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Abstract. We present the thermodynamically consistent 
procedure to introduce the excluded volume effect into 
the equation of state of nuclear matter. Implications are 
discussed in the framework of a mean-field model for 
hadrons with eigenvolume. 

1 Introduction 

The determination of the nuclear matter equation of state 
(EOS) remains nowadays one of the foremost goals in 
(both theoretical and experimental) investigations on 
heavy-ion physics (see, for example, [1]). The EOS is a 
necessary input for hydrodynamical models of nuclear 
collisions. Any reasonable model for the nuclear matter 
EOS must account at least for the following two features: 

(A) The reproduction of the ground state properties 
of nuclear matter. At temperature T= 0 and baryonic 
density n =-no ~ 0.16 fm-3 nuclear matter saturates, i.e., 
the energy per particle W(n)==-(e/n)r=o--M (e is the 
energy density, M is the free rest mass of the nucleon) 
has a minimum (i.e., the pressure Po = 0) and assumes the 
value W(no) ~ - 16 MeV. Furthermore, experimental 
information suggests for the effective nucleon mass at the 
ground state the value M~ = (0.7 +0 .1)M and for the 
incompressibility K o = 9(Op/~n)r= o . . . .  o values between 
200 and 300 MeV (see [2]). 

(B) The transition to a phase of deconfined quarks 
and gluons (quark-gluon plasma) at very high tem- 
peratures and/or baryonic densities. Lattice simulations 
of quantum chromodynamics (QCD) predict this 
transition to occur at T~-~ 200 MeV for vanishing net 
baryon number (see, for example, [3]). 

Since quarks and gluons are asymptotically free 
at very large T and n, one can apply QCD pertur- 
bation theory in this (T, n)-region to derive an EOS for 
the quark-gtuon plasma [4]. One has to add some 
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phenomenological terms to take into account the 
difference between the perturbative and the true vacuum 
(like, e.g., in the bag model [5]). To derive an EOS for 
confined matter directly from QCD is impossible to date. 
Thus, one has to invent a more or less phenomenological 
model EOS for hadron matter. The hadron and the 
quark-gluon plasma EOS are amalgamated via Gibbs' 
conditions of phase coexistence. 

However, to our knowledge, there is yet no hadron 
matter EOS which is able to account for both above 
requirements simultaneously! Let us clarify this statement. 

Hadron matter as an ideal gas of point-like particles 
does certainly not reproduce the ground state properties 
(A). Furthermore, there is no reasonable phase transition 
to the quark-gluon plasma (property (B)) [5]. 

The meson mean-field model [6] and its pheno- 
menological generalizations [7-10] can account for pro- 
perty (A). However, the repulsive interaction in these 
models is proportional to n and vanishes for n~--,0. Thus, 
at large T (and n ~ 0) one can in principle excite thermally 
a large number of point-like hadronic resonances which 
do not interact repulsively. It is clear that due to the 
large number of degrees of freedom their pressure 
becomes larger than that of the quark-gluon plasma for 
sufficiently high T. According to Gibbs' conditions, the 
hadronic phase would become stable at T ~  ov [11, 12], 
which is in contradiction with requirement (B). 

To overcome this difficulty a hard-core repulsion for 
hadron gas models has been widely discussed in recent 
publications [12-16]. By construction, such an approach 
violates causality at high densities (there is no relativistic 
rigid body!), but it can help to remedy the above men- 
tioned shortcomings of the point-like particle models. 
However, there are two faults in the approaches proposed 
in [12-16]: 

1) The excluded volume effect was introduced in the 
ideal gas model only (so that the property (A) could not 
be satisfied). 

2) The excluded volume procedures in [12-16] are 
thermodynamically inconsistent. 

As a first step in the present work we reconsider 
the implementation of the excluded volume in ideal 
gas models to obtain the thermodynamically consistent 
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formulation and to correct the results of [12-16]. Then 
we generalize our approach to the nuclear matter EOS 
in mean-field theoretical models. It enables us to combine 
the desired features (A) and (B) in a self-consistent model. 
The implications will be considered in the framework of 
the meson mean-field model [6] extended to include a 
hard-core repulsion. 

2 Excluded volume in ideal gas models 

For simplicity, we first consider one particle species with 
eigenvolume Vo. The pressure p is related to the grand 
partition function ~ according to 

p(T,p) = lim T ln~((T'# '  V), (1) 
V ~-,oo g 

where p is the chemical potential, Vis the volume of the 
system. ~ is defined as 

~ (T ,# ,  V) = ~ euNIT Z( T,,N, V) (2) 
N=0 

To introduce the excluded volume (/t la Van-der-Waals) 
it is necessary to substitute the canonical partition 
function Z in (2) by 

zex~l(T, N, V) = Z(T,N,V- voN)O(V- yoN). (3) 

This ansatz is motivated by considering N particles with 
eigenvolume Vo in a volume V as N point-like particles 
in the "available volume" V-yoN. Then the following 
grand partition function results 

~excl(r~].~, V) = ~,, euNITZ(T,N, V -  voN)O(V - YoN ). 
N=0 

(4) 

The main problem in the calculation of (4) is the 
dependence of the available volume on the varying 
number of particles N. To overcome this difficulty we 
perform a Laplace transformation of (4). This method of 
the "isobaric partition function" [17] was successfully 
used [18220] to investigate the excluded volume effect 
in a gas of quark-gluon bags. We obtain 

~er162 ~) ~ 7 dYe- cv ~~162 / t, V) 
0 

= 7 d x e - r  fi, x), (5) 
0 

where fi-= k t -  Vo T~. The second equality in (5) results 
by changing the integration variable Vto x = V v oN. 

To proceed further we remind the reader of the 
following facts (see 1-18]). It can be proven from the 
properties of the Laplace transforms that the pressure 
is equal to 

In ~ x ~ l (  T, p, V) 
p~ ( T, p) -= lim T = T~*(T,/~), (6) 

where ~*(T,#) is the extreme right singularity of the 
function ~x~l  in the variable ~. In our consideration 

~e~xr has only one singular point (for positive ~), namely 
when the integral over x in (5) diverges at the upper limit. 
Thus 

~ * =  lim ln~(T,#,x). ,  f i = # _ v o T { . .  

Applying (1) for ~ (T ,  fi, x) and using (6) to eliminate ~* 
we find 

pexel(T,,fl)=p(T, fi); /5 =/.t - Vo peXei ( T,/x). (7) 

Therefore, we obtain an implicit equation for pexr 
if p is a known function of its arguments. 

Let us consider the ideal gas case for sake of il- 
lustration. Then we have in (5) 

~ i d  ( T, ]~, x)  = exp [x F( T, fi)], (8) 

where 

1 g 
F(T,p)  = - -  

a(2n) 3 

�9 fd3kln  1 + a e x p  T 

Here g is the degeneracy factor, m is the particle mass, 
a = _+ 1 for fermions/bosons and a~-~0 in the Boltzmann 
limit. One can directly perform the integral (5) and 
obtains 

1 
id t 

~ -  F(T, fi)' 

which gives 

= T. " /) -excl/T.  P ~ C l ( T , # )  T F ( T ,  f t ) = P i d (  ,I ~ -  OPid [ , # ) ) '  (10) 

This is just the special case of (7) for the ideal gas (cf. 
1-21,22]). We note, however, that the expression (7) is 
valid also for more general cases. 

The particle number density, the entropy density and 
the energy density are found from (10) 

1~ . . . .  ix  
riexcl . . . .  { Pid ] = n i d ( T ' f i )  ( I1)  

id t l , #J  = \ W / r  1 + vonid(T, fi), 

/0  . . . .  1\ [ rio ~ = Sld(T, fi) (12) 
s~~ \ ~ ) , ,  1 + von,,~(7;,fi)' 

exc' TseXCl exel i - excl__ I~id ('/7 ~)  
Eid ( T~ #)  ~ ~ id - -  Pid --/ ' tnid --  1 + vonid(T, fi)' (13) 

where nio, Sid and e~d are the well-known expressions 
for an ideal gas of point-like particles. We stress that 
our relations (10-13) are thermodynamically consistent 
(fundamental thermodynamical relations are fulfilled). 
This is in contrast with the formulations in [12-16], 

where the typical errors are n # ( ~ )  sO=(@) T' ~ ," The 

reason is that these formulations do not account for the 
necessary modification of the chemical potential ~--~fi in 
the ideal gas functions n~d, S~d, eid, P~d" 

We mention that, instead of the ansatz (3), one could 
introduce the excluded volume directly in the grand 



partition function, 

~e~xcl(T, if, V)= ~ ( T ,# ,  V-v0  fi{~x~l), (14) 

where ~ex~ is the mean particle number. The resulting 
pressure reads 

p~ ~) = p(T, ~)(1 - vo n~X~'(T/2)). (15) 

If vop(T, #)<< 1, this approach is similar to the above. To 
see this one uses the identity n~J(T ,  12)=(c~p~X~l/c~/2)r, 
rearranges the terms and uses Taylor's theorem. After a 
shift of/2 by - vop(T , l~ )  we obtain 

peXC'(T,/2) ~ p(T,/2 - v0p(T,/2)). (16) 

If in addition v0n~ 1, p~ (T , /2 )~p (T , /2 )  ac- 
cording to (15) and (16) even coincides with (7). The 
disadvantage of the ansatz (14) is that only an average 
excluded volume enters the calculation and that 
the expressions for other thermodynamical quantities 
become more complicated. However, these expressions 
do not lead to contradictions with thermodynamics, if 
we refrain from the use of "ad hoc prescriptions" to 
construct them. 

We finally note that the extension of the procedure 
(3-7) for several particle species is straightforward. 
If v o(l),...,v(k)0 denote the particle eigenvolumes and 
/2~ . . . . .  /2k are the chemical potentials for k different kinds 
of particles, then we obtain 

pex~'( T, i f , , - - ' ,  #k) = p(T, f i~, . . . ,  fig), (17) 

where 
(i) excl ~ i = I t i - v o  p (T,/2I . . . . .  Ilk), i =  1 , . . . , k .  

3 Excluded volume in mean-field theoretical models 

In this section we introduce the excluded volume in the 
nuclear matter EOS. We restrict our consideration to a 
nucleon-antinucleon system (poins and resonances are 
neglected for sake of simplicity), where the pressure can 
be written as [9] 

p(T,/2) = T[F(T,  VN) + F(T, v~)] 

+ n U ( n ) -  idn 'U(n ' )  + P(M*) .  (18) 
0 

The function F is given by (9) with a = 1, m = M*, g = 4 
and 

vN - / 2  - U(n), vN - - tl + U(n), 

/2 is the baryonic chemical potential (/2 N = #, fls = - p). 
Formula (18) defines a special class of thermodynamically 
self-consistent equations of state for nuclear matter which 
are phenomenological extensions of the meson mean-field 
model [6]. Models of this class are fixed by specifying 
the two functions U(n) and P(M*) .  Particular choices of 
U(n) and P ( M * )  reproduce a great variety of nuclear 
EOS models known from the literature (see [9, 10] for 
details). 

It is seen from (18) that the pressure is a sum of two 
contributions: 
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1) The thermal pressure of the nucleons and anti- 
nucleons with effective mass M* in the field U(n). 

2) Contributions of the fields themselves. 

Therefore, the grand partition function is a product 

..~. (T~/2, V) = ..~therm(T~/2, V) x ..~field(T~/~t, V), (19) 

where 

Lr~herm(T,/2, V) = exp{ V[F(T, vu) + F(T, vN)] }. (20) 

The motivation for the introduction of an excluded 
volume is to restrict the free particle motion. Hence we 
apply the above Laplace transformation (5) to ~ether m 
only. Therefore, the excluded volume EOS for mean-field 
models reads 

p~XC, ( T,/2) = T [ F (  T, 9u) + F( T, ~ ) ]  
tlexcl 

"~ /"/exc I U (/~excl) -- ~ d n ' U ( n ' ) ~ - P ( M * ) ,  (21) 
o 

where 

vzv - VN -- VO T [  F ( T, 9N) + F( T, ~ ) ] ,  

~ = vg - voT[F(T,  vN) + F(T, ~ ) ] .  

Thermodynamic consistency requires the appearance of 
n exc~ in (21), instead of n as in (18) (cf. [9]). 

The dependence of the effective nucleon mass M* on 
T and/2 is defined by extremizing the thermodynamical 
potential (maximum of the pressure): 

UM;~,~, ,  = o. (22) 

The specification of U(n .... i) and P(M*) completely de- 
termines the EOS. Other thermodynamical quantities 
can be obtained from general thermodynamic relations. 

4 A meson mean-field model EOS for particles 
with finite eigenvolume 

In this section we study an application of the general 
result (21) of the preceding section. We put 

1 
P(M*)  = - (M - M*) 2, U(n ~xc') = t~vn.~2 exd. (23) 

2c~ 

Then, in the case v 0 = 0, the EOS reduces to the well- 
known meson mean-field model of [6]. 

In Fig. 1 we show the ground state properties of 
the EOS (21-23) as a function of the parameter R = 
(3Vo/47t) 1/3 (the "radius" of a nucleon*). One observes 
that the effective mass in the ground state M* increases 
with R and reaches experimentally measured values 
around R ~ 0.7 fm, which is also a reasonable value for 
the nucleon radius. The ground state incompressibility 
coefficient K o reaches a minimum of K o ~ 523 MeV 
around R ~ 0.7 fm. 

The explanation of these results is obvious: the 

* Note that in the present excluded volume approach particles are 
treated as deformable but incompressible objects 
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Fig. l a ,  b. The normalized effective mass M*/M a and the 
incompressibility K o b in the nuclear matter ground state 
as a function of the "radius" R of a nucleon 
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Fig. 2a,  b. Contour  plot of the normalized effective mass M*/M 
as a function of T a n d  n/n o for a the original mean-field model 
with R = 0  and b the mean-field model (21-23) with R =0.7fm. 
The curves labeled (h) and (q) are the boundaries of the Gibbs 
phase coexistence region between hadron matter and a 
quark-gluon plasma (described by the bag model EOS with 
B~/4= 235 MeV). To the right of the dashed line in b the EOS 
(21-23) becomes acausal, due to the inherently non-relativistic 
nature of the eigenvolume approach 

nucleonic eigenvolume provides an additional repulsive 
force. Thus, the vector field repulsion is reduced (C 2 is 
smaller; this lowers K0). Simultaneously, the scalar field 
is reduced, since it is no longer necessary to balance a 
large vector field in order to reproduce the ground state 
binding energy. This rises the effective mass. We conclude 
that the eigenvolume-corrected mean-field model (21-23) 
exhibits more realistic ground state features than the 
original one (18). 

We also investigated the behaviour of (21-23) for 
R = 0.7fm at large Tand n. First of all we mention that, 
since the hadrons are incompressible, we have a limiting 
value for the total particle density, (n N + n~)~m ~ = 1/Vo ~- 
4.4 no. Approaching this value, e, n, and s assume finite 
values, while p diverges. In Fig. 2 we show contour plots 
of the normalized effective mass, M*/M, as a function 
of T and n/no for the original mean-field model (v o = 0) 
and the modified model (21-23) with R =0.7fm. One 
observes that the transition to a massless nucleon- 
antinucleon plasma (M*~--~0) at T -  200 MeV and small 
density n exhibited by the mean-field model [23-] vanishes, 

if nucleons have a finite eigenvolume. Moreover, M* 
never becomes smaller than -,~ 0.3 M. A point of criticism 
of the meson mean-field model was that the mean-field 
approximation is no longer valid for M*/M << 1. 

The Gibbs phase coexistence region, calculated 
for quark matter described by the bag model with 
B 1/4 = 235 MeV and hadron matter described by (18) and 
(21-23), respectively, is also depicted in Fig. 2. One 
observes that the reduction of the hadronic pres- 
sure due to the excluded volume reduces the domain 
of thermodynamic stability of hadron matter in the 
(T--n/no)-plane. However, the exact position of the 
coexistence region depends on the value of the bag 
constant and whether we include pions and resonances 
on the hadronic side [24]. 

As pointed out in the introduction the excluded 
volume description is acausal for large n and T. For  our 
model EOS (21-23) this happens to the right of the 
dashed line in Fig. 2(b), near the phase transition to the 
quark-gluon plasma. The inclusion of pions and 
resonances will alter the position of this line, as well as 



another  effect which we have up to now neglected: the 
reduction of the hadronic  eigenvolume due to the 
pressure in a medium (as, e.g., in a bag model  of hadrons,  
see [22, 25]). Then Vo = Vo( T,/t) decreases with increasing 
T and/or  n. In this case we have no limiting value 

n ~excl in the hadron  phase and the domain of (HN + J~]lim 
causality is considerably enlarged. 

A main advantage of the new EOS presented here is 
that  the inclusion of resonances (with their eigenvolumes) 
will not  favour the hadronic  phase at n ~ 0  and large T 
as in the s tandard mean-field model approach.  

5 Summary 

We have presented the thermodynamical ly  consistent 
EOS for free particles with eigenvolume. We have also 
shown that the excluded volume can be consistently 
introduced in mean-field theoretical model equations of 
state for hadron  matter. We have applied the results to 
the meson mean-field model. The reproduct ion of the 
ground state properties of nuclear matter  is more realistic 
than in the case vo = 0. Furthermore,  there is no transition 
to a massless nuc leon-ant inuc leon  plasma at large T, and 
the effective mass M* is never smaller than ~ 0.3 M. 

The main advantage of the new EOS is that  it 
combines realistic ground state properties of nuclear 
matter  with the physically expected behaviour  at large T 
and n (properties (A) and (B) discussed in the intro- 
duction). 
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