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Primitives for the Manipulation of Three-Dimensional 
Subdivisions I 

David P. Dobkin 2 and Michael J. Laszlo 3 

Abstract. Algorithms for manipulating three-dimensional cell complexes are seldom implemented 
due to the lack of a suitable data structure for representing them. Such a data structure is proposed 
here along with the primitive operations necessary to make it useful. Applications of the structure 
are also given. 
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I. Introduction. A major impediment to the implementation of algorithms that 
manipulate three-dimensional cell complexes and subdivisions is the lack of a 
suitable data structure. What is needed is a data structure powerful enough to 
model such objects yet simple enough to allow their manipulation in well-defined 
ways. We focus attention here on the development of such a data structure. Our 
structure is analogous (though one dimension higher) to the winged-edge [Ba], 
[BHS], [EW] and quad-edge [GS] data structures which are widely accepted for 
modeling 2-manifolds. Just as these structures can be used to represent both 
planar polygonal cell complexes in R 2 and surfaces of polyhedra, our data 
structure can model polyhedral complexes in R 3 and surfaces of 4-polyhedra. 

Our results can be viewed as similar to the work done by Guibas and Stolfi in 
deriving the quad-edge structure. Lifting the results one dimension higher 
increases the complexity of  our data structure. They consider an edge as their 
atom, and consider the edge rings to which it belongs. We consider a polygon-edge 
pair as an atom, and consider the polygon ring and edge ring to which it belongs. 
The quad-edge atom could be considered to connect two vertices and two 
polygons. Similarly, our atom connects two vertices and two polyhedra. We 
simplify our structure by treating only complexes that are orientable, and whose 
cells do not puncture the interior of other cells. 

There are numerous applications we envision for such a data structure. One 
application we consider is that of decomposing a polyhedron into tetrahedra 
[WS]. We rederive and model one of his applications in our system. A second 
application we consider is the implementation of an algorithm for incrementally 
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computing the Delaunay triangulation of a three-dimensional point set [AB], 
[Bh]. Further applications are also possible. For one, our data structure provides 
an ~ approach to an efficient divide-and-conquer algorithm for building three- 
dimensional Voronoi diagrams. A second possibility is for modeling the motion 
of a three-dimensional polyhedron through time, which can be viewed as a 
four-dimensional polyhedron (in x, y, z, t space) where hidden surface removal 
is done by projecting into x, y, t space and taking t cross-sections to determine 
individual scenes. 

What we attempt to achieve in this paper  is a blend between a derivation of 
the data structure and a small set of  primitive operators for its manipulation, the 
development of  macro operations f rom these primitives, and the use of  these 
macros in the first two applications mentioned above. The results of  this paper  
are implementable (see [La] for details). 

2. Definitions and Prerequisites. In this section we define the class of  objects to 
be manipulated by our data structure. It is assumed the reader is familiar with 
some basic concepts of  point-set topology. 

2.1. Basic Definitions. Where T is a topological space, a k-cell is a subspace 
of  T whose interior is homeomorphic  to R k, and whose boundary is nonnull. In 
this paper  we assume that T- -  g 3, though our results hold for more general T. 
W e  call a 0-cell a vertex, a 1-cell an edge, a 2-cell a polygon or a facet, and a 
3-cell a polyhedron. Note that a cell may be unbotmded; for instance, an edge 
can be a closed segment (bounded by two vertices) or a ray (bounded by one 
vedex). 

A cell complex of T is a finite collection C of cells of  T such that: 

(i) the relative interiors of  cells of  C are pairwise disjoint, 
(ii) for each cell c c C, the boundary bd c of  cell c is the union of elements 

of  C, 
(iii) if c, d e C and c c~ d ~ O, then c r~ d is the union of elements of  C. 

We let ~//(C) be the union of the cells of  C, and consider C a subdivision of  
~//(C). An n-dimensional complex for which every k-cell is contained in (the 
boundary of) some n-cell is called an n-complex. 

The combinatorial  boundary of cell c of  C, denoted Oc, is defined to be the 
set of  cells of  C contained in bd c. Note that ~l(Oc) = b d  c. The combinatorial 
boundary OC of complex C is defined as the set of  cells of C contained in 
bd ~//(C). An open cell d c c is said to be a face of  c; if in addition c ~ d, then 
d is a proper  face of  c. I f  one of c or d is a proper  face of  the other, c and d 
are said to be incident. For instance, a polyhedron is incident with each vertex, 
edge, and facet that lies in its boundary. The star of  a cell c, denoted star c, is 
the subset of  C consisting of  the cells of  which c is a face. 

Given n-complex C, by convention these exists one (null) (n + 1)-cell of  which 
every n-cell of  C is a face; likewise there exists one (null)(-1)-cell  which is a 
face of  every vertex. Distinct k-cells c and d (for 0 -  < k -  n) are then said to be 
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adjacent if (i) there exists some ( k -  1)-cell of  C that is a face of  both c and d, 
and (ii) there exists some ( k +  1)-cell of  C of  which each of c and d is a face. 
For instance, two vertices connected by an edge are adjacent; in addition, two 
facets incident to the same polyhedron and the same edge are adjacent. 

2.2. Space-Duality. The space-dual of  a complex C of space T is a second 
complex C* of T for which there exists a one-to-one mapping �9 from C onto 
C* such that: 

(i) the image of a k-cell under �9 is an (n - k)-cell, and 
(ii) cells c and d are adjacent in C iff cells ~ ( c )  and ~ ( d )  are adjacent in C*. 

In particular, with respect to 3-complexes C and C*, each vertex (edge) of  
one corresponds to a polyhedron (facet) of  the other, and adjacency relations 
between cells are preserved. The space-dual of  cell c, denoted c*, is that cell 
which corresponds to c under ~ .  

The complex C* space-dual to C is by no means unique. However, up to the 
topological property which we intend our data structure to represent--adjacency 
relations between cel ls-- the numerous complexes that serve as space-dual to C 
in T are identical. For our puposes, C* is well defined. Furthermore, (C*)* = C. 

The 3-complexes treated in this paper  are regarded as subdivisions of the 
three-dimensional sphere S 3= {(x, y, z, w)llx2+y2+ z2+ w 2= 1}, which is R 3 plus 
a point at infinity. A subdivision C of the closed ball D 3 is obtained by omitting 
one 3-cell c. The space-dual C*, a subdivision of R 3, is obtained by ornitting the 
vertex c* from S 3. 

3. Traversal Functions. In this section we present the five traversal functions 
Fnext, Enext, Spin, Clock, and Sdual. We call these traversal functions because 
they provide the means of traversing or moving about the cells of  a complex. 
The first two traversal functions are used to move from cell to adjacent cell. Spin 
and Clock are used to change a local sense of  rotation, so Fnext and Enext know 
the direction in which each is to traverse. The function Sdual is used to move 
between a complex and its space-dual. Since edges and facets interchange in the 
space-dual, the roles of  Fnext and Enext are interchanged in going between C 
and C*. 

3.1. Basic Traversal Functions. Let f be a facet of  complex C. The combinatorial 
boundary o f f  contains a ring of edges e ~ �9 .e n-1 where edges e i and e i+1 are 
adjacent in C (addition modulo n). We call this ring, denoted gy, the edge-ring 
of facet f. gy can be assigned either of  two senses of  rotation whereby we can 
distinguish between the two edges belonging to the ring that are adjacent to edge 
e ~. The particular sense of  rotation assigned to gf is called the orientation of 
facet f We write ~f = (e ~ �9 �9 �9 e "-1) to indicate the edge-ring with sense of  rotation 
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such that, of  the two edges e i-I and e i+1 of ~qf adjacent to e ~, e i-1 precedes and 
e i+1 follows, edge e ~. 

Similarly we define the facet-ring of edge e, denoted o%e, to be the ring of facets 
0%~ = ( f o . . . f m - 1 )  incident to e in C. Facets f ~-~ a n d f  i+1 of Jze are adjacent to 
facet f i ,  and f i -1  precedes, while f~+l follows, facet f~. 

The atomic unit on which queries are formulated is called a facet-edge pair. 
This is a pair consisting of  a facet f and an edge e, such that f and e are incident. 
The edge component e of  a is denoted ea, and the facet component f of a is 
denoted f~. The facet-edge pair a determines two rings in C, these being edge-ring 
~jo and facet-ring O~e: There are four versions of a which derive from the two 
senses of rotation that each of its two rings can assume. Henceforth by facet-edge 
pair we mean one such version--each of the two rings determined by the facet-edge 
pair has a fixed sense of rotation. ~a denotes the edge-ring ~yo with sense of 
notation determined by a; facet-ring o%a is similarly defined. 

Given facet-edge pair a, it is useful to distinguish between the two vertices 
incident to ea (its endpoints), and between the two polyhedra incident to f , .  To 
distinguish between the endpoints, observe that the orientation of ~a directs edge 
e, in a natural way. We call that vertex which serves as the endpoint both to ea 
and to the edge that precedes ea in ~,, the origin of e,, denoted aOrg. Similarly, 
the destination aDest of e, is that vertex incident both to e, and to the edge that 
follows ea in ~f,. 

To distinguish between the polyhedra incident to f~, we assume edge e~ 
possesses a sense of rotation, called the spin of  a. When the edge is viewed from 
destination toward origin, its spin is left-handed (right-handed) if its sense of 
rotation appears clockwise (counterclockwise). Where the spin of a is left-handed 
(right-handed), we define H~ + to be that open half-space determined by facet fa 
from which the orientation of ~, appears clockwise (counterclockwise). We then 
define the positive polyhedron of a, denoted aPpos, to be that polyhedron p of 
C incident to f~ for which points of the interior of  p arbitrarily close to the 
relative interior o f f ,  lie in H~ +. The negative polyhedron aPneg of a is the other 
polyhedron of C incident to f , .  Figure 1 illustrates some of the definitions 
presented so far in this section. 

We are now able to define the traversal functions Fnext, Enext, Spin, and Clock. 
Each is applied to some facet-edge pair and returns a new facet-edge pair. 

Fnext is defined by a ' =  aFnext where e~, = ea and facet fa ,  follows f~ in the 
facet-ring 0%0- The sense of rotation in the rings of 0%,, is assigned so that ~ ,  = 0%a 
and a'Org = aOrg. In particular, a and a'  have the same spin. 

Enext is defined by a'  = aEnext where f~, =fa  and edge ea, follows edge e, in 
the edge-ring ~ .  The rings of a' are directed so that ~ ,  = ~a and a'Ppos = aPpos. 
Observe that a and a'  necessarily have the same orientation. 

Spin is defined by a ' =  aSpin where a'  and a are different versions of the same 
facet-edge pair - - that  is, e,, = e~ and f , ,  = f , - - f o r  which the sense of rotation of 
0%a' is opposite that of ffa, and the senses of rotation of ~,,  and ~ are the same. 

Clock is defined by a ' =  aClock where a'  and a are different versions of the 
same facet-edge pair, for which the senses of  rotation of  ~,, and ~ ,  are opposite 
those of ~a and 0%~, respectively. 
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e ~ aDest 

e 3 

aOrg 

Fig. 1. We call this a handcuff diagram. It pictures a region of some complex. The "handcuff" 
represents facet-edge pair a. The placement and direction of its circular loop indicates the clocked 
facet component fa, and its elliptical loop the space-oriented edge component e a. In this example, 
~ = ( f o . . .  f3)  and ~a = ( e ~  eS), where fa = f o  and e a = e ~ Polyhedron aPpos lies above the 
page and contains facets f o  and f l ,  while aPneg lies behind the page and contains f 0  and f3. 

Figure 2 illustrates these various traversal functions. Traversal functions Spin 
and Clock can be viewed as follows. Let a be a facet-edge pair with orientation 
and spin. The effect of  Spin is to reverse spin. This reverses the sense of  rotation 
in the facet=ring. The effect of  Clock is to reverse orientation. This reverses the 
direction of  edge ea, as well as the sense of  rotation in both facet- and edge-rings. 
Each of  the four versions of  a facet-edge pair has unique orientation and spin. 
Its orientation and spin are used as handles to manipulate the sense of  rotation 
in its two rings. 

o ,,ext G ' ) ' " ( " )  a ex, 

aClock 

aSpin 

Fig. 2. This handcuff diagram illustrates the four traversal functions Clock, Spin, Fnext, and Enext. 
The region pictured is a winged-edge, consisting of  five edges and (part of) two facets (to the left 
and right of  the vertically drawn line). We assume these two facets to belong to a common polyhedron 
that lies behind the plane of  the page, this being aPpos in this figure. 
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Traversal functions F n e x t  and Enex t  enable us to move from facet-edge pair 
to adjacent facet-edge pair. Facet-edge pairs a and b are said to be adjacent if 
either: 

(i) f~ andJ~ are adjacent in the facet-ring ff~ (=fib),  
(ii) e, and eb are adjacent in the edge-ring ~ (= ~b). 

The facet-edge pair a is adjacent to the facet-edge pairs aFnext ,  a F n e x t  -1, aEnex t ,  

and a E n e x t  -~. 

The following relations hold among the traversal functions: 

(A1) 
(A2) 
(A3) 
(A4) 
(A5) 
(A6) 
(A7) 
(A8) 
(A9) 

(A10) 
(Al l )  
(A12) 
(A13) 
(A14) 

aSpin 2= a. 

aC lock  2 = a. 

aSp inClock  = aClockSpin .  

a F n e x t  - ~ = aClockFnex tClock .  

a F n e x t  -1 = aSpinFnextSpin .  

a E n e x t  -1 = aClockEnex tC lock .  

a E n e x t  -1 = aClockSp inEnex tClockSp in .  

a C l o c k F n e x t  i ~ a for any i. 
a S p i n E n e x t  ~ # a for any i. 
a C l o c k E n e x t  ~ # a for any i. 
aSpinFnex, t ~ # a for any i. 
a ~ C iff a F n e x t  ~ C. 

a c C iff aClock  ~ C. 

a ~ C iff aSpin ~ C. 

3.2. Space-Dual i ty .  The traversal function Sdua l  is applied to a facet-edge pair 
a of complex C, and returns a second facet-edge pair aSdua l  belonging to C*. 
The edge component of a S d u a l  is easd,a~ = f ~ ,  and its facet component iSfasduaZ = 

e~. In order to define the particular version of a S d u a l - - t h a t  is, the sense of 
rotation of its two rings--we first extend the notion of space-duality to facet- 
and edge-rings. 

Given edge-ring ~ = (e ~ �9 �9 e~ -1)  of C, its space-dual is the facet-ring (~,)* = 
(e ~ �9 �9 e,~ -1.) of C*. The space-dual of a facet-ring is similarly defined. The rings 
of aSdua l  are then assigned a sense of rotation such that 

$~Sd .a i= (~ )  * and W%s~u~(=(G)*. 

The relation between a and aSdua l  can be grasped by imaging the two facet-edge 
pairs superimposed, edge ea piercing facet faSdual orthogonally, and facet fo 
pierced by edge eaSdual orthogonally. Edge easau,t is directed from aPneg  toward 
aPpos. Facet-ring J:~saual moves from aOrg  toward aDest ,  so aDes t  is the space- 
dual of aSduaIPpos.  Facet-edge pairs a and a S d u a l  necessarily have the same 
orientation. This is depicted in Figure 3. 
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aSdual 

Fig. 3. This diagram depicts the relation between facet-edge pairs a and aSdual. Facet fa is a square 
protruding from the page, and so appears foreshortened. 

The following relations hold between Sdual and the other traversal functions: 

(A15) aSdual 2 = a. 

(A16) aClockSdual = aSduaIClock. 

(A17) aSpinSdual = aSdualClockSpin. 

(A18) aFnext  = aSdualEnextSdual. 

(A19) aEnext  = aSduaIFnextSdual. 

(A20) a ~ C iff aSdual ~ C*. 

Relation (A16) indicates that changing the sense of rotation in both ffa and ga 
corresponds to changing the sense of rotation in both ~aSdu~t and g,Sdua~. Relation 
(A17) implies that a change in the sense of rotation of 9r~ in C corresponds to 
a change in the sense of rotation of g~sa,at in C*. Relation (A18) indicates that 
the rings ~ r  and gaSduat rotate in the same direction. Relation (A19) defines 
Enext  in terms of Fnext and Sdual, so maintaining the facet-rings in both C and 
C*, as well as the correspondence between each cell and its space-dual, is sufficient 
to maintain the edge-rings in both complexes. The facet-edge data structure uses 
this fact. 

4. The Facet-Edge Data Structure. In this section we present the facet-edge data 
structure. The scheme for representing a polyhedral subdivision and simul- 
taneously its dual is described. The implementation of the facet-edge functions 
is presented. For the implementation, it is useful to first introduce a new operator 
called Srot. 

4.1. Traversal Function Srot. Operator Srot (for Space ROTation) is defined by 

aSrot = aSdualSpin = aSpinClockSduaL 

Facet-edge pair aSrot is called the rotated version of a. Its edge component is 
directed from aPneg toward aPpos, and its spin is opposite the spin of a. Observe 
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the following relations: 

aSrot 2 = aSduaISpinSpinClockSdual 

= aClock, 

astor 3 = aClockSrot 

= aClockSpinClockSdual 

= aSpinSdual 

= aSrot -~, 

aSrot 4 = a. 

Srot plays a significant role in the facet-edge structure. Given facet-edge pair 
a, the two facet-edge pairs of ~a adjacent to a are of the form aSrot~ and" 
aSrot2Fnext = aFnext- lClock.  The two facet-edge pairs of ~a adjacent to a are 
of the form aSrot 1FnextSrot = aEnex t -  1 Clock and aSrot 3 FnextSrot = aEnext. 

By associating with a the facet-edge pairs aSrotrFnext for r = 0, 1, 2, 3, we can 
obtain the four facet-edge pairs adjacent to a (assuming we can move easily 
between a subdivision and its dual). By storing the aSrotrFnext in a facet-edge 
node associated with a, the four facet-edge pairs adjacent to a are available in 
constant time. 

4.2. Implementation o f  the Traversal Functions. Polyhedral subdivision C (and 
simultaneously subdivision C*) are represented by the facet-edge data structure. 
The facet-edge pairs (with spin and direction) comprising C and C* may be 
partitioned into groups of  eight, Where facet-edge pair a is an arbitrary member 
of  some group, the facet-edge pairs of the group are of the form aSrotrSpin s 
where re{0 ,  1,2,3} and so{0,  1}. An arbitrary member ~i of each group is 
designated the canonical representative of the group. 

A group is represented by a facet-edge node n, an array consisting of elements 
n[0] through n[3]. Element n[r] corresponds to the facet-edge pair ~Srot r. The 
facet-edge pair ~SrotrSpin s is represented by the triplet (n, r ,s) ,  where r e  
{0, 1, 2, 3} and s c {0, 1}. Such a triplet is called a facet-edge reference. The  facet- 
edge reference can be viewed as a pointer to the array element n[r], plus a bit 
s indicating whether Spin is to be applied to the facet-edge pair ~Srot r which 
corresponds to n[r]. 

Each element n[r] of  the facet-edge node contains two fields, data and next. 
Field data is used to hold application-dependent information corresponding to 
~Srot r such as geometry, and need not concern us. Field next contains a facet-edge 
reference to aSrotrFnext. Given arbitrary facet-edge reference (n, r, s), the func- 
tions Srot, Spin, and Fnext  are given by the formulas 

(n, r, s)Srot  

(n, r, s)Spin 

( n, r, s ) Fnext  

where the r and s components 

= ( n , r + l + 2 s ,  s), 

= ( n , r , s + l ) ,  

= ( n[r + 2s].next)Srot2SSpin s, 

are computed modulo 4 and 2, respectively. 
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Observe that in the third formula, we have 

( n, r, O ) Fnex t  = ( n [ r ]. next  ) 

and 

(n, r, 1) Fnex t  = ( n[ r + 2 ] .next  ) Srot2 Spin 

= (n, r + 2, O) FnextSrot2Spin  

= (n, r + 2, O) FnextClockSpin  

= (n, r, O)ClockFnextClockSpin  

= (n, r, O)Fnext-XSpin.  

11 

The last equation indicates that moving forward around a facet-ring is the same 
as moving backward around the same ring given with a reverse sense of  rotation. 

The remaining traversal functions are defined in terms of  Srot, Spin, and Fnex t  
as follows. Observe that all traversal queries take constant time. 

(n, r, s ) Clock = ( n, r, s ) Srot 2 

= (n, r +  1 +2s,  s )Sro t  

= (n, ( r + l + 2 s ) + l + 2 s ,  s) 

= ( n , r + 2 ,  s). 

(n, r, s ) F n e x t  -~ = (n, r, s )ClockFnex tClock .  

( n, r, s ) Sdua l  = (n, r, s ) SrotSpin 

= ( n ,  r +  1 +2s,  s + l ) .  

( n, r, s ) Enex t  = (n, r, s ) SdualFnex tSdual .  

( n, r, s) E n e x t  -1 = ( n, r, s) ClockEnextClock .  

5. Primitive Construction Operators. In this section we present the primitive 
construction operators make_face t_edge ,  splice_facets, and splice_edges. T he  first 
operator obtains and initializes a new facet-edge node, and returns a facet-edge 
reference to one of the eight facet-edge pairs represented by the node. Operators 
splice_facets and splice_edges are used to modify the facet- and edge-rings of  a 
complex. 

Two caveats accompany these operators. First, no class of  complexes is closed 
with respect to these operators: their use does not guarantee that complexes are 
produced. Operator  make_ face t_edge  does not, in fact, create a complex at 
a l l - -edge ea of  the facet-edge pair a it returns is incident to facet fa and to no 
other facet, and so does not belong to the boundary  of a polyhedron. Furthermore, 
misuse of  splice_facets or splice_edges can lead to nonsense objects. Second, these 
primitives are not easy to use in constructing complexes of  complexity. The reader 
need not be vexed. In Section 6 we define higher-level operators in terms of these 
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primitives which make the task of construction quite feasible (if not also easy). 
Because of  this, we make no attempt to protect the user who prefers to create 
objects from these most primitive operators. 

To help describe these primitives, we introduce some notation for manipulating 
rings. The notation allows us to describe the manipulation of  complexes in terms 
of the essentially one-dimensional manipulation of rings. Let qb = ( a l . . .  am) and 
qb'= (am+l" " "an) be two rings with all ai distinct. Then concat(d9, d~') represents 
the ring 

concat(  dg, r = ( al �9 �9 �9 an). 

The operation split(alP, ap) represents the pair of rings 

split(alP, ap) = ((al"  "" ap_~), (ap.  . �9 am)),  

where 0 < p-< m + 1. Operations f irst  and second are used to access the first and 
second rings of the pair split(alp, ap), respectively. Furthermore, rings qb and qb' 
are equivalent, denoted qb =-- alp', if they represent the same cycle of elements--that 
is, where = n, there exists an integer j such that, for each 1 - i-< n, the 
ith element o f ~  is identical to the (i + j ) th  element o f~ ' ,  modulo n. By convention, 
~-~ denotes the ring ~-a = ( a F n e x t ~  -1 �9 �9 �9 aFnex t  n- l )  where [~a[ = n. ~a is 
similarly defined. 

5.1. Make_face t_edge .  Construction primitive make_face t_edge  returns a facet- 
edge reference to a new (canonical) facet-edge & Relations (A) of  Section 3 hold 
among the eight facet-edge pairs aSrotrSpin s, where r ~ {0, 1, 2, 3} and s c {0, 1}. 

Primitive make_ face t_edge  is implemented as follows. Operation 
make_ face t_edge(  ) obtains a free node n. Element n i t ]  is assigned the facet_edge 
reference (n, r, 0) for re{0 ,  1, 2, 3}. In [La] it is shown that relations (A) hold 
over the eight versions of the facet-edge pair d. 

5.2. Splice_facets. The operation splice_facets(a,  b) takes as arguments two 
facet-edge pairs, and returns no value. The operation affects the facet-rings ~-a 
and ~b as follows: 

(a) if the two rings are distinct, it combines them into one ring; 
(b) if the rings are identical, it breaks the ring into two distinct rings. 

The arguments determine where the facet-rings are to be cut and joined. In rings 
~-a and ~b, the cuts occur immediately after facets fa and fb, respectively. If the 
two rings are distinct, the distinct edges ea and eb are coalesced into one edge, 
and the two rings combined at the cuts. If  the two rings are identical, the edge 
ea (= eb) is cleaved lengthwise into' two new edges, and each serves as pivot to 
one of the two new facet-rings resulting from the cuts. The operator is illustrated 
in Figure 4. 
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O b , , ~  

~ splice_facets 

Fig. 4. This diagram illustrates the effect operator splice_facets has upon facet rings. 

The operation can be viewed as a way of replacing certain facet-rings with 
others. 

splice_facets(a, b) 
{ 
if(~o-= ~b) 

replace ffa by the two rings split(~aFnext, bFnext); 
else 

replace ~a and fib by concat(~aFnext, ~bFnext); 
} 

Operation splice_facets(a, b) is accomplished by interchanging the value of 
aFnext with bFnext. The operation affects the Fnext relation in complexes Ca 
and Cb (where by Ca we mean the complex to which cells fa and ea belong). Let 
Fnext denote the Fnext relation immediately after the operation is performed. 
Where a = aFnextClock and /3 = bFnextClock, relations Fnext (immediately 
before the operation) and Fnext are related as follows: 

(B1) aFnext = bFnext. 
(B2) bFnext = aFnext. 
(B3) aFnext = flFnext. 
(B4) flFnext = aFnext. 
(B5) aClockSpinFnext = flSpin. 
(B6) bClockSpinFnext = c~Spin. 
(B7) c~ClockSpinFnext = bSpin. 
(B8) ~ClockSpinFnext = aSpin. 
(B9) yFnext = yFnext for all other facet-edge pairs y. 

The implementation for splice_facets(a, b) is quite simple. In the following we 
assume the last four assignments are performed simultaneously; in practice, some 
temporary variables would be used when swapping values. 
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splice_facets(a, b) 
{ 
assume (n, r, s) = a; 
assume (n', r', s') = b; 
( v, p, tr) ~ aFnextClock; 
(v', p', o-') ,:- bFnextClock; 
n [ r + 2s]. next ~ bFnextClockSSpin s; 
n'[ r' + 2s']. next ~- aFnextClockS'Spin ~'; 
v[p + 2tr].next ~- bClock~+l Spin'~; 
v ' [p '+  2tr'].next ~ aClock'~'+l Spin~'; 
} 

Correctness of implementation is shown by proving that the procedure 
splice_facets results in the (B) relations. This is done formally in [La]. 

5.3. Splice_edges. The operation splice_edges(a, b) takes as arguments two 
facet-edge pairs, and returns no Value. The operation modifies the edge-rings ~a 
and Sb as follows: 

(a) if the two rings are distinct, it combines them into one ring; 
(b) if the rings are equivalent, it breaks the ring into two rings. 

As with splice_facets, the arguments to splice_edges determine where edge-rings 
are to be cut and joined. In rings Sa and Sb, cuts occur immediately after edges 
ea and e~,, respectively. Figure 5 illustrates the effect of splice_edges. 

The operator can be seen as replacing certain edge-rings with others. 

splice_edges(a, b) 
{ 

replace $~ by the two rings split($~Enext, bEnext); 
else 

replace Sa and Sb by concat($~next, $b~ne~t); 

~ splice_edges 

Fig. 5. This diagram illustrates the effect operator splice-edges has upon edge-rings. 
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Operation splice_edges(a, b) affects the Enext  relation in complexes Ca and 
Cb (or equivalently, the Fnext  relation in C* and C*). Let Enex t  denote the 
Enex t  relation immediately after the operation. Where a = aEnex tClock  and 
fl = bEnextClock,  Enex t  (before the operation) and Enext  are related as follows: 

(C1) aEnex t  = bEnext. 
(C2) bEnext  = aEnext.  
(C3) a E n e x t  = ~Enext .  
(C4) f lEnex t  = aEnext .  
(C5) aSpinEnext  = flClockSpin. 
(C6) bSpinEnext  = aClockSpin.  

(C7) aSpinEnex t  = bClockSpin. 

(C8) f lSpinEnext  = aClockSpin. 

(C9) yEnex t  = yEnex t  for all other facet-edge pairs 3'. 

As we might expect, an edge-ring of one complex can be modified by operating 
on the corresponding facet-ring of the dual complex. Indeed, splice_edges is 
implemented in terms of splice_facets. 

splice_ edges ( a, b) 
{ 
splice_facets( aSdual, bSdual);  
} 

To show correctness of this implementation, it suffices to show that the (C) 
relations are satisfied by splice_facets(aSdual,  bSdual).  Below we show this for 
(C2,4,6, 8); the remaining relations (except for (C9)) are shown similarly, 
whereas (C9) holds since splice_facets affects no more than four facet-edge 
mode fields. 

Operation splice_facets(aSdual,  bSdual) establishes the following relations, 
where Fnex t  denotes the Fnext  relation immediately after the operation: 

(B2') bSdualFnext  = aSdualFnext .  
(B4') bSduaIFnextClockFnext  = aSdualClock. 
(B6') bSduaISpinClockFnext  = aSdualFnextClockSpin.  
(B8') bSdualFnextSpinFnext  = aSdualSpin. 

Relation (Bi'), which derives from relation (Bi) of Section 5.2, is then used in 
showing (Ci) below. 

(C2) bEnext  = bSdualFnext  Sdual  

= aSdualFnextSdual  

= aEnext.  

(C4) ~ Enex t  = b Enex tClockEnex t  

= bSdualFnextSdualClockSdualFnext  Sdual  

= bSduaIFnex tClockFnex tSdual  

= aSduaIClockSdual  

= aClock 

= aEnext .  
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(C6) 

(c8) 

bSpinEnext = bSpinSdualFnext Sdual 

= bSdualSpinClockFnextSdual 

= aSdualFnextClockSpinSdual 

= aSdualFnextSdualSpin 

= aEnextSpin 

= ceClockSpin. 

~SpinEnext = 
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b Enext ClockSpin Enext 

bSdualFnextSduaIClockSpinSduaIFnext Sdual 

bSduaIFnextSpinFnext Sdual 

aSduaISpinSdual 

aClockSpin. 

6. Manipulating Individual Polyhedra. It is worthwhile to be able to manipulate 
the individual polyhedra of a complex that is represented by the facet-edge 
structure. First, we would permit the traversal of the combinatorial boundary of 
an arbitrary polyhedron, while ignoring the rest of  the complex that contains the 
polyhedron. Such traversal should be accomplished using functions appropriate 
for moving around a two-dimensional subdivision--the facet-edge functions are 
too general to be appropriate. In this section we reduce each of a small set of 
such functions to the facet-edge functions. The set of functions we choose to 
work with are the edge (traversal) functions of the quad-edge structure. 

Second, we would permit the construction of the facet-edge representation of 
a single (connected) polyhedron. The construction should be accomplished using 
operators appropriate to the task the use of the facet-edge operators would be 
overkill. In this section we reduce the edge (construction) operators of the 
quad-edge structure to the facet-edge operators. Using these edge operators 
implemented in terms of the facet-edge operators, polyhedra can be built that 
are represented by the facet-edge structure. Each such polyhedron can be regarded 
as a primitive complex. 

Third, we would permit two polyhedra to be glued together along a polygon 
of each. Tke complexes to which each belongs would thus be combined, or 
modified if they are one and the same. With the meld operator primitive complexes 
built with the edge operators can be combined to form nontrivial complexes. 

6.1. Traversing the Boundary of  a Polyhedron. In this subsection we concern 
ourselves with traversal in the combinatorial boundary Op of  an arbitrary polyhe- 
dron p belonging to complex C or to C*. We first briefly present as background 
the elements of the quad-edge structure that we will need. The presentation is 
intended as a reminder to the reader, and at places applies only to traversal of 
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orientable surfaces; the reader is encouraged to read [GS] if not already familiar 
with this seminal work. We then present an edge representation scheme whereby 
an edge e eap, viewed as a cell of the two-dimensional complex ap, can be 
represented in terms of the facet-edge structure that models C and C*. The edge 
representation scheme is then used as a basis for describing each edge function 
in terms of its affect upon the facet-edge structure. 

6.1.1. The Edge Functions. Where p is a polyhedron of complex C, the 2- 
complex Q = ap is a subdivision of the sphere. Given edge e e Q, the orientation 
(with respect to Q) and direction of e can be chosen independently, so there are 
four oriented, directed versions of e. We write ~p to denote any such version, or 
simply ~ when polyhedron p is known by context. Edge e e C is said to underlie 
edge ~ in Q. 

The direction of ~ ~ Q determines the edge's vertex of origin (~Org) and vertex 
of destination (~Dest), in the natural way. In addition, the orientation and 
direction of ~ together determine the edge's left polygon (~Left) and right polygon 
(~Right). Specifically, where Q is coherently oriented under the orientation of d, 
~Left is that polygon of Q incident to ~ whose orientation agrees with ~'s 
direction; ~Right is the other polygon of Q incident to & The orientation of the 
cells ~Org, ~Dest, ~Left, and ~Right are taken by definition to agree with that 
of & 

There are three primitive edge functions--Flip, Sym, and Onext--in terms of 
which the remaining edge functions of the quad-edge structure (except for Dual) 
are defined. The flipped version ~Flip of edge ~ has orientation opposite that of 
e, but the two edges have the same direction. The symmetric version ~Sym of 
has direction opposite that of ~, but the edges have the same orientation. Further- 
more, considering the cycle of edges (in Q) incident to ~Org, we define dOnext 
to be that edge that immediately follows ~ in that cycle, where the direction of 
the cycle is induced by the orientation of & 

The dual of Q=ap is defined to be a 2-complex Q* obtained from Q by 
interchanging vertices and polygons, and which preserves incidence relations. 
The dual of edge ~ e Q is an oriented and directed edge ~Dual e Q*, for which: 

(D1) ~DualDual = 
(D2) ~DuaISyrn = ~SymDual. 
(D3) ~DualFlip = ~FlipSymDual. 
(D4) ~DualOnext = ~OnextSymDual. 

(This definition of dual is equivalent to that of [GS] where ~Lnext, the edge 
following ~ in ~Left, is defined by ~Lnext = ~SymOnext-1.) Dual is extended to 
vertices and polygons by defining (~Org)Dual= ~DualLeft and (~Left)Dual= 
~DuaIOrg. Dual establishes a correspondence between the vertices (edges, 
polygons) of Q, and the polygons (edges, vertices) of Q*. 

Since ~ and ~Dual have opposite orientation, it is convenient to define a rotated 
version ~Rot of ~, given by 

~Rot = ~FlipDual = ~DualFlipSym. 
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Edge ~Rot is the dual of ~, directed from ~Right to ~Left, and oriented so that 
moving around ~Right corresponds to moving around ~RotOrg. 

To describe later how a subdivision may be modified, it is convenient to define 
~Org to be the ring of edges in Q incident to ~'S vertex of origin. More formally, 
~Org is the cycle under Onext of e. Polygon ~Left is defined in terms of the ring 
of edges in Q* incident to the vertex dual to ~'s left polygon--~Left is defined 
to be the ring ~OnextRotOrg. 

6.1.2. The Edge Representation Scheme. Let p be a polyhedron of complex C 
or C*, where C and C* are represented by the facet-edge structure. Where primal 
edge ~p ~ ap and d ~ {0, 1}, edge ~pDual d is represented by the pair (a, d), called 
an edge reference. The first component is a reference to the facet-edge pair a, 
determined by the following: 

(i) Edge ea underlies ~p. 
(ii) Facet fa underlies ~pLeft. 

(iii) The orientation of a coincides with the orientation of dp. 
(iv) aPpos = p. 

The second component d, called a duality bit, has value 0 (1) itt the edge being 
represented is primal (dual), and is identical to the exponent d of ~pDual d. The 
scheme is depicted in Figure 6. 

Each edge ~pDual d, as p ranges over the polyhedra of C u C* and d ~ {0, 1}, 
is uniquely and unambiguously represented by an edge reference. Given edge 
~pDual d, conditions (i) and (ii) uniquely determine the components of a, then 
(iii) determines the orientation of a, then (iv) the orientation of a. On the other 
hand, given (a, d), consider first the edge that (a, 0) represents. Conditions (i) 
and (iv) together determine ~p, then (iii) determines the orientation of ~p, then 
(ii) the direction of ~p. Finally, since ~p is unambiguously represented by (a, 0) 
and edge ~pDual is well defined, (a, d) unambiguously represents edge ~pDual d. 

6.1.3. Implementation of  the Edge Functions. One purpose of the edge rep- 
resentation scheme is to enable the traversal of the boundary of polyhedron p 
using the underlying facet-edge structure. Each edge function can be described 

Fig. 6. This diagram illustrates the edge-reference scheme. The winged-edge corresponds to a region 
of  Q = op, where p lies behind the page. The facet-edge pair a depicted by the handcuff is such that 
edge ~ is given by (a, 0), and ~Dual by (a, 1). 
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in terms of how it affects an edge reference. More precisely, for edge function 
Op, there exists a sequence of facet-edge functions Op' for which 

(a, d )Op =(aOp' ,  d ) .  

The following characterizes each edge operator in this fashion: 

(El) ( a, O) Flip = ( aFnextSpin, 0). 
(E2) (a, O)Sym = (aFnextClock, 0). 
(E3) (a, O)Onext = (aEnext-~ FnextClock, 0). 
(E4) (a, d )Dua l  = (a, 1 - d). 
(E5) (a, 1)Flip = (aSpinClock, 1). 
(E6) (a, 1)Sym = (aFnextClock, 1). 
(E7) (a, 1)Onext = (aEnext  -~, 1). 

The correctness of this scheme can be verified by showing that the edge operators 
so characterized possess the properties stated in Section 2.3 of [GS]. For instance, 
where ~ is represented by (a, 0), we have 

~vtip 2 = ( a, O) FtipFtip 

= (aFnextSpinFnextSpin, O) 

=(a, 0) 

=~ 

The derivation of (El-7) is straightforward. Figure 7 pictorially motivates 
equations (El-3). Equation (E4) follows from the edge representation scheme. 

( 

( 

~ aFlip 

) _ ~  agym 

aOnext 

Fig. 7. This diagram illustrates the use of facet-edge pairs to represent directed, clocked edges in the 
boundary Q of a polyhedron. Each handcuff stands for facet-edge pair a where (a, 0) represents the 
directed, clocked edge aOp with which the handcuff is labeled. 
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Equations (E5-7) follow from the relation developed so far in this section. For 
instance, (E5) is derived as follows (see [La] for the remaining derivations): 

(a, 1)Flip = (a, O)DuaIFlip (E4) 

= (a, O)FlipSymDual (D3) 

= (aFnextSpin, O)SymDual (El)  

= (aFnextSpinFnextClock, O)Dual (E2) 

= (aSpinClock, O)Dual (A1, A5) 

= (aSpinClock, 1). (E4) 

6.2. Constructing a Polyhedron. A polyhedron can be characterized by its com- 
binatorial boundary, this being a two-dimensional subdivision of the sphere. A 
facet-edge structure representing a single polyhedron is most easily created and 
modified by manipulating the polyhedron's boundary. We choose the edge 
operators of  the quad-edge structure as the means of performing these manipula- 
tions. These edge operators handle (in particular) the class of open subdivisions 
of the sphere, of which the (closed) subdivisions may be regarded as a special 
case. The construction of a polyhedron involves using the edge (construction) 
operators to bullet open subdivisions incrementally until one is produced which 
coincides with the boundary of the target polyhedron. In this section we describe 
the effect each edge operator has upon the facet-edge structure by giving an 
implementation of each operator in terms of the facet-edge operators. 

During the construction of polyhedron p, open subdivision Q is maintained 
under the edge-representation scheme. It is designated the primal subdivision, 
and its cells, and only its cells, may eventually belong to the target Op. 

6.2.1. Open Subdivisions. An open k-cell (for our purposes) is an open subspace 
of the sphere S 2 homeomorphic to R k. An open complex S of S 2 is a finite 
collection of open cells of S such that: 

(i) the cells of S are pairwise disjoint, 
(ii) for each cell c 6 S, bd c is the union of elements of S, and 

(iii) if c, d ~ S and cl c n cl d # Q, then cl c n cl d is the union of elements of S. 

Here cl c denotes the closure of cell c. An open complex whose union is S 2 is 
an open subdivision (of the sphere). 

Let S be an open subdivision such that for each cell c ~ S, the closure cl c is 
a (closed) cell. S corresponds to a (closed) subdivision of the sphere, obtained 
by replacing each cell c ~ S by its closure cl c. To build a polyhedron, the edge 
operators are applied successively to construct new elementary open subdivisions, 
and to combine and modify existing open subdivisions. The process proceeds 
until an open subdivision is produced that corresponds to the boundary of the 
target polyhedron. 
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6.2.2. Elementary Open Subdivisions of a Sphere. There are two elementary 
subdivisions of the sphere. The first consists of a single edge 8 that is not a loop, 
and is denoted Se (subscript e stands for "edge"). Where 8 e St is some arbitrary 
(but fixed) oriented and directed edge, we have 80rg ~ 8Dest and 8Left = 8Right, 
The following properties hold in S~. 

(F1) ~Onext = ~. 
(F2) ~SymOnext = ~Sym. 
(F3) 8FlipOnext = 8Flip. 
(F4) 8FlipSymOnext = 8FlipSym. 

The other elementary open subdivision of the sphere consists of a single edge 
8' that is a loop, and is denoted S~ (subscript 1 stands for "loop"). S~ is dual to 
open subdivision S~; there exists a version of 8' for which edges ~' and ~Sdual 
represent identical open subdivisions. Since ~' is a loop, we have ~'Org = ~'Dest 
and ~'Left ~ ~'Right. Writing ~Dual for ~', the following properties hold in $1: 

(F5) 8DualOnext = dDuaISym. 
(F6) ~DuaISymOnext = ~Dual. 
'(F7) 8DualFlipOnext = 8DualFlipSym. 
(F8) 8DuaIFlipSymOnext = 8DualFlip. 

The operator make_edge builds a data structure representing both S~ and S~, 
and returns an edge reference to one version of Sr (nonloop) edge. Open 
subdivision S~ is primal. Its implementation is given as follows: 

make_ edge ( ) 
{ 
a ~- make_facet_edge( ); 
b ~ make_facet_edge( ); 
splice_facets ( a, b ); 
splice_edges(a, bCtock ); 
return((a, 0)); 
} 

The operation 8~  make_edge() obtains two new facet edge nodes. In one of 
the nodes it designates a facet-edge pair a for which (a, 0) represents ~, while in 
the other node it designates facet-edge pair b for which (bSpin, 0) represents 
~Flip. Operation splice_facets(a, b) results in 

(i) aFnext = b, 
(ii) bFnext = a, 

while operation splice_edges(a, bClock) results in 

(iii) aEnext = bClock, 
(iv) aEnext -1 = bClock. 

Edge ~ under the edge-representation scheme is depicted in Figure 8. 
Relations (i)-(iv) ensure that ~ ~ make_edge( ) does indeed build a facet-edge 

structure representing both Se and S~, and that edge ~ is represented by (a, 0). 
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Fig. 8. This diagram depicts the open subdivisions under the edge-reference scheme. The left figure 
depicts edges ~ c S e and ~' ~ $1, superimposed on the same sphere to suggest how they are related. 
The center figure depicts the facet-edge representation for ~ where S e is primal (constructed by 
make_edge), while the right figure depicts the facet-edge representation for loop ~' where Sj is primal 
(constructed by make_loop). 

This is verified by showing that  relations (F1-8)  are satisfied. For  instance, (F1) 
is shown as follows (for other  proofs  refer to [La]):  

~Onext = ( a, O) Onext  

= (aEnex t - lFnex tClock ,  O) 

= (bClockFnextCIock, 0) (iv) 

= (bFnext  2, O) 

= (a, 0) (i) 

=~. 

The opera tor  make_loop also builds a facet-edge structure representing both 
Se and S~, but  it returns an edge-reference to that version o f  S~'s loop that 
corresponds to ~Dual (where ~<--make_edge()) .  Open subdivision Sl is primal. 
Its implementat ion is given as follows: 

make_loop( ) 
( 
a *- make_facet_edge(  ); 
b ~ make_facet_edge(  ); 
splice_facets(a, b); 
return ((a, 0)); 
} 

The opera t ion ~Dual <-- make_loop( ) obtains two new facet-edge nodes. In one 
node  it designates facet-edge pair  a for which (a, 0) represents edge ~Dual, and 
in the other  node  a facet-edge pair  b for which (bSpin, 0) represents ~DualFlip. 
Operat ion splice_facets(a, b) results in 

(i) aFnext  = b, 
(ii) bFnext  = a, 

while the absence o f  a call to splice_edges results in 

(iii) aEnext  = a, 
(iv) bEnext  = b. 
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Edge ~Dual under the edge-representation scheme is depicted in Figure 8. 

6.2.3. Modifying Open Subdivisions. The operator splice is used to modify open 
subdivisions. The operation splice(a, b) takes as arguments two edges a and b, 
and returns no value. The operation affects the two rings aOrg and f)Org and, 
independently, the two rings aLeft and bLeft. In each case, if the two rings are 
distinct, splice combines them into one ring; and if the two rings are identical, 
splice breaks it into two distinct rings. The arguments a and b determine where 
the rings will be cut and joined. For rings ~Org and f)Org, the cuts occur 
immediately after a and/~; for rings ~Left and bLeft, the cuts occur immediately 
after aOnextRot and f)OnextRot. 

Operation splice(g, b) is performed by interchanging the values of aOnext with 
f)Onext, and ~Onext with ~Onext, where t~ = aOnextgot and /3 = f~OnextRot. 
More formally, where Onext denotes the Onext relation immediately after the 
operation, splice(a, f)) establishes the following relations between Onext and 
Onext : 

(G1) aOnext = f)Onext. 
(G2) b Onext = aOnext. 
(G3) ~O-n--e~ = ~Onext. 

A A 

(G4) fl Onext = aOnext. 
(GS) ~Onext = r for all other edges ~ ~ Q u Q*. 

Operation splice(a, ~) is implemented in terms of the facet-edge operator 
splice_edges as follows: 

splice((a, d), (b, d)) 
{ 
i f (d  =0) 

splice_edges( aClockSpin, bClockSpin ); 
else 

splice_edges( aEnext -1, bEnext-1); 
} 

The duality bit d of the two arguments to splice are assumed to be identical-- 
splice(a, f)) is defined only if a and/~ are both primal, or both dual. 

To show the correctness of the implementation, let Onext (Enext) denote the 
Onext (Enext) relation immediately after splice(a,/~), given primal edges a and 
/~ represented by (a, 0) and (b, 0). Operation splice_ edges (aClockSpin, b ClockSpin ) 
establishes: 

(i) a ~  1 = bEnext -1. 
(ii) bE-n-e~-~ 1 -- aEnext -1. 

(iii) aEnext -1ClockSpin-E-ne-~ 1 = bClockSpin. 
(iv) bEnext -1ClockSpinEnext 1 = aClockSpin. 
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Relations (i)-(iv), which follow from the (C) relations of Section 5.3, are used 
to show that values have been correctly swapped. To show (G1), we have 

~-O-~xt = ( a, O)Onext 

= ( a ~  ~ FnextClock, O) 

= (bEnext- lFnextClock,  O) (i) 

= (b, O)Onext 

= bOnext. 

Similarly (ii) is used to show relation (F2). To show relation (F3), we have 

Onext  = ( a, O) OnextRotOnext  

= (aEnext- lFnextCIockFnextSpin,  1)Onext 

= (aEnext-IClockSpin,  1)Onext 

= (aEnex t -  1CloekSpin-ffn--e~- 1, 1 ) 

= (bClockSpin, 1) (iii) 

= (bEnext - lClockSpinEnext  -1, 1) 

= (bEnext  -1ClockSpin, O)DualOnext 

= ( bEnext -  ~ FnextClockFnextSpin, O) DualOnext  

= (b, O) OnextFlipDualOnext  

= bOnextRotOnext  

= flOnext. 

Similarly (iv) is used to show relation (H4). Notice that 

splice_ edges ( a ClockSpin, bClockSpin ) 

only modifies facet-rings of  the complex dual to the complex to which ~ and/~ 
belong. Since each occurrence of Fnext in the derivations above apply only to 
facet-rings of the complex to which a and/~ belong, we have been free to assume 
(in the derivations) that Fnext has not been changed by splice_edges; no Fnext  
is necessary in the derivations. 

We have shown correctness of an implementation for splice when its 
arguments are primal edges. Assume now that splice is passed two dual edges 

and/~. To show correctness of implementation in this ease, we note that opera- 
t ions  splice(& b) and splice(dr, 13) are equivalent, where k = ~ O n e x t R o t  and 
fl = bOnextRot.  Since edges ~ and fi are primal, it is sufficient to show that 
splice_edges( ~ClockSpin., ~ClockSpin ) - - w h i c h  implements splice( ~, f i )mand 
splice_edges(dEnext-r~ bEnext -~) are equivalent; this is done in [La]. 
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a bPos J 

b 
-"5 

meld(a, b) 

Fig. 9. This figure depicts a two-dimensional analogue of the effect of meld. Edges of the figure 
correspond to facets, and polygons to polyhedra. Note that Ca ~ C b in the figure, but this need not 
be the case. 

6.3. Meld. The operator meld is used to glue a complex Ca to a second complex 
Cb. With its use one melds an n-sided polygon f ,  e 0(?, to an n-sided polygon 
fb e Cb, thereby locating complex Ca in the polyhedron bPneg of  Cb. More 
formally, it establishes the topological relations for 

~ Ca) ~ bPneg and ~ c~ r = fb. 

A two-dimensional analogue of the situation is depicted in Figure 9. 
Let a and b be facet-edge pairs, and that their spin and orientation are chosen 

so that Ca lies in bPneg and Cb lies in aPpos. Where ai = aEnext ~ and b~ = bEnext ~, 
meld(a, b) identifies polygon fa with fb, and edge e~, with eb~ for 0 -  < i -  < n - 1 .  
The operation first coalesces distinct edge rings ~, and ~b, forming a "pillow" 
consisting of the edges of ~a (= ~b) and the polygons f~ and fb, and then removes 
polygon f~ from the complex. The two polyhedra that end up incident to fb are 
bPpos and aPneg. 

The boundary of polyhedron aPneg is slightly changed to produce polyhedron 
p- - face t  fa is replaced by fb. In addition, polyhedra aPpos and bPneg are 
combined to form a new polyhedron q, the effect of locating Ca inside bPneg. 
We have 

and 

facets_of(p) = facets_of( aPneg) - f~ + fb 

facets_of(q) = facets_of( bPneg) w facets_of( aPpos ) - f~ - lb .  

To build the facet-rings of the "pillow" formed by coalescing $~ and Sb, 
facet-rings of Ca and Cb are combined as follows: 

for i = O ,  . . . , n - 1  

if ~ ,  ~ ~:b~ 
replace ~ra i and ~b, by concat(~;aiFnext, ~;biFnext)"  ~ 

Facet f~ is removed as follows: 

for i = 0 , . . . , n - 1  
replace ~:~, by first( split( ~;~:,ext, biFnext)); 
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meld(a, b) 
{ 
firsta ~ a; 
do { 

if ( ~  ~ ~b) 
splice_facets(a, bFnext- l ) ;  

splice_facets(a, aFnext-1); 
a ~- aEnext 

b ~- bEnext 

}until a = firsta; 
} 

Fig. 10. Procedure meld. 

Operator meld, given in Figure 10, is implemented by a single loop in which 
the construction of the "pillow" and removal off~ are interleaved. The necessary 
facet-ring manipulations are done with splice_facets. Note that the facet-edge 
pairs aiSrotrSpin s (where 0-< i -< n - 1, r ~ {0, 1, 2, 3}, and s c {0, 1}) are effectively 
deleted from the data structure; the n facet-edge nodes representing these could 
be garbage-collected. 

7. Decomposing a Polyhedron. The process of partitioning a polyhedron into 
simple r constituent polyhedra is called decomposition. One reason for decompos- 
ing a polyhedron /~ is that /~ may possess properties that preclude certain 
algorithms from being applied to i t - - for  instance, it may be nonconvex, or possess 
cavities or handles. Sometimes the difficulty may be overcome by decomposing 
/~ into more amenable pieces, and then applying the algorithm to these [CD]. 
Alternatively, p may be well behaved but its volume might be too large to allow 
the efficient solution of  equations via finite element methods, and further 
decomposition may be desired [JB]. 

There are various strategies for performing decomposition. We concern our- 
selves with an incremental strategy in which polyhedra are iteratively detached 
from the original polyhedron until nothing of the original remains. Each simpler 
piece split off from the original is not subject to further decomposition, and 
satisfies whatever "simplicity" criteria is required of the algorithm. Such an 
algorithm maintains a current polyhedron S (initially/~), and a current collection 
of  constituent polyhedra C (initially 0 ) .  The algorithm iteratively detaches a 
polyhedron Pi (in iteration i) from S and transfers it to C. The process stops 
when S represents a null polyhedron--collect ion C then represents the decompo- 
sition of/~. In this section we show how collection C assembled during the course 
of  decomposition can be represented by the facet-edge structure. Each polyhedron 
detached from S is attached to C by meld operations. For simplicity, we assume 
that ff is polyhedral in the sense we have been using the word (that is, having 
genus zero and no cavities), and that C always consists of zero or more ball 
complexes. 

Wrrdenweber  uses this incremental strategy in [W/5] to decompose a polyhe- 
dron into tetrahedra. He makes no attempt to assemble the pieces, but allows 
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the sequence of operations by which they were detached to represent the resulting 
decomposition. We refer the reader to [Wr]  for a description of how the algorithm 
selects a tetrahedron to be detached from the current polyhedron S in each 
iteration. The actual removal of the tetrahedron from S is accomplished by one 
of  the fGur operators opO, opl, op2, or op3. Each opk modifies the polyhedron S 
to reflect the removal of the tetrahedron. The index k of opk indicates how the 
tetrahedron t that opk is designed to detach is connected to the rest of S: k is 
the number of triangular facets that connect t to the rest of  S, while 4 -  k is the 
number of t's exposed facets (that is, belonging to the boundary of S). In 
modifying" 8, opk removes each of the 4 -  k exposed facets of  t, a consequence 
of detaching t from S. In general, some of these facets correspond to facets of 
C (in fact, to facets of aC);  where f is such a facet, f denotes that facet of C 
to which f corresponds. Facet f will have been created when S was modified in 
some earlier iteration (say iteration j where j < i); the polyhedron p~ transferred 
to C at that time contains )7 which was then cleaved from f. The rest of  the 4 -  k 
exposed facets of t belong to the boundary of the original polyhedron p, and so 
correspond to no facets of C. Let S' denote S immediately after being modified 
by opk. S' contains k new facets, the "connecting" facets of t; these facets are 
created by opk--again the consequence of deleting t from S- -and  replace the 
4 - k  exposed facets removed by opk. Each of the k facets revealed by opk 
corresponds to an exposed facet of the tetrahedron that has been added to C. 
Figure 11 illustrates the effect each opk has upon S. 

A decomposition algorithm employing the incremental strategy requires the 
use of an operator op, analogous to Wrrdenweber 's  opk operators, for transferring 
a polyhedron pi from S to C. The operator must build a facet-edge representation 
for p~, attach p~ to C (using calls to meld), and modify S (to reflect its loss of 
p~). The operator's most formidable task is in determining exactly how pi is to 
be attached to C- - tha t  is, in determining the arguments to each of its calls to 
meld. To guide op in attaching p~ to C, each facet f e  S possesses a link pointer 
link(f) which references that facet f c  aC to which f corresponds. The facets of 
S that belong to the boundary of the original polyhedron/5 do not correspond 

-- ~ p o o l !  --:--- ~" 
opO op2 

opl 

Fig. 11. This figure demonstrates  how each opk locally modifies S to produce S'. Each drawing 
depicts a patch on the boundary  o f  S or S'. 
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to any facet of C, and so have null link pointers. To elaborate, in iteration i, op 
performs the following steps in succession: 

(i) constructs a facet-edge representation for polyhedron p~, to be transferred 
from S to C, 

(ii) attaches p~ to C, thereby forming C' (to serve as C in the next iteration), 
(iii) modifies S to reflect its loss of p~, thereby forming S' (to serve as S in the 

next iteration), and 
(iv) updates the link pointers of S'. 

We do not elaborate on step (i); it is performed using the quad-edge operators, 
whose implementation in terms of the facet-edge operators was given in Section 
6. Assuming S is suitably represented--for concreteness we assume by the 
quad-edge structure--step (iii) also need not be treated. Presumably the descrip- 
tion of p~ handed to op is adequate for op to perform steps (i) and (iii). Steps 
(ii) and (iv) do require elaboration. Henceforth denoting by p the polyhedron pg 
constructed in step (i), we discuss in turn how we ascertain which facets of p are 
to be melded to C, how the link pointer is used to guide each meld operation, 
and how the link pointers are updated in S' to serve later iterations. 

Consider the relation between p and S. That patch of p to be glued to C 
coincides with subcomplex Sp =[_J {starf[fc S is removed by op}. (Here s ta f f  
is the complex consisting of the faces of cell f ;  in this case since f is a facet, it 
consists o f f  and the vertices and edges that bound f.) Subcomplex Sp is generally 
a patch of S, homeomorphic to a closed disk. (In the final iteration, however, S 
itself is transferred to C, in which case Sp = S.) We denote by ~(c) that cell of 
p that coincides with cell c ~ Sp. The mapping ~ : Sp ~ p is an isomorphism, not 
generally onto. Consider next the relation between p and S'. That patch o f p  that 

! _ _  lies in OC( after op has attached p to C) coincides with subcomplex S p -  
~_J {starfl f~ S' is created by op}. (At the last iteration, however, S '=  Sp = Q). 
We denote by ~p'(c) that cell o f p  that coincides with cell c ~ Sp; the isomorphism 
~': S'p~p is not onto. The patches ~p(Sp) and ~p'(S~) cover polyhedron p. Their 
intersection ~p(Sp) c~ r is a vertex-edge cycle in p, called the silhouette of p. 
These notions are depicted in Figure 12. 

To attach p to C, for each facet f ~  Sp, facet r  p is melded to facet f ~  C. 
Each facet of Sp is obtained by treating the dual 2-complex S* as a graph, 
and performing a search in Sp*. Each vertex visited corresponds to a facet of Sp. 
The silhouette of p is used to restrict the search to Sp*, prohibiting it from 
passing into the rest of S*. Specifically, the search algorithm considers two 
vertices adjacent iff the edge that connects them is not dual to a silhouette 
edge of p. Pointer link(f) consists of two fields edge and pair, whose contents are 
as follows: 

link(f ).edge: an edge reference to e c s such that eLeft =f. 
link(f ).pair: an edge reference to edge e' ~ OC such that: 

(a) e'Left= f, 
(b) e'Lnext ~= gLnext ~ for all i, and p~. 
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c 

/ I 
s 

C ! 

S' 
Fig. 12. This figure depicts a two-dimensional analogue of the effect of op. Each edge of the figure 
corresponds to a facet, and each polygon to a polyhedron. 

When facet f ~  
operation: 

Sp is visited, facets ~o(f) and f are melded by the following 

if link(f) ~ f~ { 
e ,~ link(f ).edge; 
a ~-that facet-edge pair a for which (a, O) is r  
b ~ link(f ).pair; 
meld(a, b); 
} 

Edge r  required in the above block of code, is obtained by performing 
an identical graph search in p*, coincident with the search in Sp*. 

Having.attached p to C and modified S to produce S', the link pointers of S' 
must be updated. This involves setting the link pointer of each facet created by 
op (that is the facets of Sv); the link fields of the other facets of S' are still 
correct. Much as before, we perform a graph search in Sp* and a coinciding 
search in p*, using the silhouette of p to limit both searches. When we visit a 
vertex of Sv*, dual say to facet f ~  Sp, link(f) is set by the following: 

let e be an edge for which eLeft = f ;  
link(f ).edge ~ e; 
link(f ).pair*-a where ~o(e) is represented by (a, 0); 

The isomorphisms ~ and ~0' are each computed on the fly by performing 
identical searches in two distinct graphs. Each pair of searches must start at 
coinciding cells for each isomorphism to be correctly computed. To do this, we 
select some silhouette edge e--since e belongs to both Sp and Sp, it can be used 
to compute the starting point for both pairs of  searches. Let e ~ S be oriented 
and directed so the eLeft ~ Sp, and let ~p(e)~p be oriented and directed so that 
~p(e)Org = ~(eOrg) and ~p(e)Left= r The searches in S* and p* then 
begin at vertices eLeftDual and r respectively. To compute ~p', we 
note that coinciding cells of  S~ and p have orientations that disagree: facets f 
and q ( f )  appear to have the same orientation when viewed for instance from a 
point beyond f but beneath ~p (f) ,  say from the interior of a convex p. To determine 
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002 

Fig. 13. This diagram depicts a tetrahedron t transferred by W6rdenweber 's  op2. The tetrahedron is 
attached to C along the two facets behind the page, while the two facets in front of  the page occur 
in aC. 

the starting points for the searches in S~* and p*, let edge e be oriented and 
directed as above. Facet eLeft ~ S is replaced by eLeft c S'. The edge of S' 
coinciding with e is then ~(e)Flip, so the searches of S~* and p* begin at the 
vertices eLeftDual and ~(e)FlipLeftDual, respectively. This is illustrated for 
Wrrdenweber 's  op2 in Figure 13. 

8. Incremental Construction of a Three-Dimensional Delaunay Triangulation. We 
describe how to build the Delaunay triangulation DT(S) of a set S on n->4 
points (called sites) of  R 3, in general position. Since the facet-edge structure 
represents both a complex and its dual, the algorithm also serves to construct 
the Voronoi diagram of  S. The strategy is first to construct some tetrahedron of 
DT(S)--cal led a D-tetrahedron--to serve as an initial current complex C. C is 
then grown by iteratively discovering, constructing, and melding a new D- 
tetrahedron to one or more triangular facets on the boundary of C, until it is 
known that C = DT(S). The algorithm is described in [AB], and under geometric 
inversion that maps S to a set of points S' on a three-dimensional hypersphere 
in R 4 [Br], corresponds to the gift-wrapping method of [CK] for building the 
convex hull of S'. The process of finding an initial and subsequent D-tetrahedra 
is described in [AB], so we describe this only briefly in the next paragraph, before 
presenting the entire algorithm. 

Assume triangle f of DT(S) is on the boundary of complex C, and that the 
D-tetrahedron t incident to f is known. Operation find_tetrahedron(f, t) con- 
structs the other D-tetrahedron t' adjacent to f (if it exists). Let Hy,,, denote that 
open half-space determined by aft f which does not contain t. The vertices that 
define t' are then the vertices o f f  together with site q, where q ~ Hy,, is that site 
for which the sphere determined by q and the vertices o f f  is of minimal radius. 
It is shown in [Bh] that the interior of this sphere contains no sites, hence t' is 

�9 indeed a D-tetrahedron. If  S n Hy, t is empty, then f lies on the convex hull of S 
and t' does not exist. 

An initial D-tetrahedron is found by first finding some triangular facet f on 
the convex hull of S by the method of [CK]. The D-tetrahedron adjacent to f is 
discovered using the strategy given above, where candidate sites q range over all 
sites (except for the three that determine f ) .  
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delaunay( S) 
{ 
t ~- an initial D-tetrahedron of S; 
~ ~- facet_ edges_ of( t ); 
while (~-#  ~Z) { 

a ~- some element of ~;; 
t ~-find_tetrahedron(f~, aPpos); 
if (t does not exist) 

~<-- ~-{a}; 
else { 

for each a ~facet_edgesof(t) { 
a ~ ~(d); 
if (a = ~ )  { 

~ -  ~-{a}; 
a <-- align(d, aClock); 
meld(a, 4); 
} 

else 

} 
} 

} 
} 

Fig. 14. Procedure delaunay. 

The algorithm delaunay of  Figure 14 constructs the Delaunay triangulation 
DT(S)  of  a finite set of  sites S of R 3, in general position. The algorithm initializes 
the current complex C to contain a D-tetrahedron, then iteratively melds D- 
tetrahedra to C until, for every facet of  C, a D-tetrahedron has been sought on 
both sides of  the facet. 

Let F denote the set of  facets for which a D-tetrahedron has been sought on 
exactly one side of  the facet. F consists of  those facets belonging to the boundary 
of the current complex C, less those facets that have been determined to lie on 
the convex hull of  S. Dictionary f f  contains the triangles of  F;  more precisely, 
it contains one facet-edge reference to a for each triangle f ,  of  F. ~T(a) performs 
a look-up in dictionary ~, returning that element of  ~T whose determining vertices 
are aOrg, aEnextOrg,  and aEnext2Org if it exiSts, or Q if the dictionary contains 
no such element. A scheme for addressing the elements of  ~ using (the indices 
of) the three vertices that determine its elements is easily concocted. 

A tetrahedron t is represented by some facet-edge pair a such that aPpos = t. 
The set face t_edges_of ( t )  contains one facet-edge pair d for each of  the four 
triangular facets of  Ot, where dPpos = t; the set is easily derived by traversal from 
that facet-edge pair a that represents t. Finally, align(a, b) denotes that facet-edge 
bEnext  i for which aOrg = bEnextiOrg; the algorithm ensures that some such i 
exists for each use of  align. 

9. Conclusion. The applications presented here but scratch the surface of the 
data structure's potential uses. Future research includes the development and 
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rederivation of applications that would markedly benefit from use of the structure. 
Two examples of these were mentioned in the Introduction: a divide-and-conquer 
algorithm for constructing three-dimensional Voronoi diagrams, and a scheme 
for modeling the motion of three-dimensional polyhedra. Future research also 
includes completely characterizing the class of complexes the data structure can 
model, and developing sets of construe,ion operators with respect to which various 
classes of complexes are closed. 
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