59-180.
B. G. Baumgart, A polyhedron representation for computer vision, in 1975 National Computer
Conference, AFIPS Conference Proceedings, vol. 44, AFIPS Press, 1976, pp. 589-596.
B. K. Bhattacharya, Application of computational geometry to pattern recognition problems,
Tech. Rep. 82-3, Simon Fraser University, 1982.
I. C. Braid, R. C. Hillyard, and I. A. Stroud, Stepwise construction of potyhedra in geometric
modelling, in Mathematical Methods in Computer Graphics and Design, K. W. Brodlie, ed.,
Academic Press, London, 1980, pp. 123-141.

[Br] K.Q. Brown, Voronoi diagrams from convex hulls, Inform. Process. Lett., 9, 1979, 223-228.
[CD] B. Chazelle and D. P. Dobkin, Detection is easier than computation, Proc. 12th ACMSIGACT

Symposium, Los Angeles, May 1980, pp. 146-I53.
[CK] D.R. Chand and S. S. Kapur, An algorithm for convex polytopes, Z Assoc. Comput. Mach.,

17(1), 1970, 77-86.
IEW] C.M. Eastman and K. Weiler, Geometric modeling using the Euler operators, Research

Rep. 78, Institute of Physical Planning, Carnegie-Mellon University, February 1979.
[GS] L. Guibas and J. Stotfi, Primitives for the manipulation of general subdivisions and the

computation of Voronoi diagrams, ACM Trans. Graphics, 4(2), 1985, 75-123.
[JB] A. Jameson and T. Baker, Improvements to the aircraft Euler method, Paper AIAA-87-0452,

AIAA 25th Aerospace Sciences Meeting, 1987.
[La] M.J. Laszlo, A data structure for manipulating three-dimensional subdivisions, Dissertation,

Department of Computer Science, Princeton University, August 1987.
[W~i] B. W/Srdenweber, Volume-triangulation, C.A.D. Group, University of Cambridge, 1980.

