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Abstract. We prove that the large angular momentum 
behaviour of the leading Regge trajectory of a meson 
(q~) or a baryon ( q q q )  can be obtained by minimizing 
the classical energy of the system for given angular 
momentum. A two-body quark-antiquark linear pot- 
ential plus relativistic kinematics produces asymptoti- 
cally linear Regge trajectories for mesons. For baryons 
we take either a sum of two-body potentials with half 
strength or a string of minimum length connecting the 
quarks, and find in both cases that the favoured 
configuration is a quark-diquark system and that the 
baryon and meson trajectories have the same slope. 
Short-distance singularities of the potential are shown 
to be unimportant. 

1. Introduction 

In the 1960's, everybody knew about Regge poles. 
Actually they were thought to explain everything. Now 
they are out of fashion but they still exist! In the crossed 
channel they manifest themselves to describe two-body 
reactions. For instance, the difference between the p/~ 
and p p  total cross-sections is well described from 
Ela b = 10GeV to Ela b - - 2 0 0 0 G e V  by 

~p~ - app = const. • E -~ 

corresponding to the exchange of the Q trajectory [,1]. 
In the direct channel it is striking to see trajectories of 
mesons going up to J = 6 and of baryons up to J = 
17/2.  These trajectories are remarkably linear and 
approximately parallel, i.e. the angular momentum is a 
linear function of the square of the particle mass. 

In the 60's this fact was taken for granted by those 
who applied Regge's ideas to particle physics [2], even 
though there was not the faintest justification for this! 
Regge's original work [3] was done with non-confining 
potentials, and, at very large energies, trajectories 
turned around in the complex J-plane to end up at 
some negative integer [4]. 

Now we know that hadrons have a composite 
structure, and that mesons are quark-antiquark pairs 
and baryons three-quark systems. The use of a poten- 

tial interaction has met with considerable success in the 
description of mesons, especially those made of heavy 
quarks [5], but also to a certain extent those made of 
light quarks [-6-8]. There is more and more support for 
the belief that the quark-antiquark potential is linear 
at a large distance, and, to the extent that the quark- 
antiquark system can be regarded as a relativistic 
string for large angular momentum, the slope of the 
Regge trajectory has been connected with the string 
tension. Here we shall do something slightly heretical 
and regard the potential as producing an instanta- 
neous interaction between relativistic point-like 
quarks. In this we follow the point of view of Kang and 
Schnitzer [8] and more recently Basdevant and 
Boukraa [9]. 

Potential models have also been very successful in 
the description of baryons [,10-12]. The most natural 
prescription is to take two-body forces with VQQ = 
1/2 VQQ. However, for large separations there are good 
reasons to believe that the potential energy between 
three quarks is proportional to the length of the string 
of minimum length connecting the three quarks 
[13, 14]. We shall in fact consider both cases. 

Several authors have proposed models in which the 
baryons are made of a quark-diquark system [15]. 
Then in particular the parallelism of the meson and 
baryon trajectories becomes very natural. However, we 
still have to understand why it might be so. 

Although the ground states and low-lying excited 
states of baryons have been well studied, either by 
perturbation around the harmonic oscillator potential 
[10], or by variational methods [,12], or with 'exact' 
solutions using the hyperspherical formalism [-11], the 
excited states with large angular momentum have only 
been touched upon and do not lend themselves so 
easily to numerical study. The main remark of the 
present paper is that, as for mesons--where, as we shall 
see, it is completely clear--the leading Regge trajec- 
tory of a baryon (i.e. the sequence of ground-state wave 
functions and energies with increasing angular mom- 
entum J) can be obtained in the large J limit, by 
minimizing the classical energy of the system for given 
J. Quantum effects only play a role in preventing the 
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collapse of a subsystem caused by short-range sin- 
gularities of the potential. For  a linear two-body 
potential and for a string, one finds that the configur- 
ation minimizing the energy is a quark-d iquark  
system, and this holds for both relativistic and non- 
relativistic kinematics. With relativistic kinematics one 
proves that the trajectories tend to become linear, and, 
unavoidably, since the colour of a diquark system in a 
baryon has to be a 3, the potential energy is the same as 
in a meson and the trajectories are parallel. 

All these results are asymptotic in J. However, unlike 
for other asymptotic theorems, one can check by 
numerical calculations whether precocious linearity 
appears. In fact these theoretical arguments give 
indications for the good choice of trial functions in a 
variational approach. 

2. The Two-Body  Case: Non-Relativist ic  Kinematics  

If we take two non-relativistic particles with equal 
mass m, the reduced Hamiltonian for angular momen- 
tum J is 

1 d 2 1 J(J  + 1) 
H = m dr 2 ~ m r ~ § V(r). (1) 

If we take into account the operator inequality 

d 2 l 
- -  > 4r 2 , (2) d r  2 

that is 

u(r) dr 2 4 2 u(r)dr > O, 

for any continuous u(r) vanishing at r = 0, we have the 
operator inequality 

1 (J + �89 
H >_ t- V(r) (3) 

- -  Yr/ r 2 

and therefore the ground-state energy Eo(J)  satisfies 

E e ( J ) >  inf I 1  (J+�89 1 =o<,<oo m r 2 t-V(r) . (4) 

If we now consider the classical energy of the system 

p~ 
E c = 2 x 2m + r(rl2) (5) 

if particles 1 and 2 had momenta  p and - p, the angular 
momentum is 

J = r12 x p (6) 

and 

[JI =r12 • P • s in0.  (7) 

If we hold rlz and IJl fixed, we minimize p by taking 
s i n 0 =  1, i.e. p and r l :  orthogonal. Hence 

Ec(J ) >='- ', 
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IJ 12 + V(r) 
m r  2 

( IJI2 V(r)) (8) > inf \mr2  + 
O < r < ~  

Except for the replacement of J by (J + �89 there is 
very little difference between (4) and (8). We have 

EQ(J) > infEc(J ). (9) 
p,r 

The extra 1/2 in the inequality for the quantum energy 
is only really important  for a J = 0 state in order to 
prevent the collapse of the system should the potential 
be singular at the origin. For  three-body and four-body 
systems, analogous inequalities can be obtained and 
will be presented in Sect. 4. 

We now claim that, for large J, inf (E~(J)] gives the 
p,r 

leading behaviour of the ground-state energy. For  
power potentials V = e(v)r ~, we can get an asymptotic 
expansion in inverse powers of J in which the first term 
is the minimum of classical energy. For m = 1/2, it 
begins as [16]: 

( y2 En,j = jzv/v+ 2 

(10) 

where n is the number of nodes, so that the ground state 
corresponds to n = 0. We see that the correction to the 
first term has the relative magnitude 1/J. 

For 0 < v < 2 it is also possible to obtain strict upper 
bounds for the quantum energies by using the 
inequality 

( 2 - - 7 ) (  vA )v/2 

\2~--VJ ( A + r Z ) , A > O , O < v < 2 "  (11) r v < = 

2A 

Then, using the monotonicity of the energies with 
respect to the potential, we can bound above the energy 
levels by the energy levels of an harmonic oscillator and 
then minimize with respect to A. We get, for 0 < v < 2: 

E , j <  x + j + ~ ) z , / , + z  (12) 

For fixed n, the lower bound, given by the classical 
energy, and the upper bound differ by terms of relative 
magnitude 1/J for J ~ oo. 

Unfortunately, we see (without surprise!) that if we 
take a linearly rising potential, we do not get a linearly 
rising trajectory: 

Eo, J ~ const, j 2 / 3 ,  

that is, 

J(t) ~ t 3/4, (13) 
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where t is the square of the energy. This is because we 
have used non-relativistic kinematics, whilst the 
energies, in the limit J ~ ~ ,  go to infinity. 

3. The Two-Body Case: Relativistic Kinematics 

For simplicity we take only the extreme relativistic 
case, i.e. the Hamiltonian is, taking c = 1, 

H = IPll + IP2[ + V(r12), (14) 
or, in the c.m. system, 
H = 2p + V(r). (15) 

Provisionally we restrict ourselves to a purely linear 
potential, 

V(r) = 2r. (16) 

It will be noticed that unlike Kang and Schnitzer [8], 
who were the first to show that relativistic kinematics 
and linear confinement produce linear trajectories, we 
do not square the Hamiltonian; in this way we avoid 
the problems due to the absence of a strict energy 
minimum. Our Hamiltonian is the one used by Basdev- 
ant and Boukraa, for instance [9]. It has the defect of 
not being perfectly relativistic but, from a mathemat- 
ical point of view, it is perfectly well defined. It has been 
show by Herbst [17] that if V(r) is less singular than 
- 2 / n r  at short distances it is completely satisfactory: 
lower bounded etc. By a funny accident of nature, the 
quark-antiquark potential including asymptotic- 
freedom effects behaves like - 1 / [ r  log(I/r)] at short 
distances and will never violate the condition of 
Herbst. 

Here again the minimum of the classical energy for a 
given angular momentum will give a lower bound for 
the energy of the ground state. In fact we can give an 
explicit proof by generalizing an inequality of Herbst 
[17], who proves the operator inequality 

2 1  
IPl > - - -  (17) 

to be valid for any state. If we restrict ourselves to states 
of angular momentum J, we prove in Appendix A the 
following inequality: 

Therefore, the quantum energy of a system of two 
particles of momenta p and -p will satisfy the inequality 

+ 1 )  1 
EQ(J) _>_ inf ~ ( ~  + r + g ( r )  
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(19) 
�9 f2J  + 1 ) 

> l n f  l r - + V(r) 

while the minimum of the classical energy is 

Ec(J)=inf{2~Jr+ V(r)}. (20) 

So if we take the linear potential (16) we get 

Ec(J)= 2 x / 2 x f J  x/2, (21) 

and hence if we believe that this gives the leading 
behaviour of the quantum ground-state energy for 
large J, then 

1 
J(t) ~- ~ t +. . . .  (22) 

We can prove that (21) indeed gives the leading 
behaviour by bounding above the Hamiltonian (15), by 
using the operator inequalities 

r< �89  ~ + Y  . (23b) 

Hence 

p2 2 [ r z ) 
H < ~ - + X + 2 ~ +  Y,, (24) 

and what remains to be done is to minimize the energy 
levels of the harmonic oscillator Hamiltonian, appear- 
ing in the right-hand side, with respect to X and Y. In 
this way we get 

2 x f2  . , ~  (J + �89 t/z < E(n, J) < 2 xf2 ~v/2(Zn + J + ~)~/z, 
(25) 

which confirms that except for corrections of the order 
of unity the leading Regge trajectory is linear and is 
given by the minimum of the classical energy. 

We can in fact get a more precise but less rigorous 
estimate of J(t), by estimating the first-order correction 
to the minimum of (24) in the same way as was done in 
the non-relativistic case. We have, if we use 'reduced' 
wave functions, 

~/ d z J(J + 1) 
H = 2  -~rZ-~ r ~  +2r .  

Neglecting the lack of commutativity of the two 
operators under the square root, we write 

~/J(J + 1) d 2 ~ 1) 1 rmi . d z 
r 2 - d r  2 "~ r 2 4 J ( J  + 1)dr 2 

w h e r e  rmi n minimizes 2 x / [ J ( J + l ) ] / r + 2 r ,  and 
making the harmonic oscillator approximation, we get 
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for 2 =  1, 

H -~ 2[J(J  + 1)] 1/4 + 

1 1 

(r - -  groin) 2 

[J(J + 1)] 1/4" 

d 2 

2 [J(J + 1)] 1/4 dr 2 

and 

E(n,J) ~_ 2[J(J  + 1)] 1/4 -{ 
(n 

[J(J + 1)] TM 
(26) 

for J = 1, 2, 3, and n = 0. Equation (26) agree remark- 
ably well with the exact calculation of Basdevant and 
Boukraa [9]: 

J 1 2 3 

Exact 2.9872 3.5912 4.1084 
Approx. 2.973 3.582 4.102 

and so 

J(t) ~- 4(J + 1) + 4x/~ n + 2,,/2. (27) 

This means that daughter trajectories are asymptoti- 
cally parallel to the leading trajectory. Their spacing, 
however, disagrees with what one would expect from 
naive WKB, which should hold for n ~ oe, J fixed, and 
for which the only relevant quantity is 2n + J [18]. 

4. The Three-Body Case: Non-Relativistic Kinematics 

Any sane person is frightened (but not always dis- 
couraged!) by the three-body problem. The Faddeev 
equations or the infinite set of coupled equations 
arising in the hyperspherical expansion are difficult to 
handle. However, if we limit our ambition to studying 
the asymptotic behaviour of the leading Regge trajec- 
tory, things remain simple. 

Our experience of the two-body case suggests that 
we should again minimize the classical energy of the 
three-body system for given J to get the leading Regge 
trajectory. 

For the interaction between the three quarks con- 
stituting a baryon, we have taken two extreme cases: 

i) A sum of two-body interactions adjusted in such a 
way that if two quarks are close to one another, the 
potential between the quark-diquark system is ident- 
ical to the quark-antiquark potential, 

V = l [ V ( r l 2 )  --b V(r23 ) q- V ( r l 3 ) ] ,  (28) 

where V is the qc] two-body potential, and in the special 
case (16) 

2 
V =~(r~2 + r2a + r30. (29) 

There is no rigorous justification for this choice. This 
rule (28) holds for one-gluon exchange contributions. 
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The other remark is that a diquark system has colour 3 
and therefore looks like an antiquark. Finally, let us 
indicate that experience has shown that the application 
of this rule to the calculation of ground-state energies 
of baryons has met with remarkable success [19]. 

ii) The potential energy could be proportional to the 
minimum length of a Y-shaped string connecting the 
three quarks. Again the strength is adjusted in such a 
way that when two quarks coincide it agree with the 
quark-antiquark potential, 

V = 2inf(rle + r2e + r3e ). (30) 
P 

There are good reasons for believing that Eq. (30) 
holds for large separations between the quarks 
[13, 14]. In fact the ratio between (29) and (30) never 
differs from unity by more than 15%. 

We shall start with the non-relativistic case for which 
an explicit lower bound of the expectation value of the 
kinetic energy of a system of three or n particles can be 
obtained. As expected, this lower bound is higher than 
the minimum of the classical kinetic energy for a given 
angular momentum. The strategy consists in generaliz- 
ing (3) by considering, first, two particles, then adding a 
third one, and so on, and optimizing an intermediate 
angular momentum to get the least possible kinetic 
energy for a given angular momentum and given 
distances between the particles. In Appendix B we 
derive the operator inequality, for n particles of mass m: 

n _ l , 2  

n d + ~ )  (31) 
T >  2m 

2 r  2 
i>j  

However, this inequality will not prevent the col- 
lapse of the system if the interactions are singular, at 
short distances, whilst inequality (3) prevents a two- 
body system from collapsing if the potential is less 
singular than - 1 / 4 r  2 at short distances. In fact, 
formula (31) is not saturated when one of the distances 
between the particles is very small, and we derive for 
instance in Appendix B the inequality: 

j n--2"~2 
+ 

T )  . (32) '(%)+ n 

r > 4~mm i 2m 
2 (riJ) 2 
i>j  

Inequality (32) shows that systems with two-body 
potentials, such that lim r e V(r)> O, cannot collapse. 

The classical inequality corresponding to (31) is, 
naturally, 

n j2 
T>  2m 2 r  2" (33) 

This inequality is optimal in the sense that for any 
given space configuration of n points one can find 
momenta such that formula (33) becomes an equality. 
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This is achieved by taking the successive relative 
angular momenta parallel and optimizing their 
lengths. 

Hence again, 

EQ(J) >= Ec(J ) = inf(T + V). (34) 

For  the case of the pairwise interactions (29), we can 
use the inequality (31) directly to get a lower bound and 
in fact an estimate of the ground-state energy. Indeed, 
we have 

r~2 +r~3 +r~3 =<�89 +r:3 +r13) 2 (35) 
where the equality sign ho lds / f  and only if two of the 
points coincide. This means that the minimum configur- 
ation is a quark-diquark system. (Notice that by a 
generalisation of (35) we would reach the same conclu- 
sion for V(r) = r v, with 0 < v < 2.) The classical energy 
is then 

Ec(J) = \ ~ ) ~ . (36) 

For  the case of the string of minimum length we shall 
use a geometrical method which will also be used in the 
case of relativistic kinematics. Naturally we wish to 
minimize the classical energy, but we do not hold the 
distances between the particles fixed in the first step. 

If J is the total angular momentum 

J = r~ x Pl  + r2 x P2 + !"3 x P3, 

(Pl + P 2  "q- P3  = 0 ) ,  

we notice that if we project the points 1, 2 and 3, and 
the momenta Pl, P2, and P3 on a plane perpendicular to 
J, then J is unchanged, the kinetic energy is reduced, 
and, for monotonous two-body potentials as well as for 
the string interaction (30) the potential energy is 
reduced. Hence we can restrict ourselves to a motion of 
the three particles in a plane. Now let us call support of 1 
the straight line going through 1 with direction p:, etc. 
If we hold fixed p~, P2, P3, and the supports of 1, 2, and 3, 
then J remains fixed and the kinetic energy remains 
fixed. We can then minimize the potential energy. In 
the case of the string (Fig. 1), we have to minimize with 
respect to 1, 2, and 3, and with respect to P. For  a given 
P we must take P1, P2, and P3 perpendicular to Pl, P2, 
and P3, respectively. Then the interaction is propor- 
tional to the sum of the distances of P to the three 
supports. This quantity is a linear function of the 
coordinates of P in any system, as long as P is inside the 
triangle delimited by the supports and reaches its 
minimum when P coincides with one of the summits. 
Then two of the points 1, 2, 3 coincide, and we therefore 
have a quark-diquark configuration. Then, necessar- 
ily, the energy minima coincide with (36). 

The same geometrical argument could be applied to 
the pair interactions. Holding the supports fixed, we 
have to minimize the sum of the distances. Holding 1 
and 2 fixed, we find that 3 has to be such that the inner 
bisector of 31 and 32 is orthogonal to the support of 1, 
and so on. If the triangle made by the supports has all 
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1' 

2, 3, 
1 Pl 

Fig. 1. Minimization of the potential energy ii~ the case of a string 
interaction 

1 I 

' 3' 2' 3' 
1 

Fig. 2a, b. Minimization of the potential energy in the case of a sum 
of 2 body linear potentials, a The momenta form a triangle with all 
angles smaller than 90 degrees, b One of the angles is larger than 90 
degrees. 

its angles less than 90 ~ (Fig. 2a), this is possible in one 
and only one way: 1 has to lie on the perpendicular 
going through the opposite summit of the triangle, and 
so on. In fact 1, 2, and 3 are lying on the famous nine- 
point Euler circle associated with the triangle [20]. If, 
on the other hand, the triangle has one angle larger 
than 90 ~ the configuration minimizing V is the one 
where two of the points are at one summit of the 
triangle, and the third one is on the perpendicular to 
the opposite side (Fig. 2b). We are then back to a 
quark-diquark configuration. 

In the case where all angles are less than 90 ~ we 
notice that since 12 and 13 have a bisector per- 
pendicular to Pl, the force exerted on 1 is perpendicular 
t o  Pl  and hence d]pll/dt = O, dlP2l/dt = O, dlp3f/dt = O. 
This should be true at all times, otherwise one could 
minimize further. Therefore [Pl[, [P21, and [P31 are 
constant, and are proportional to the lengths of the side 
of the triangle; therefore the triangle has afixed shape. 
But the energy is conserved, and since the kinetic 
energy is constant, r12 -q- r23 + r31 = const., the triangle 
has sides withfixed lengths. The whole motion is just a 
rotation around the common intersection H of the 
heights of the triangle. Notice that in all this part of the 
argument we do not distinguish between relativistic 
and non-relativistic kinematics. In the case of non- 
relativistic kinematics with equal masses we have, 
writing Newton's law, 

mo92H3 = 2cos 7 

where 

~ =(31,3H),  
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and co is the angular velocity, 
mco2H1 = 2cos7, 

where 

c~ = (13, 1H), 
but 

H 1 sin e = H 3 sin 7, 

and hence 

sin 2~ = sin 27, 
and the triangle is equilateral. 

Then it is easy to do the final minimization: 

�9 . { 3 p  z 2 ) 
E =  lnI~m-m + 5 3 ~,f3R 

/ 

with 

J = 3 p R  

and hence 

(32)5/3()~J)2/3 
E = ml/3 �9 (37) 

This is larger than what one gets for the quark-  
diquark configuration given by (36). So it is not the real 
minimum! It is, in fact, a saddle point. 

What remains to be done is to prove that the 
quantum energy, for large J, is close to the minimum of 
the classical energy. This is done quite easily by 
bounding above rij by 1/2[[(rij)2/Aij] + Aij], reduc- 
ing the problem to one of harmonic oscillators. We 
shall not give the explicit calculations since the really 
interesting case is the relativistic one. 

5. The Three-Body Case: Relativistic Kinematics 

Here we shall admit that the minimum of the classical 
energy indeed gives a lower bound of the ground-state 
energy, for a given J. To some it may look obviously 
true because of the Golden-Symanzik inequality [21]. 
However, the restriction to given J is non-trivial, but 
anyway the results previously presented in the two- 
body relativistic and non-relativistic cases and the 
three-body non-relativistic case give us complete con- 
fidence in this fact. 

The geometrical method for minimizing the classical 
energy applies, with very little change from the non- 
relativistic case: as long as pl, P2, and P3 are held fixed, 
there is no difference in the following cases: 

i) In the case of the string (30) we can prove that the 
potential energy is minimized when two of the quarks 
coincide. Then, if p is the momentum of particle 3, and 
- p / 2  and - p / 2  the momenta of particles 2 and 1, we 
have 
E = 2p + 2r,3 
J = pr,3 (38) 

Hence 

Ec= 2x/2x/2~,/-j .  (39) 
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This coincides with (21), and hence the baryon trajec- 
tory is parallel to the meson trajectory (or at least has 
the same asymptotic slope!). 

ii) In the case of the pair interaction (29) the proof 
that the triangle (if the angles are less than 90 ~ ) made by 
the supports has sides of fixed length still holds. Then, 
again, the motion is a rotation, but 1, 2, and 3 being 
extremely relativistic, they must have the velocity of 
light. Hence H1 = H2 = H3 = R and the triangle is 
equilateral. Then we have 

2 
E =  3 p + ~ 3 x / 3 R  

J = 3pR, 

and minimizing we get 

Ec = 3 3 / 4 x f  2 x f  2 x f  J . (40) 
This is larger than the quark-diquark energy, which is 
again given by (39), because 

3 3/4 > 2. 

Therefore the true minimum is again given by the 
quark-diquark, and the trajectory is the same as in the 
previous case�9 

Buchmfiller has noticed that there is another pos- 
sible candidate for the minimum energy (which coin- 
cides, in fact, with the old proposal of Szeg6 and 
Preparata [22]). Quark 1 has momentum p, quark 2 
momentum 0, quark 3 momentum - p .  However, the 
mass of the second quark can no longer be neglected 
and the configuration has a higher energy. 

To prove that (39) is a good approximation of the 
energy for large J, we use the technique of bounding 
above by harmonic oscillators which has been de- 
scribed previously. In the pair interaction case we have 

H < ~ , ~ + P / 2  + ~ f f / 2 + P / 2  ~-~-+P 

 {r15 R  /q3 ) 
+2\Ro + +R,+ R -+R1 

(41) 

Now we take the 12 pair to have zero angular 
momentum, and then 

H <  2P/4dr  2 t-~ + 

I 1 d z 1 J(J + 1) 
+ 2P/2 dR 2 + 2P/2 R z 

where 

+- 2 ~i- + P  

(42) 

f 
r = r 1 --  r 2 

R = r 3  r l + r 2  
2 
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Hence we get 

1 1 

t~td)<~N / ~ t - (J+3/2)  / P/2 

2Ro 
+ T + 2R1 +P.  (43) 

Taking 

R o fixed, P = /2( . /+ -~) R1 = /2(./_ 
2) / 

~/ 2 ~/ 2 

we get 

E(J) < ~ + C 2 + 2 v/2 x/2(J  + 3) (44) 

which proves that (36) is indeed a good estimate. 
A similar upper bound can easily be obtained in the 

case of the string. 

6. Concluding Remarks 

We have shown in this pseudo-relativistic model, and 
with two types of plausible three-quark interactions, 
that the meson and baryon trajectories are asymptoti- 
cally linear and parallel because, at least for large J, the 
favoured configuration of the baryon has been proved 
to be a quark-diquark system. It has long been 
understood that the quark-diquark configuration was 
needed in order to account for the parallelism, but our 
point is that dynamics favours this configuration. 
Notice, however, that for a small angular momentum 
there is not an enormous difference in energy with the 
triangle configuration, and this means that approxim- 
ation methods might lead to the wrong answer. The 
weakness of our result is that it is only asymptotic. 
Notice, however, that the method of arriving at the 
proof gives rise to ideas about the kind of trial wave 
function to use in a realistic variational calculation. 

One objection might be that we have disregarded the 
short-range part of the quark-quark interaction, 
which is singular. Strictly speaking the minimum of the 
classical energy of a three-body system will be - ~ if 
V(r12)-~-  0o for r ~ 0 ,  even for large total angular 
momentum. However, we know that there are obvious 
quantum corrections. For instance, in the non- 
relativistic case, we can use inequality (32). If we take, 
for example, 

V(rij ) = _ ]~ _}_ ~ rij, 
rij Z 

we get 

E > 3 i n f ( 1 2 1 r  2 ~ )  

2 + inf [3m (J + 2z-)2 ~ r i j ] ,  (45) 
~(rfj) 2 I- 
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so that the asymptotic behaviour for large J is 
unchanged. 

In the three-body relativistic case we could certainly 
do the same if we had the analogue of the two-body 
inequality (18), which shows that there is no problem if 
lim (re/2) r V(r) > - 1. 
r--+0 

Finally, one might object that the model we propose 
for the mesons does not exactly agree with the slope 
produced by the two-body string. However, let us 
remember that our main purpose was a comparison of 
mesons and baryons. Our hope is that our conclusion 
will remain valid in a really relativistic model. 
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Appendix A 

We give a proof of the inequality 

(A1) 

We define Fourier transforms in the symmetric way: 

1 . i p x  3 
f(p) = (2rt)3/2 j f(x)e " d x 

1 
f(x) = (2r03/2 ~f(p)e-iPXd3p. (A2) 

In a state with a wave function RS(x) we have the 
expectation value of 1/r, (Ixl = r): 

with 

j'l 'P(x)lEd3x = 1. 

In Fourier space we get 

i p ~ p  ~ . (A4) 

We now restrict ourselves to a state R s with angular 
momentum J. Then 

~(p) = tiT-"(p) Yj(iO), 

where Ys is a spherical harmonic of angular momentum 
J, with 

S I 7S(p)I2p2dp = 1 
and 

S IYj(#)12df2j = 1. 
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Noticing that 

1 1 
I p -  p'l 2 - 2 p p '  z~o (21+ 1) 

"PI(cosp'ff)QI\ 2pp' 

we get 

\ 2pp' ]t~(p)~(r'). 

(A5) 

(A6) 

Now using the inequality 

p2~(p)p,Z~(p,) < �89 

�9 [p41 ~(p)  l 2 + p'41 ~;(p') 12], 

we get 

= l ~ ~  J l f ~ x  x . 

The latter integral can be rewritten as 

dz 
2 

which can be found in Gradshteyn and Ryzhik [23] in 
terms of a hypergeometric function whose last argu- 
ment is fortunately equal to unity. Noticing that the 
first integral is precisely the expectation value of p, we 
get the desired result (A1). To prove that 

2 I F (  J +  1 ) l  2 

it suffices to notice that 

@ ( J ) ~ l  for J ~ o o ,  

and that 

�9 (J + 2)/~(J) < 1. 

Appendix  B 

Inequalities on the Three- and n-Body 
Non-Relativistic Quantum Kinetic Energy 

We have seen that for two bodies with equal mass we 
have the operator inequality 

1 (j+�89 
T > (B1) 

m r22 

where r12 is the distance between 1 and 2, and for two 
bodies with unequal masses ml and m2, 

, [  1 a , ~ ( j + � 8 9  
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If we have three bodies with equal mass we group 
first 1 and 2 with angular momentum j l  > and then the 
system 12 with 3, with angular momentum j3. We have 
the constraint that the total angular momentum of the 
system should be J, and hence 

IJ12 --J31 < d <J12 +J3. (B3) 

If 

r = r  2 - - r  1 

and 

rl  + r2 
R = r 3 (B4) 

2 
the kinetic energy operator reads: 

[ 1 d2 l j 1 2 ( J 1 2 + l ) ]  
T = m dr 2 t- m r 2 

+ - + f ~ m ) ~ R ~ + 2 m  

and using inequality (B2) we get the operator inequality 

J12 = - - � 8 9  

1 (j12+�89 2 3 (j3 +�89 2 
T > t- Rz (B5) m r 2 2m 

We have to minimize with respect to J12 and J3, 
holding J fixed. Clearly we must take 

d =J12 +J3' 

Then, if we forget the extra constraint thatj~2 and J3 
can only be non-negative integers, we can minimize 
with respect to J~2 and find 

3 
2R 2 

1 3 ' (B6) 
q 

r 2 2R z 
and 

T >  
(J + 1) 2 1 

2R 2' m r2 + - -  
3 

and using the definition of r and R given in (B4), 

T > ~ (J + 1)2 
m(r~ 2 + r~ 3 + r23). (B7) 

Inequality (B7) can easily be generalized by adding an 
extra particle and splitting the kinetic energy into the 
three-body internal kinetic energy and the kinetic 
energy of (123)+ 4 systems. Then again the angular 
momenta of(123) and 4 should be aligned to minimize 
the kinetic energy. The general result is 

d n -  1'~2 
n +~--) 

r > 2m (B8) 
2 (rij)2 
i>j 
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However ,  these inequa l i t i es  are n o t  s a tu ra t ed  
because  

i) the  successive relat ive a n g u l a r  m o m e n t a  are n o n -  
nega t ive  integers;  

ii) the  m i n i m i z a t i o n  is d o n e  for g iven rv's, i.e. for a 
wave  packe t  wi th  some  d i m e n s i o n s  inf in i tes imal ly  
small.  

I n e q u a l i t y  (B6) is insuff icient  to p r e v en t  the col lapse 
of two part ic les  if the po t en t i a l  be tween  these two 
part ic les  is s ingu la r  at a shor t  dis tance.  S o m e t h i n g  very 
c rude  can  be d o n e  to r emedy  this. F r o m  (B5) we deduce  

1 [ 1 (j~2) 2 3 (J3 +�89 ] r>a 7  +Lm y t -2m ~ J 
a n d  a p p l y i n g  the usua l  t r e a t m e n t  to the pa ren thes i s  we 
get 

1 3 ( j  + �89 
T >  4mrZr2 + 2mrlZz +r223 + r 2 3  

and ,  s y m m e t r i z i n g  

1 / 1  1 +_T1) 
T > 12mm~rl-~2 + r22 3 r l3 

3 (s + �89 
4 2m r~2 + r~3 + r~3" (B9) 

The  gene ra l i za t ion  (32) to n bodies  is obvious .  
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