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Abstract: The generalized gamma (GG) distribution has a density function that can take on many 
possible forms commonly encountered in hydrologic applications. This fact has led many authors to 
study the properties of the distribution and to propose various estimation techniques (method of 
moments, mixed moments, maximum likelihood etc.). We discuss some of the most important pro- 
perties of this flexible distribution and present a flexible method of parameter estimation, called the 
"generalized method of moments" (GMM) which combines any three moments of the GG distribu- 
tion. The main advantage of this general method is that it has many of the previously proposed 
methods of estimation as special cases. We also give a general formula for the variance of the 
T-year event X r obtained by the GMM along with a general formula for the variance of the param- 
eter estimates and also for the covariances and correlation coefficients between any pair of such esti- 
mates. By applying the GMM and carefully choosing the order of the moments that are used in the 
estimation one can significantly reduce the variance of T-year events for the range of return periods 
that are of interest. 
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1 Introduction 

Flood frequency analysis is an important element in the design of hydraulic struc- 
tures and in the planning and management of water resources projects. It is often 
concerned with the search of a statistical distribution which could be used to fit 
adequately a given sample of maximum annual flood flows. From the chosen dis- 
tribution, one can make extrapolations in order to estimate an extreme flood event 
corresponding to a high return period i.e., to a low probability of exceedanee (100- 
year flood, for example). This estimation can then be used to design flood control 
structures that are able to withstand this estimated extreme flood. 

Associated with the choice of a statigtical distribution is a certain amount of 
uncertainty called "model uncertainty". Consequently, one would want to choose a 
model for which this amount of uncertainty would be minimum. 

The question of which distribution should be used to reach this objective has 
been discussed by several authors. On that issue, the U.S. Water Resources Coun- 
cil (Benson 1968) recommended the use of the log Pearson type III  (LP) distribu- 
tion for representing flood flows. Following that recommendation, several methods 
have been proposed for fitting this distribution. 

Taking a close look at the LP distribution, one realizes that if the skew 
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Figure 1. Regions in ([~1, [~2) plane for various distributions, where 15 t = C~ z and 152 = Ck 
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coefficient in log space is negative, then the distribution has a finite upper bound. 
Some  investigators, with or without valid justification, have considered this pro- 
perty to be unsatisfactory, and have looked for other distributions for fitting flood 
data. One of these, is the generalized gamma (GG) distribution which differs from 
the LP in that: (1) it is always unbounded above, and (2) it is always, bell-shaped 
(with a skew) which is one other property that is useful in practice, 

The 3-parameter GG distribution which will be the subject of our investigation 
has two shape parameters and one scale parameter, but no location parameter. It 
has a fixed lower bound equal to zero (unlike other three-parameter distributions 
such as the Pearson type III,  log Pearson type I I I  and Weibull) but its lower tail 
can be flexible enough to be able to give a good fit to the lower values of flood 
flows even if the lower bound of these flows is different from zero. The four- 
parameter GG distribution can be obtained from its three-parameter counterpart 
by adding a location parameter m, i.e., if X ~ G G ( 3 )  then ( X + m ) ~ G G ( 4 ) .  In 
what follows, the abbreviation GG will be used to designate the generalized gamma 
distribution GG(3). 

The GG distribution is very flexible in shape and can take on many possible 
forms commonly encountered in hydrologic applications. This fact can be verified 
by taking a look at the representation of this distribution in a moment ratio 
diagram (MRD) (Leroux et at. 1987) which shows the relationships between the 
coefficient of skewness (Cs) and the coefficient of kurtosis (Ck) of the distribution. 
In such a diagram (Fig. i), GG occupies one of the largest regions, thus showing 
its large shape flexibility compared to other commonly used distributions. It is also 
interesting to note that the GG(4) distribution has many useful distribution as spe- 
cial cases like the Pearson type III  (3-parameter), Weibull (3- and 2-parameter), 
gamma and exponential (2- and 1-parameter) as shown in Fig. 2. Obviously it also 
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Figure 2. Relations between the GG(4) distribution and other well known distributions 

Z2(v) Z 2 with v degrees of freedom 
. ER Erlang LN Log-normal 
EV Extreme value type 1 or Gumbel LP Log-Pearson type 3 
EX Exponential 1 - parameter N(0,1) Standard normal 
EX2 Exponential 2 - parameter P Pearson type 3 
G1 Gamma 1 - parameter PA Pareto type 1 (Pearson type 4) 
G2 Gamma 2 - parameter RA Rayleigh 
GG4 Generalized gamma 4 - parameter SHN Standard half-normal 
HN Half-normal WE Weibull 2 - parameter 
LG Log-gamma WE3 Weibull 3 - parameter 

has GG(3)  and GG(2)  (for which the scale parameter  is set equal to unity) as spe- 
cial cases. Moreover,  Fig. 2 shows that  the 3-parameter  log Normal  (LN)  and the 
Normal  (N) distributions are limiting distributions of GG(4)  (note that  the 
2-parameter  L N  is a limiting distribution of GG(3)) .  Also; the Gumbel  d is t r ibu-  
tion being a special case of LN(3)  (Sangal and Biswas 1970) is also a limiting dis- 
tr ibution of GG(4).  Finally, studies have shown (Paradis and Bob6e 1983) that  the 
G G  distr ibution can be a powerful tool for studying samples of various degrees of 
skewness. 

Note  tha t  the G G  distribution has first been used successfully in modelling pol- 
lution concentration (Nicholson 1975) and also in the study of life distributions 
(Parr  and Webs te r  1967). Moreover, the G G  is the most widely used distribution 
in the Soviet Union for flood frequency analysis (Kri tsky and Menkel 1969). In 
hydrology, some extensive research (Hoshi and Yamaoka-1980,  Paradis  and Bob6e 
1983) has been done in order to derive mathemat ica l  and statistical properties of 
the G G  distribution, to develop methods for est imating its parameters  and to 
obtain the associated variance of the est imated T-year flood event (AT). 

Investigations concerning es t ima t ionof - - the lga ramete r s  of the G G  distribution 
led to severaJ methods: 
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indirect method of moments (Stacy and Mihram 1965) which uses the first 
three moments in log space, 

direct method of moments (Hoshi and Yamaoka 1980), which uses the first 
three moments in real space, 

method of maximum likelihood (Hager and Bain 1970), and 

four other methods (MM1, MM2, MM3, MM4) referred to as methods of 
"mixed moments" (Phien et al. 1987). They are all based upon the first two 
moments of X and the first two moments of Y -- lnX: they correspond to the 
four ways of choosing three moments among these four. 

We shall propose for the GG distribution a general method of estimation which 
we shall call "generalized method of moments" (GMM) which combines any three 
moments of the distribution and we shall show how many of the previously pro- 
posed methods of moments are special cases of this more general method. We 
shall present a special case of the GMM which we shall call "sundry averages 
method" (SAM) which uses the harmonic, geometric and arithmetic means of the 
distribution. Our main aim will therefore be to focus on flexibility by considering: 

(1) a very flexible distribution (the GG) which has the large majority of com- 
monly used distributions as special cases; and 

(2) a very flexible method of parameter estimation (GMM) which has many of 
the previously used methods of estimation as special cases. 

In hydraulic design, one is concerned not only with the estimation of quantiles 
X r (specified annual flood discharge corresponding to a specified return period of 
T-years) but also with the construction of confidence intervals for these quantiles. 
Note that it is always possible to derive asymptotic confidence intervals for X T 

using the assumption that the estimation ST is normally distributed with mean X r 

and variance o2(XT) that can be calculated. These confidence intervals are only 
suitable for large N (where N is the sample size). However, for certain distribu- 
tions, a method for constructing exact confidence intervals for X T exists and is con- 
sequently also valid for small N. For the generalized gamma distribution no such 
method has yet been developed. This because, unlike many of the other distribu- 
tions, the parameters of the generalized gamma distribution are not of the 
location-scale type. The same problem arose when dealing with the Pearson type 
I l l  and log Pearson type I I I  distributions but recently Ashkar and Bob6e (1988) 
presented an approximate method for these distributions which performs well with 
small samples. So, until small-sample confidence intervals (Standard errors) for 
the GG distribution are developed, large-sample ones will have to be used as an 
approximation and in the present study we shall derive such large-sample standard 
errors. 

2 Statistical properties of the generalized gamma distribution 

The probability density function (p.d.f.) of the 3-parameter GG distribution is 
given by: 

] s I x S ~ - l e  - ( x / ~ s  
f ( x ;  13,g,s) = 13SXF()~ ) , x > 0 (1) 

where 13 is a scale parameter and both L and s are shape parameters. Both 13 and ~. 
must be positive but s can be either positive or negative. 

Non-central moments of the generalized gamma distribution are given by (Stacy 
1962): 
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g;(x) = [3"r(z+,/s) (2) 
F(~) 

These moments are defined only if (~, + r / s )  > 0, i.e., they exist for all r if s > 0 
and only for r > --s~, if s < 0. In the remainder of the present study, whenever 
we shall deal with/.re(x), we shall assume that gr exists, i.e., (~, + r / s )  > O. 

Using r = 1 in Eq. (2), the mean g l (x)  of the GG distribution is obtained: 

g ; (x )  = 13F()~+I/s)  (3) 
F(~) 

Central moments gr can be expressed in terms of non central moments gr using the 
following relationship (Kendall et al. 1987): 

T 

gr(x)  = Z C/ l ' t ; - j ( - -g l )J"  (4) 
j=0 

Using r - - - -2  in the above equation, the variance of the GG distribution is 
obtained: 

f /-t2(x) = [ F @ ) F @ + 2 / s )  -- F2@+ 1/s)]. (5) 
F2(~.) 

3 Description of the generalized method of moments and its application to the gen- 
eralized gamma distribution 

The generalized method of moments (GMM) applied to the GG distribution can be 
described as follows: 

(1) For a given sample x 1 . . . . .  x N drawn from a GG population, define the non 
central moment of order r as follows 

1 r 
m r ( x )  = " -~ .Z  xf .  (6) 

(2) Choose any three distinct real numbers t, u and v different from zero (the 
case where one of these numbers tends zero will be explicitly considered in the 
following section since it is an important special case of this method) and write 
the following three equations: 

rot (x)  = g/(x),  mu(X ) ---- gu(X), m~(x)  = g;(x) ,  (7) 

where terms of the left-hand side of Eq. (7) are moments of the sample (Eq. 
(6)) and those of the right-hand side are the corresponding moments of the 
population (Eq. (2)); 

(3) SoIve the above equations for the parameters 13, L and s to give the desired 
estimates ~, 2, s ~. This is done by isolating the parameter 13 in the first equa- 
tion and substituting its value in the last two equations so that the resulting 
system of equations becomes: 

gl()~, l /s)  = 13UF()t,+u/s) -- mu(x)F(~) = 0 

g 2 @ , l / s )  = 13VF(k+v/s )  -- rn~(x)F@) = 0 (8) 
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mt(x)F(L) 1/t 
with 13 F()~ + t / s )  

This later system is then solved for ~, and s using the Newton-Raphson method 
where partial derivatives needed for applying this method are: 

Og 1/0)~ = [3uF(~4- u/s)  {~()~4- u/s)  4- (u/ t )  [gt()~) - V ( ~ +  t/s)] } -- mu(x )F09v0~  ) (9) 

Ogl/O(1/s ) = ufg"F()~4-u'/s){~()~4-u/s) -- ~(~,4-t/s)} (10) 

Og2/O)~ -~ [~VF(~,4- v/s)  { ~(~,4- v/s)  4- (v/ t)  [V(~,)--gt(;~,4- t/s)] } - ms (11) 

O g 2 / O ( 1 / S  ) ~- v fJvFO~,4-V/S){ I I I ( )~ ,4 -V/S)  - -  ~(~,+t/s)} (12) 

where ~(.)  is the d igamma function defined as F ' ( , ) /F(-)  where F ' ( ' )  is the deriva- 
tive of F( ') .  

The generalized method of moments which uses the system of Eq, (7) will be 
denoted by G M M  (t,u,v), 

4 A special case of the GMM: the sundry averages method (SAM) 

It  is obvious that putting r = 0 in Eqs. (2) and (6) give g o ( X ) =  1 and 

mo(x ) = 1, respectively (independently of the parameters  13, ~ and s) since go 
corresponds to the area under the density curve. Therefore, the moment  of order 
zero is not interesting because it cannot be used for estimating the parameters  of a 
distribution. I t  is interesting to note, however, that when r tends to zero the equa- 
tion: 

mr(X) = p.~(x) (13) 

becomes equivalent to (see Ashkar and Bob6e 1986): 

gx = Gx (14) 

where gx is the geometric mean of the sample and G x is the geometric mean of the 

population. Let ~ be the arithmetic mean of the sample of logarithmic values 
Yi = lnxi (which is the log of the geometric mean of the observed values xi) and 

I.tl(y) be the population mean of the variable Y = lnX. Taking natural logs on 
both sides of Eq. (14) it can be shown that  this equation is equivalent to: 

)7 = g~(v) (15) 

where p,l(y) csn be easily calculated using integration of Eq. (1) (see also Stacy 
and Mihram 1965) to give: 

t 

t-tl(y ) = ln13 4- ~(~,)/s. 

We shall therefore refer to this case of r tending to zero as the case of moment  of 
order "quasi zero". In the remainder of the paper we shall use the simplified nota- 
tion "r  = 0" to mean "r  --~ 0" and shall define too(X) and go(X) as follows: 

rno(x) = .V = (• lnxi) /N (16) 
i 
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g0(x) = g~(y) : lnj3 + qt(~L)/s. (17) 

It is seen from Eq. (17) that g0(x) does not have the same functional form as g~(x) 
in Eq. (2). This remark will later be used for calculating the variance of X r for 
certain interesting special cases of the GMM. Two of these interesting special 
cases are: 

the method MM1 introduced by Rao (1980) for the LP distribution and used 
by Phien et al. (1987) for the GG distribution. This method can be denoted 
by GMM(0,1,2) because it uses the moment of order 0 (geometric mean), 1 
(arithmetic mean) and 2 (variance) of the distribution. It can be easily shown 
that, when the moment of order 1 is part of the system of equations, there is 
equivalence between using the non-central moment of order 2 (g2) or the cen- 
tral moment of order 2 (variance). Therefore in both cases it is correct to 
denote the method MM1 by GMM(0,1,2); 

a method which we shall call "sundry averages method" (SAM) which can be 
denoted by GMM(-1,0,1) because it uses moments of order -1 (harmonic 
mean), 0 (geometric mean) and 1 (arithmetic mean) of the distribution (and 
thus the name "Sundry Averages Method"). 

5 Estimation of X T and calculation of its variance 

The es t ima t ion  XT of the flood magnitude with return period T under a GG distri- 
bution is obtained from: 

~ 

1,~T = (~_T_)s i.e. J(T = ~ l'~l/s" (18) 

where  I,V T is the estimator of the event W T of return period T under a one- 
parameter gamma distribution with p.d.f.: 

w~. - le -~ ,  
f (w)  , w > 0, 3 , >  0. (19) r(~) 

In practice, I~ r is calculated from: 

/ ( r  4 
I'Vr = /~r ~ + )~ = 2---:- + - -  (since Q = 2/V/-~) (20) 

c, e) 

where / ( r  is a frequency factor (standardized Pearson type 3 variate) which has 

been extensively tabulated as a function of the estimated coefficient of skewness Cs 
of the random variable W (Harter 1969). 

In subsequent calculations we shall drop the symbol "'-~", for simplicity. If X 
follows a GG distribution, then obviously X r is a function of the three parameters 
of the distribution, and for large sample sizes we have: 

" OXT ,2- OXT 2 ( 0a_f_f_)2Vars VarX r ---- (--~---) var]3 + ( - - - ~ )  VarY, + 

OXT OXT OXT OXT 
+ 2(- -~-- ) ( - -~)cov(~,~)  + 2 ( - ~ - ) ( - - ~ s  )cov([3,s ) 
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OX T OX T 
+ 2 ( - ~ ) ( - - ~ s  )cov(~,,s ). 

Using X T = ~ W  1/s the partial derivatives in Eq. (21) are obtained as follows: 

OXT 

of~ 
OX T 

OX T 

(21) 

- -  = W ~ / s  (22) 

- (f~/s)wCr (23) 

-- (XT/S2)lnWT (24) 
Os 

and by Eq. (20), (OWT/O~,) is given by: 

KT 1 0 K T  
OWT/o~, = 1 + 2 V ~  ~, OC s (25) 

where (OKT/OCs) is obtainable from the polynomial given by Bob6e and Boucher 
(1981) or from the formula given by Hoshi and Burges (1981). 

It is obvious that the parameter variances and covariances involved in Eq. ,(21) 
are functions of the variances and covariances of the three moments p.~(x), pu(X) 

and p.v(X) that are employed in the estimation (Eq. (7)). Using matrix notation, 
these variances and covariances of the parameters are given by: 

[I16" 

V26 

v36 
V46 

V56 

v66 

- 1 -VarM 1 

VarM 2 

VarM 3 

Cov(M 1,/142) 

Cov(M1, M3) 

Cov(M 2, M 3) 

(26) 

(27) 

(28) 

lip = V-1.  V,. 

i.e,~ 

Varl3 Vl 1 

VarY. V21 

Vars V31 

Cov([~,~) V41 
Cov([3,s) v51 
Cov(~,,s) LV61 

where M 1 = Pt(x); M 2 = Pu(X); M 3 = I.t;(x). 
The matrix V is given by: 

A21 A22 A23 2AttAr2 2AtlAl3 2At2A13 

A221 A22 A23 2A21A22 2A21A23 2A22A23 
A21 A22 A23 2A31A32 2A31A33 2A32A33 

AllA21 AI2A22 AI3A23 (AllA22+A12A21) (AllAz3+At3A21) (At2A23+At3A22) 

A11A31 A12A32 A13A33 (AI1A32+A12A31) (AI1A33+A13A31) (A12A33-F-AI3A32) 

A21A31 A22A32 A23A33 (A21A32+A22A31) (A21A33+A23A31) (A22A33+A23A32) 

where 
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0M~ 
Arj = 00)  r , j  = 1,2,3 (29) 

and O 1 ----- 13, O 2 = ),, O 3 = S. 
The terms Ar j  are therefore obtained from Eq. (2) by partial differentiation and 

are given in the following matrix: 

A12 A13] [ 2 11 
[A31 A32 A33J 

where 

AI 1 = t~ t_  I U(~,+t/s)  
F(~) 

A21 = u~U_ 1 F(~,--[-u/s) 
r(z) 

A31 = 1,~v_ 1 F()g-}-lJ/s) 
F(~) 

(31) 

,,t12 = ~t F ( ~ + t / s )  [~(~,+t /s)-gt@)] 
' F (~ )  

--t~t [F(~ ,+t / s )~@+t/s )]  
A 1 3 -  sZF(~) 

,,422 = 13 u F(~.+u/s) F(~.) [V(~.+u/s)-v(~.)l 

- ul~U [ F ( ~ +  u/s)v(~.+ u/s)] A23 S2F(~.) 

.A32 = f3v F(~,+v/s) [~(~.+v/s)-~r 
F(X) 

-vf~V [F(~,+v/s)v(~,+v/s)]. 
A33 = sZF(~.) 

(32) 

The entries of the vector V m in Eq. (26) are easily obtained if we recall from Ken- 
dall et al. (1987) that for arbitrary r and q and arbitrary sample size N,  we have: 

Var(g~) = (g2r -- g~2)/N (33) 

Cov(It; ,  It'q) = (Itq +r -- It;itq)/ N. (34) 

Since the elements of the vector V m (Eq. (26)) and those of the matrix V (Eq. 
(28)) are now well determined, the vector Vp can be easily deduced using 

v p  = V - I ' V m  . 

Hence by knowing the variances and covariances of the parameters, 13, ~. and s (i.e., 
the vector Vp) and the partial derivatives of X T with respect to each of these 
parameters (Eqs. (22), (23), and (24)), th~ calculation of Var X r becomes straight- 
forward via Eq. (21) and can be easily programmed on a computer. 

One can also be interested in computing correlation coefficients between 
moments or between parameters. This can be done by using the following relation- 
ship: 

p(x,y) = cov(x,y)/(varx.vary) 1/2 (35) 

and letting, for example, x = M r and y -- Mq in the moments case or, x = 13 and 
y = ~. in the parameter case. 
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6 Special case of moment of order quasi zero 

In the presentation of the sundryaverages  method (SAM) it was mentioned that 
the moment of order quasi zero, ~t0(x ), has a functional form different from that of 

g~(x). This means that certain terms involved in the calculation of VarX T would 

have to be modified whenever the moment go(X) is used in the estimation. Such is 
the case not only when the method SAM (GMM(0,-I,1)) is used, but also whenever 
the moment of order "quasi-zero" is involved (like in the method MM1 or 
GMM(0,1,2) for example). Terms to be modified are all those involving t = 0, or 
M 1 = gt(x)  = p-0(x). These precisely are: 

- the terms VarM 1, Cov(M1,342) and Cov(M 1, M 3) of the vector V m in Eq. 
(26); 

- all terms in the first row of the matrix A in Eq. (31). 
The new terms will be (see appendix): 

VarM 1 = ~ ' (~ , ) /Ns  2 (36) 

where ~'(-) is the tr igamma function 

Cov(M1 ' M2 ) = [~uF(~, + u / s )  

Cov(M1, M3) = 

NsF(~,) 
I~vr(~, + v/s) 

Ns F(~,) 

[v(~. + u / s )  - v(~.)] 

[v(~, + v / s )  - v(~,)] 

(37) 

(38) 

(39) 

(40) 

(41) 

A l l  = 1/~ 

A12 ~ Ilt'(~,)/s 

A13 = - ~ ' ( ~ ) / s  2. 

A comparison of VarX T calculated by different versions of the G M M  has been 
undertaken and the results are presented in the following section. 

7 Comparison of VarX r obtained by various versions of the GMM 

The G M M  is a method of estimation which is very broad in the sense that it allows 
one to combine orders of moments in such a way that the chosen combination per- 
forms better than others with respect to reducing VarX T. Note however that one 
should not expect to find one method of estimation to be best for all return periods. 

The example provided here consists of the comparison between the following 
methods: 
G M M  (-1, 0, 1) or SAM, GMM (0, 1, 2) or MM1 and GMM ( 1, 2, 3) 

The three different methods were applied to a set of observations made of 
annual maximum daily discharge recorded from 1916 to 1974 at the station located 
on St-Mary's river (at Stillwater) in Nova Scotia (Canada). This set of data was 
also used by Kite (1977). 

Results are presented in Fig. 3 where the standard error of X T is given for dif- 

ferent values of the return period T. Each curve is associated with one of the 
three methods of estimation. 

For this set of observations, Figure 3 indicates that lowest values for standard 
error of XT are obtained by the sundry averages method or GMM(-1, 0, 1) indicat- 
ing that this method should probably be preferred over the two others in this par- 
ticular case. Here, it appears that making use of moments of lower order (-1, 



8oo I 
171 

= 6oo4\ 

4 0 0 -  ~1. ' ~ " G M M  ( 1,2, 3 ) 

o ' " ' I ' ' ; ' ' 
0.0001 O.OOI O.OI 0.05 0 2 0.5 0.8 O- 5 0.99 0.999 0.9999 

PROBABILITY OF EXCEEDANCE 

Figure 3. Standard error for Xr obtained by different versions of the GMM for various probabili- 
ties of exceedance 

quasi-zero and 1 as compared to 1, 2 and 3 for example) helps in reducing the stan- 
dard error of X r  for all return periods considered. Further investigations would be 
needed in order to confirm this preliminary result and to examine in more detail 
(by Monte Carlo simulation for example) how the different versions of the method 
of moments would compare to each other when applied to the GG distribution. 

8 Summary and conclusion 

The main purpose of the present study was to apply a very flexible method of 
parametcr estimation (GMM) to a very flexible distribution (GG). This was done 
by: 

(1) pointing out the interest of the generalized gamma distribution as a flexible 
distribution for hydrological applications and showing in a schcmatical 
diagram how many of the widely used distributions are either special cases or 
limiting cases of the GG distribution; 

(2) showing how the generalized method of moments (GMM), can be considered 
as a generalization of the various methods of moments; 

(3) deriving the general equations needed to apply the GMM to the GG distribu- 
tion; 

(4) presenting an interesting special case of the GMM which was called the sun- 
dry averages method (SAM). This method makes use of the arithmetic, 
geometric and harmonic means of the sample, which are respectively moments 
of order 1, quasi zero and -1. Reducing the order of the moments in this 
manner can lead to a lower value of Var(XT) for certain values of T; 
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(5) 

(6) 

d e t e r m i n i n g  t he  gene ra l  f o r m u l a  for  VarY( T for  the  G M M  appl ied  to the  G G  

d i s t r i b u t i o n  inc lud ing  t he  spec ia l  case  of  m o m e n t  of o rde r  quas i  zero; 

p rov id ing  a n  e x a m p l e  of  t he  use  of  the  G M M  for a n n u a l  flood series and  
po in t ing  ou t  t he  n e e d  for  f u r t h e r  c o m p a r i s o n  b e t w e e n  the  d i f f e ren t  vers ions  of 
t he  G M M .  
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Appendix A Derivation of equations (36) through (41) 

In Eqs. (36) through (41) we have: M 1 = Y estimate of ~o(X) = lal(y) = ln~ + W(3,)/s 
M2 = m~(x) estimate of la'u(x) = E ( X  u) = ]~uF(~ + u/s) /FQO 
M3 = m~(x) estimate of ~ ( x )  = E ( X  v) = [$~F(~, + v/s)F()  0 

From the expression for M l, Eqs. (39), (40) and (41) are easily derived; in fact we have: 

An = OMI/O~ = 0(ln~ + W()O/s)/O~3 = 1/B, 

A12 = OM1/O)~ = 0(ln]3 + ~()O/s)/O~, = ~'()O/s, 

A13 = OMl/Os = 0(ln]3 + ~(3,)/s)/Os = --~g()O/s. 

Equation (36) is obtained as follows: 
Since X ~ G G  (l~,)~ ,s), let Y = lnX and Z = ln(X/13) ~ i.e., lnX = ( Z / s )  + ln[3. 
Then: 

VarMl = V a r y  = ( 1 / N ) V a r Y  

where 

VarY = Var(lnX) = Var[(Z /s )  -t- lnlg] = (1/s2)VarZ 

= (1 / s2){E(Z  2) -- [E(Z)]2}. 

From Stacy and Mihram (1965), 

E(z k) W ' ) ( z )  
r(X) 

where l~k)(~,) is the kth derivative of F(E) with respect to the parameter ~,. Then after some mani- 
pulations we obtain: 

VarY = (t/s2){ F(~) 

Finally, 

VarM 1 = ~F'(~.)/Ns 2. 

Equation (37) is 

Cov(MI, M2) = 

where: 

E(Y) = p ; ~ )  

E(X ~) =/~(x) 

and 

- -  - r ~ 1 ) ( ~ , )  1 2 /  L F ( ~ )  J �9 = (1/s2)v'O') 

derived using M 1 and M 2 as follows: 

E[Y.m~(x)] -- E (~ ) . e (m~(x ) )  

E[(1/N)~'~Y~).((1/N)~_~f)] -- E ( Y ) . E ( X  u) 

(1 /N2)[~E(Y iX~  ') + (N 2 -- N)E(Y).E(XU)] -- E ( Y ) . E ( X  u) 

( 1 / N 2 ) [ N E ( Y X  ~) + (N 2 -- N)E(Y).E(XU)] -- E ( Y ) . E ( X  ~) 

( 1 / N ) E ( Y X  u) + (1 -- 1 / N ) E ( Y ) . E ( X  u) -- E ( Y ) . E ( X  u) 

( I / N ) [ E ( Y X  ~) -- E(Y).E(XU)] (A1) 

(A2) 

(A3) 
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E(YX") = E(lnX-X") = fx~'lnxf(x) dx (A4) 

where f(x) is the probability density function of the generalized gamma distribution (Eq. (1)) and 
the integration is over the whole domain of variation of this distribution. 

Making the appropriate change of variable and after integration and some mathematical manipu- 
lations Eq. (A4) can be shown to be equal to: 

E(XUy) = [$uF(~, + u/s) (ln[~ + V(~, + u/s)/s). (A5) 
r(~) 

Substituting Eqs. (A5), (A3) and (A2) into Eq. (A1) gives the desired Eq. (37). 
Equation (38) is derived in an exactly similar manner. 
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