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Every creation of a fresh interface between 
a solution of a surface-active substance and 
solid, liquid, or gas leads to the well known 
change of the boundary tension with time. 
From a thermodynamical viewpoint these time 
effects are due to the tendency of the system to 
reduce its free energy to a minimum value at 
equilibrium. The mechanism of this phenome- 
non is connected with a concentration change 
in the region immediately near the surface, 
caused by adsorption of solute molecules on it. 
This concentration gradient provokes a diffu- 
sion flow from the bulk to the surface. 

Very often the time necessary to establish 
the equilibrium is entirely due to diffusion 
transport. In other cases some additional 
obstacles may occur. Usually they are regarded 
to the existence of different kinds of energy 
barriers (electrostatic, steric etc.) between 
solved and adsorbed states. 

The description of the diffusion part of the 
process is usually based on a solution of Fick's 
second law 

ac a2C 
0-7 = D at-- w [1] 

under certain boundary conditions. This 
solution is "tacked together" with the surface 
which is not present explicitely in the diffusion 
problem by means of an additional condition: 

ac ) dM 
D .=0 dt [21 

One can easily integrate eq. [2] and find M(t). 
Using this approach, Langmuir and Schafer 

(1) have determined the change of the adsorbed 
amount with time, but their result is only right 
for the earliest stage of the process. The 
derivation is based on a solution of eq. [1] 
under the boundary condition c(o, t) = 0, which 
is fulfilled during a short time interval after the 
creation of a fresh interface. 

The next important step was made by Ward 
and Tordai (2), who had used the more general 
solution of eq. [1] under the boundary condi- 
tion c(o, t) =~(t )* .  Therefore they had found 
an expression which is valid for 0 < t <tecl: 

M(t) = 2 Co t~ 

t 

-- (t - -r)~ dr .  [31 

0 

The same case (c(o, t) = ~(t)) had been treated 
by Baret (3), who carried out the diffusion 

( a c )  bymeans  of a flow at the interface D ~ x=0 

direct differentiation of c(x, t). In (2), an 
expansion of c(x, t) in a MacLaurin series 
proceeds this step. 

By use of Laplace transformation ]Jansen (4) 
had solved the problem under given flow at 
x = 0. Thus eq. [2] participates as a boundary 
condition of eq. [1] and the solution gives an 
expression for M(t) more directly. In the same 
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article Hansen had derived a formula for the 
subsurface concentration, emphasizing its im- 
portant role in connecting the bulk and surface 
behaviours: 

t 

1 f C ( o , t ) = C o  (stD) ~ (7 Z-~)~ dr" [41 

In" several papers especially devoted to 
diffusion limited adsorption kinetics Delahay 
and Fike (5), Sutherland (6), and Hansen (7) have 
avoided the use of any analytical expression 
for the subsurface concentration by means of 
appropiate adsorption isotherms. Unfortu- 
nately the application of the final expressions is 
limited by the hypothesis of instantaneous 
equilibrium between subsurface and surface. 

Further in (3) Baret proposed to solve a 
system of two equations; the first - represent- 
ing the diffusion transport from the bulk to the 
subsurface and the second - describing the 
mechanism of adsorption-desorption exchange 
in an explicite manner. For example he has 
used for the second one a first order reaction 
equation which describes the transition be- 
tween solved and adsorbed states under 
nonequilibrium conditions. It gives the net 
rate of adsorption as a sum of adsorption and 
desorption rates : 

d M  

dt 
= V a -  V d  

= A .  C(o, t )  [M~ -- M(t)] -- B . M ( t ) .  [5] 

Solving the diffusion problem under the 
same boundary conditions as Hansen in (4), 
Baret (3) has found another expression for the 
subsurface concentration: 

t 

1 f MO:) C(o, t )  = C o +  2(=D)~ (t--v)~ 

0 

- -  d ~ .  [6]  

After its substitution in eq. [5] he has got 
an equation for the net rate time dependence, 
which describes the most general case of ad- 

d M  
sorption kinetics- when T depends simulta- 

neously on the diffusion transport from the 
bulk to the subsurface and on the overcoming 

of the energy barrier between solved and 
adsorbed states : 

d M  

dt 
-- A "Co . [M~ - -M(t ) ]  - - B . M ( t )  

t 

A ! M(t)-M+ 
(=D)+ (t--r)+ M(r)d~. [7] 

The last formula is of principle importance, 
since it enables to calculate the kinetic con- 
stants A and B for a given system by use of a 
numerical solution. In such a manner, we 
would be able to evaluate the adsorption and 
desorption energy barriers and to understand 
their nature and origin. 

Other similar general expressions can be 
derived by substitution of c(o,t)  in equations 
of the same type as eq. [5]. They may take 
into account another mechanism of adsorption- 
desorption exchange; for instance to involve 
the role of the interaction between adsorbed 
molecules, localized or nonlocalized adsorption 
etc. (9, 10). 

The lack of correspondence between eq. [4] 
and eq. [6], however should result in different 
expressions for the net rate of adsorption. 
That is why we need to remove this contradic- 
tion and to make out, which of these formulas 
is the correct one. On the other hand, in spite 
of the fact that one and the same final formula 
for M ( t )  is obtained in three different papers, 
there are some unclear points in Ward and 
Tordai's (2) and Baret's (3) derivations. 

The considered solutions, as far as obtaining 
the distribution c ( x , t )  is concerned, are more 
or less trivial. Tacking the bulk together with 
the surface however, demands to find the 

(Oc)  . This limiting functions c(o,t)  and ~x  ,=0 

transition is the most complicated step and as 
we will show further, it gives rise to errors or 
inaccuracies when applied incorrectly. 

A physical picture of this process of reach- 
ing adsorption equilibrium (see for instance 
(2)) shows that the subsurface concentration 
and the diffusion flow at x = 0 should have 
finite values in the interval 0 < t < t e q ' C ( O , t )  
initially has to reduce its value by reason of the 
"emptyness" of the freshly formed surface 
and therefore an easy adsorption on it. From 
this moment, which is initial for the diffusion 
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transport since it corresponds to the creation 
of the initial concentration gradient, c(o,t) 
begins to increase reaching the value of bulk 
concentration at equilibrium. This change is 
due to the diffusion from the bulk and the 
gradual saturation of the surface. Therefore 
the physical meaning of c(o, t) requires it to be 
a monotonically increasing and limited func- 
tion. The character of the diffusion flow with 
time (eq. [13] in (2) and eq. [15] in (3)) has to 
be similar. It decreases monotonically from a 
maximum value at the beginning, to zero at 
equilibrium. 

If however we apply Cauchy's integral 
criterion to the integrals in eq. [13] of (2) and 
eq. [15] of (3), it can be shown that they are 
divergent in this interval. In this premise the 
following requirements should be satisfied: 

If # ( r )  ( t  - r )  ~ - f ( r )  

is positiv and exists a number 0¢ > 1 so that for 
z near by t we have the relation 

f ( r ) ( t - - z ) ~  > d > o  [8] 

the integral j" f ( r )dr  is divergent. It is easy to 
0 

see that these conditions are satisfied for in- 
stance when ~ = 5/4. 

The discontinuity of the diffusion flow ex- 
pression makes doubtful the possibility of its 
integration, which follows in (2) and (3). In 
fact, with the help of eq. [8] and the mean 
values problem for integrals 

b 

yf(t)dt = f ( ~ )  (b - - a ) ,  a ~< ~ ~<b [9] 
g 

one can show that the double integrals in eq. 
[14] of (2) and eq. [15] of (4) are also divergent. 

t 

M2 = -k- ff  - z ) ~  

0 0  
t 

= --21 F(z) d, ~> m ~- 

0 
[lO] 

He re  ~ = rain F(~)  fo r  ,e(o,t). As F(~)  is 
infinity for all re(0, t) the integral in [10] does 
not exist. 

The application of Cauchy's criterion to eq. 
[6] shows that it also does not correspond to 
the physical meaning of the subsurface con- 
centration. Therefore the substitution of this 
expression in eq. [5] should lead to a new 
uncorrect resultformula [7]. But if we apply 
the same procedure to Hansen's expression, 
it becomes clear that it does not contain 
similar mathematical peculiarities. 

This discrepancy and the already mentioned 
importance of the cited equation requires one 
to check there solutions once again. Such 
analysis of the derivation in (2) shows that the 
correct final result is reached after two 
imaccuracies following one after the other. The 
first is connected with the transition of eq. [12] 
to eq. [13] in (3): 

_ 1 

ax 7~=o (~Dt)~ 
o0 

E (--1)rt, 
(2r--1)r!  ¢(r) (t) 

r = 0  

1 
2(=D) 

oo 

~ ( -  1)r t r -  
r !(r--½) ¢(r) (t) " [11] 

r = 0  

Formally one can write 

t 

tr-  ~ ~ dr 
[12] 

r --½ ( t - - z )  ~-r 
0 

but this is true only for r > 0, as for r = 0 the 
right side integral is divergent. Using relation 
[12] formally the authors have obtained: 

--~-x J ,~o 2(=D) 
oo 

~ [  (--1) r 
i ~! ¢(r)(t)(t--r)r 

r = 0  

( t  - T) =' d~ 
0 

[131 

Having in mind that the expression in the 
numerator is a Taylor series of ¢ (t) the last 
expression gives eq. [13] of (2). 
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The next integration of this divergent inte- 
gral is carried out with the help of "Cauchy's 
theorem for n-times repeated integrals applied 
to non integer n" (eq. [19]-[21] of (2)). This 
generalization of the theorem is the second 
ungrounded step of the solution. An indirect 
demonstration will show the error. Ward and 
Tordai obtained the equality (eq. [21]-[22] of 
(2)): 

t t 

dt ( t - r ) ~  2 ( t - r ) ~  
0 0 

- -  d r  . [ 1 4 ]  

Here the right side gives infinity for every 
= t, as it was shown earlier. The left side is 

convergent for all 0 < t  <teq, which follows 
directly if the differentiation is carried out 
after a reorganization of the integral by inte- 
gration by parts: 

t t 

at (i--?)½ d r -  t----r-- + ( t - 0 ½  dr. 
0 0 

[151 

Another error was made by Baret in (3), 
who had applied the Laplace transformation 
to obtain c(x, t) distribution. 

Here he used the relation 

L 2(Data)½ e 4-~i = e  -x [16] 

which is only correct for x >0 (8). That is 
why his c(x,t)  expression coincides with that 
from (2), which is obtained by means of 
Green's function. However Baret needs to 

k n o w (  N ] , and so letting x-~o he gets the 
\ Ox lx=o 

false equation [15] on page 899. To overcome 
the difficulties in integrating this divergent 
expression the author repeats the ungrounded 
application of "Cauchy's theorem". 

We shall try to avoid the discrepancy men- 
tioned above, and following the way chosen 
in (2) to obtain the solution in an uncontra- 
dictory manner. Starting from eq. [12] of (2) 
we make some easy transformations: 

oo 

Ox ] ,=0 (=Dt)t  r ! (2 r - -1 )  

1 

(.D) ½ 
oo 

r = 0  

o0 

- (~D) ½ + r! 
r = l  

o0 

2r) 
2r -- 1 

- - 9 ~ ( r ) ( t ) t r - ½  

( r -1 ) .  (t) Y ; T T j  
r = l  

0o 

_ 1 ~ ( -1)~2 
(=D)½ r ! ( 2 r + l )  

r = 0  

2r+ 1 ~(~+1) (t)tr+ ~] [ ~ ~(r)(t) t~-½ + 

00 

-- (~D)½ r ! ( 2 r + l )  dt (6(~)(t)tr+½) 
r = 0  

oo t 

-~- (~D) i dt r---T--. ~5(r)(t) ( t -~- )  ½-r 
r = 0  0 

t 

1 d f ~(r) - (~D)i at (t-~)------7 at. [17] 

The integration of this expression has no 
difficulties : 

t 

0 
t t 

0 0 

( * - ~ ) ~  " 

0 

[18] 

Together with equation [8] of (2), this rela- 
tion gives the total amount adsorbed at time t: 
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M = M l q - M 2 = 2 C o ( - ~ ) l t  ½ 

t 
~ (~) 

o 

- - & .  
½ 

Another uncontradictory derivation of this 
formula has been made by Hansen (4). Carrying 
out the limiting transition x --*0 in the equation 

C(x ,p)  - - -  
Co 

P DI [P M(P)] 
1 

p~ 

[19] 

and solving the result with respect to M(p)  
he obtained eq. [3] after easy transformations. 
If however  first transform eq. [19] and then 
let x tend to zero, we get the subsurface con- 
centration formula [4]. The same expression 
can be obtained if we apply Abel 's integral 
equation to eq. [3] as was done in (9). When  
we calculate the derivative correctly, having 
in mind that M ( q - 0 )  = 0, Hansen's result is 
found once again. 

The discrepancy between eq. [4] and eq. [6] 
is due to a wrong  back transformation of the 
equation 

C(o,p) = -- ½ )ff_(p) P 

(see p. 901 of (3)). Here again a formal applica- 
tion of the general relation 

t - - l - - n  

L - i  {pn} _ (1 --n)!  

takes place• It is limited for n < 0, where n is 
an integer, but  Baret has used it for n = 1 / 2  
and obtained 

t - ~  
L - I  {P~} -- 2:z~ " [22] 

The substitution of the correct expression 
riM 

for c(o, t) in [5] leads to a new equation for --dT-' 

instead of that on p. 901 of (4): 

t 

dt - A "  C0 (~D)~ (t--r)~ dr 
0 

[Moo - M(t)] - BM(t) [23] 

o r  

dM 
t 

dt - A •  Co (=D)~ dt (t--r)-------~ dr 

o 

• [M® -- M( t ) ]  - - B . M ( * ) .  [23a] 

All other equations derived in the same 
manner (eq. [49]-[54] of (10)) may be used 
after their correction, changing only the term 

t t 

i M(r) dr by the term - - d r  
( t -  ~)----~ ~ ( t -~ )~  

0 t 0 

d f M(z)  dz, w h e n M ( 0 )  = 0 .  or ~ ~ ( t - - ~ ) ~  

0 

Nomenclature 

c = c o n c e n t r a t i o n  
[20] co = bulk surfactant concentration 

x = d i s t ance  f r o m  the  sur face  
t = t ime  
teq = t ime  for  r e a c h i n g  the  e q u i l i b r i u m  
D = d i f fus ion  coeff icient  
M = n u m b e r  of  a d s o r b e d  mo lecu l e s  pe r  c m  2 
Mo0 = n u m b e r  o f  a d s o r b e d  mo lecu le s  w h e n  c o -~oo 
va = a d s o r p t i o n  rate 

[21] va = desorption rate 
d = a d s o r p t i o n  rate c o n s t a n t  
B = d e s o r p t i o n  rate  c o n s t a n t  

= s u b s u r f a c e  c o n c e n t r a t i o n  
p = the  c o m p l e x  var iable  in Laplace  t r ans fo r -  

m a t i o n  
L , L - I =  r i gh t  and  back  Laplace  t r a n s f o r m a t i o n  

• ope ra to r s .  

This resuk leads to the divergent integral in 
eq. [6]. Moreover,  according to the theorem 
for the region of existence of the Laplace trans- 
formation, the function F(p) is the transforma- 
tion of a function f ( t ) ,  if lim F ( p ) =  0. This 

~0-~ Oo 

demand is not  fulfilled here, so that eq. [22] 
contradicts the cited theorem. 
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is car r ied  out .  I t  is s h o w n  tha t  (2) a n d  (3) i m p l y  
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expressions inconsistent with the physical picture of 
the process. A correction is proposed which removes 
the contradictions. 

Further in (3) and again in (10) Baret has given 
equations for the rate of adsorption when the latter 
simultaneously depends on the diffusion transport and 
on the transition between dissolved and adsorbed 
states. These formulas are also corrected with respect 
to the expression for the subsurface concentration. 

Zusammenf assung 

Die vorliegende Arbeit fiihrt eine Analyse der 
Arbeiten yon Ward und Tordai (2), Baret (3) und 
Hansen (4) dutch, die sich mit der L&ung der Dif- 
fusionsvorg/inge in der Adsorptionskinetik befassen. 
Es wird gezeigt, dab in (2) und (3) Ausdriicke ent- 
halten sind, die unvereinbar sind mit dem physikali- 
schen Sachverhalt dieses Prozesses. Eine Korrektur, 
die diese Widersprtiche beseitigt, wird vorgeschlagen. 

Ferner hat Baret in (3) und in (10) Gleichungen an- 
gegeben, die die Geschwindigkeit der Adsorption be- 
schreiben, wenn diese gleichzeitig vom Diffusions- 
transport und yore Ubergang zwischen gel6ster und 
adsorbierter Phase bestimmt wird. Diese Formeln 
werden ebenfalls korrigiert unter Beriicksichtigtmg 
des Ausdrucks f/Jr die Subsurfaee-Konzentration. 

References 
1) Langmuir, 1., V.J .  Schaefer, J. Am. Chem. Soc. 

59, 2400 (1937). 
2) Ward, A.  F. H., L. Tordai, J. Chem. Phys. 14, 

453 (1946). 
3) Baret, f .  F., J. Chim. Phys. 65, 895 (1968). 
4) Hansen, R. S., J. Coll. Sci. 16, 549 (1961). 
5) Delabay, P., Cb. T. Fike, J. Am. Chem. Soc. 

80, 2628 (1958). 
6) Sulberland, K. L., Austr., J. Sci. Res. AS, 683 

(1952). 
7) Hansen, R. S., J. Phys. Chem. 64, 637 (1960). 
8) Doelsch, G., Tabellen zur Laplace-Transfor- 

mation und Anleitung zum Gebrauch (Berlin-Heidel- 
berg-New York 1947). 

9) Panaiotov, I., J. Petrov, Ann. Univ. Sofia, Fac. 
Chem. 64, 385 (1968/69). 

10) Barei, J. F., J. Colloid Interface Sci. 30, 1 
(1969). 

Authors' address : 

j .  G. Pefrov and R. Miller 
University of Sofia, Faculty of Chemistry, 
Sofia (Bulgaria) 


