
OR Spektrum (1998) 20:21-28

@ Springer-Verlag 1998

Tabu-search for the multi-mode job-shop problem
Peter Brucker, Jiirgen Neyer

Fachbereich Mathematik/Informatik, Universit~it Osnabrtick, Albrechtstrasse 28, D-49076 Osnabriick, Germany

Received: 2l November 1996 ! Accepted: 18 July 1997

Abstract. In a multi-processor-tasks job-shop problem
(MPTJSP) there is a machine set associated with each op-
eration. All machines are needed for the whole processing
period to process the operation. The objective is to find a
schedule which minimizes the makespan. In a multi-mode
job-shop problem (MMJSP) there is a set of machine sets
associated with each operation. One has to assign a machine
set to each operation and to solve the resulting MPTJSP such
that the resulting makespan is minimized. For the MMJSP
a tabu-search algorithm is presented. Computational results
are reported.

Zusammenfassung. In einem Multi-Processor-Task Job-
Shop Problem (MPTJSP) wird jeder Operation eine Maschi-
nenmenge zugeordnet. Fiir die Bearbeitung einer Operation
werden dabei w~ihrend des gesamten Bearbeitungszeitraums
alle Maschinen ben6tigt. Ziel ist es nun, einen Bearbeitungs-
plan zu bestimmen, in dem die Gesamtbearbeitungsdauer
minimal ist. In einem Multi-Mode Job-Shop Problem
(MMJSP) wird jeder Operation eine Menge von Maschi-
nenmengen zugeordnet. Hierbei mug jeder Operation eine
Maschinenmenge zugewiesen werden und das sich daraus
ergebene MPTJSP mit dem Ziel der Minimierung der Ge-
samtbearbeitungsdauer gel6st werden. Ftir das MMJSP wird
ein Tabu-Suche Algorithmus vorgestellt. Augerdem werden
die erhaltenen Rechenergebnisse aufgeftihrt.

Key words: Tabu-search, multi-mode job-shop, multi-
processor-task job-shop, multi-purpose-machine job-shop

SchliisselwSrter: Tabu-Suche, Mehrmodus-Job-Shop, Mehr-
prozessoroperationen-Job-Shop, Mehrzweckmaschinen-Job-
Shop

1 Introduction

In a job-shop problem, n jobs J~ , . . . , J~ have to be pro-
cessed on m machines M1, �9 �9 , Mm. Job Ji consists of ni

Supported by the Deutsche Forschungsgemeinschaft, Project Br389/15-1
Correspondence to: P. Brucker

operations Oil , . �9 �9 , Oi~ which have to be processed in this
order, i.e. operation Oi,j+l has to be processed after opera-
tion Oij for each stage j = 1 , . . . , ni - 1.

At any time each machine can process at the most one
operation, and for each operation Oij a processing time
Pij > 0 and a machine #ij, on which operation Oij must be
processed, are known in advance.

The objective is to find a schedule which minimizes the

makespan Cmax = m'ax Ci where Ci denotes the finishing
i=1

time of the last operation of job Ji.
In a multi-processor-task (operation) job-shop problem

(MPTjob-shop problem) there is a set Aij C_ {M1, � 9 , ~[rn}

of machines associated with each operation Oij. Opera-
tion Oij occupies all machines in this set Aij during its
processing time. Thus, two operations @j and Oi,j, with
(i, j) r (i l , f) can be processed at the same time only if
Aij N Ai,j, = ~. MPT job-shop problems have been investi-
gated in Kr~imer (1995) and Brucker and Kr~imer (1995).

In a multi-purpose-machine job-shop problem (MPM
job-shop problem) there is again a set Aij of machines as-
sociated with each operation Oij. Here we have to assign a
machine #ij C Aij to each operation Oij and to schedule
the operations on the assigned machines such that the corre-
sponding makespan is minimized. MPM job-shop problems
are discussed in Jurisch (1992), Dauzbre-P6r~s and Paulli
(1995), Hurink et al. (1994), and Brucker and Schlie (1990).

The multi-mode job-shop problem (MMJSP) is a com-
bination of both the MPT job-shop problem and the MPM
job-shop problem. Associated with each operation Oij there
is a set ~ i j = {A~j,.. . m~j k C ,Aij } of machine sets Aij _
{M1, . . . , Mrs} and processing times Pi~ > O, k = 1,. . . ,miy.
We have to assign a machine set Aikj C ~z~ij to each opera-

tion Oij o n which Oij has to be processed. If Aikj is assigned
k time to Oij, then Oij occupies all machines in Aikj for Pij

units.
Sprecher and Drexl (1996a,b) developed a branch-and-

bound algorithm for the multi-mode resource-constrained
project scheduling problem which is a generalization of the
MMJSP.

MMJSP is a very difficult problem because the job-shop
problem which is a special case of MMJSP is strongly NP-

22 P. Brucker, J. Neyer: Tabu-search for the multi-mode job-shop problem

hard. We present a tabu-search heuristic for the MMJSP.
The quality of tabu-search is influenced by the quality of
the underlying neighborhood. In Sect. 2 we introduce neigh-
borhood structures which exploit structural properties of
the problem. Corresponding tabu-search procedures are de-
scribed, and computational results with these procedures are
reported in Sect. 3.

2 Neighborhood structures

An illuminating representation for the job-shop problem is
provided by the disjunctive graph model due to Roy and
Sussmann (1964). We use this representation to derive neigh-
borhoods for our tabu-search heuristic. In Sect. 2.1 the dis-
junctive graph model is briefly described. Based on this de-
scription and possible ways to improve nonoptimal sched-
ules, neighborhoods for the MMJSP are derived in Sect. 2.2.
Finally, in Sect. 2.3 efficient methods are presented for cal-
culating neighbors for a given solution.

2.1 The disjunctive graph model

Given an assignment # which associates with each operation
O,~j a machine set #(Oq) C ,//~j, corresponding schedules
can be represented using the disjunctive graph model. A
disjunctive graph G = iV, C U D) is defined as follows.

V is the set of nodes representing the operations of all jobs.
In addition, there are two special nodes, a source 0 and
a sink . . There is a weight associated with each node.
The weights of 0 and * are zero while the weights of the
other nodes are the processing times of the corresponding
operations.

C is the set of directed conjunctive arcs. These arcs reflect
the job orders of the operations. Additionally, there are
conjunctive arcs between the source and the first oper-
ations of all jobs and between the last operations of all
jobs and the sink. More precisely, we have

C = { @ j -+ @,j+~] i = 1 , . . . ,n; j = 1 , . . . ,n,z - 1}
u {0 --+ l i = 1 , . . . , n}

u {@,, , - + . I i = 1 , . . . , n } .

D is the set of undirected disjunctive arcs. Such an arc
exists for each pair of operations which are incompati-
ble with respect to >, i.e. operations @ j and @,j, with
/~(@~) n ,u(@,y) r 0.

The basic scheduling decision is to define an ordering be-
tween those operations which are incompatible. This can
be done by turning undirected disjunctive arcs into directed
ones. A set S of directed disjunctive arcs is called a selec-
tion. Feasible schedules are represented by complete selec-
tions. A selection S is comple te if

- each disjunctive arc is directed,
- the resulting directed graph G(S) = (V, C U S) has no

cycles.

The schedule represented by a complete selection S is con-
structed as follows. Start each operation Oij at time rij
where r i j is the length of a longest path in G(S) from 0
to @j. The length of a path in G(S) is the sum of the
weights of all nodes belonging to the path, the last node
excluded. A longest path from 0 to the sink * is called a
critical path. The length L(P) of a critical path P is equal
to the makespan of the schedule.

We call rij the head of operation Oij. Symmetrically,
the tai l of operation @j is the length of a longest path from
O~j to * in G(S).

2.2 Neighborhood

In this section we introduce operators which are used to
define neighborhoods for the tabu-search. These operators
generalize operators used by Hurink et al. (1994) in con-
nection with the multi-purpose machine job-shop problem.
Again, we consider a given assignment #. Let S be a com-
plete selection with respect to # and let G(S) be the result-
ing directed graph. We have shown that S defines a feasible
schedule. On the other hand, if we have a feasible schedule,
then this schedule induces a complete selection. Therefore
we identify feasible schedules with corresponding complete
selections.

Our search space will be the set of all pairs (#, S) where
S is a complete selection with respect to #. (#, S) is called
feasible solution.

The definition of a neighborhood for this search space
is based on necessary conditions for improving a current
solution S. These conditions use the concept of blocks.

Let U = (ul, . . . , 'uz) be a path in G(S). Then blocks of
U can be defined recursively as follows:

- if U l --~ n2 E C, then the set of blocks of U is equal to
the set of blocks of (u 2 , . . . , 'uz).

- if Ul --~ u2 ~ C, then a longest subpath U I = (u l , . . . , ui)
satisfying the properties
(i) the vertices of U / are a clique, i.e. ur -~ us ~ C U S

for all 1 < r < s _ < i ,
(ii) u~ --+ nr+j ~ C for r = 1 , . . . , i - 1,
is a block of U. Furthermore, the blocks of (u i , . �9 �9 , uz)
are blocks of U.

Note that a block contains at least two vertices.

Theorem 1. Let y be a feasible solution for a given MMJSP
and let S be the corresponding complete selection. Let yt
be a feasible solution which improves y. Then there exists
a b l o c k / 3 of a critical path P in G(S) such that one of the
following properties holds.

(i) In y~ one operation @ j o f /3 is processed on a machine
set which is different from the machine set for @j in
y.

(ii) In y~ one operation o f / 3 different from the first opera-
tion of B is processed before all operations of B.

(iii) In y~ one operation of B different from the last opera-
tion o f / 3 is processed after all operations o f /3 .

The proof of this theorem is similar to the proof of a
corresponding theorem in Jurisch (1992) or KrSmer (1995).

P. Brucker, J. Neyer: Tabu-search for the multi-mode job-shop problem 23

We obtain neighbors of a feasible solution y with the cor-
responding graph G(S) by applying to y one of the three op-
erators change-assignment (O i j) , move-before (@j), move-
after (00) where 00 is a suitable operation on a critical
path in G(S).

Change-assignment (0@, which is defined for any op-
eration on a critical path in G(S), can be specified by the
following steps.

Change-assignment (O i j)

1. Eliminate all (directed) disjunctive arcs which are inci-
dent with Oij.

2. Add all disjunctive arcs according to the new machine
set assigned to Oij.

3. Turn the new disjunctive arcs into directed ones such
that the resulting directed graph is acyclic.

The operator move-before is more complicated. Let Oij be
an operation of a block B belonging to a critical path of
G(S), which is different from the first operation in /3. If
in G(S) there exists a path from the first operation in B
to @,j-l, then it is not possible to move @j before the
first operation in /3 without creating a cycle. In this case the
operator move-before (00) is not defined.

Move-before (@j)
1. IF no path exists from the first operation in B

to Oi,j-~ THEN
BEGIN

2. Eliminate the directions of all disjunctive arcs incident
with 00;

3. Add a directed disjunctive arc from @j to the first op-
eration in B;

4. Turn the remaining disjunctive arcs into directed ones
such that the resulting directed graph is acyclic
END

The operator move-after is defined similarly.
In Step 3 of change-assignment (@j) and Step 4 of

move-before (00) there are several possibilities to turn dis-
junctive arcs into directed ones such that the resulting di-
rected graph is acyclic. In the next section we will present a
procedure which chooses from all possible orientations one
which minimizes the makespan.

2.3 Reorientation of disjunctive arcs

In this section we will describe a procedure for the reori-
entation of disjunctive arcs incident with Oij in Step 3 of
change-assignment (Oij) or Step 4 of move-before (Oij).
The reorientation is undertaken such that

- the resulting network has no cycles,
- the makespan of a corresponding schedule is minimal.

Such a reorientation is called optimal.
We start with the reorientation for change-assignment

(OO). A reorientation procedure for move-before (after)
(@j) can be derived by an easy modification.

Let I be the set of operations which are incompatible
with 00 after a new machine set is assigned to 00. Assume

that I r ~ (otherwise there is nothing to do) and denote by
IF and I s the sets of disjunctive predecessors and disjunc-
tive successors, respectively, of 00 after a reorientation of
the arcs connecting @j with the operations in I . Clearly,
any partition of I into disjoint sets IF and Ix defines a
reorientation.

We now study a possible structure of an optimal reori-
entation IF, Is. The corresponding heads and tails after this
reorientation are denoted by ~kl and qm.

If in the network N, which is derived from the origi-
nal network by the elimination of 00, there exists a path
from @,j+l to an operation Okl, then Okz must belong to
I s . Otherwise the reorientation would create a cycle. Sim-
ilarly, if in N there exists a path from some operation Okl
to Oi,j-l, then Okl must belong to Ip . Note that there is no
operation Okl satisfying both properties because otherwise
in the original network we would have a cycle

Okz --+ ... -" @,j-~ ~ Oij --+ @,j+l --+ ... --+ Okz.

Let I f (I f) be the set of operations Okl E I such that there
exists a path from Om (O i , j + l) to O i , j _ 1 (O k l) . We must

have I f C_ IF and I / C Ix.
To study how the remaining operations of I split into

I) U I;~ = I \ (I f U I f)

we consider the length L(P) of a longest path P from 0 to
* containing 00 in the network induced by IF, IS:

L(P) = max{ max (~m +Pkz),~i,j-1 +Pi,j-l} +Pij
O~z GIp

(1) +max{ max (Pkz + qkz),Pi,j+! + q-~,j+l}.
Okt E I s

Let h = m a x o k ~ i , (r m + Pkz). Then all operations Om E

Is \ I f with rkz + Pkz _< h can be moved from I s to Ip
without increasing the longest path length (1). We also know
that hf := max o ~if(~kz +Pkz) < h.

k l ~ p

We conclude that an optimal partition of I has the form

(2) @ U IF h , Is y U I~

where

1p h = {Okz C I \ (I f U m)l kz +pkz _< h}

= {okz z \ @ u Z)l kz +pkz > h}

with h H := {hs} u { kz +Pk lOkz I \ @ U +
pkz > hf }.

To find an optimal reorientation we have to evaluate par-
tition (2) for each h c H and to choose the best one. A l l
relevant values h and the corresponding L(P)-value can be
computed easily i f we sort the operations Okz 6 I \ (I Yp U I f)
according to their (~m + Pkz) - values.

Next we will show that the network resulting from I p =
I f U I h and Is = I f O I h has no cycles. To prove this it
is sufficient to show that there is no path from an operation
Okz E Is to an operation Ok,z, E IF. This claim holds for

- O m ~ I~, Ok,z, E I h, because 7kz +Pkz > ~ ' z ' +Pk'u _>
r k ' F ,

- Okz E I f , Ok,u E I h, because otherwise a path

Oi , j+ l ~ . . . --4 O k I --+ . . . --+ O M F

would exist, which would imply Ok,z, C I f ,

24

- Okz ~ I h, Ok,l, �9 I f , because otherwise a path

O k l ----+ . . . ~ OM1, ~ . . . ~ O i , j - - 1

would exist, which would imply Okz �9 I f ,

- Okz �9 I f , Ok,z, �9 I f , because otherwise we would have
the following cycle in the original graph:

O k l --~ , , , --+ Ok1 l, --~ , . . ----> O i , j _ I - ~ O i j ~ O i , j+ l

--~ . . . ----+ O k l .

To calculate an optimal partition we have to evaluate (1)
for the partitions (2). This means that we have to calculate
the heads r-k1 and tails qkl in (1) in advance.

For Oi,j-i we have r~,j-i = ri,j-i and for Oi,j+l we
have ~,j+l = qi,j+l. This follows from the fact that the head
of Oi,j-1 (tail of Oi,j+l) changes only if, before the new
orientation, Oij belonged to a longest path from 0 to Oi,j-1
(from Oi,j+l to *). This is impossible because Oij is a con-
junctive successor of Oi,j-i (predecessor of Oi,j+l).

After reorientation, for an operation Okz �9 IF (Okl �9
IS) it is not possible for Oij to belong to a path from 0
to Okt (from Okz to *). Otherwise we would have a cycle.
Thus, the new heads and tails can be calculated using the
following procedure.

1. Eliminate all disjunctive arcs which are incident to Oij;
2. Calculate the new heads and tails by applying longest

path algorithms;
3. Reinsert the disjunctive arcs eliminated in Step 1.

The computational effort for the whole procedure is
bounded by O(m) where m is the number of arcs in the
network.

For the procedure move-before (Oij) we already know
that the first operation in the block, say Okl, must belong
to I s . Thus, we have to add Okz to I f . Furthermore, all
operations Ok,z, �9 I with the property that a path from Okl
to Ok,t, exists must be added to I f .

The procedure move-after (Oij) can be implemented in
a similar way.

The algorithms presented so far are time-consuming be-
cause we have to

- recalculate heads and tails,
- generate the sets I f and I f to check its feasibility.

Next we try to reduce the computational effort by mod-
ifying the procedure. A consequence of these modifications
is that we can no longer guarantee that the reorientation is
optimal. The modifications are as follows.

1. Replace heads and tails r~ij, qij by rij, qij.
2. Avoid generation of I f and I f by considering partitions

satisfying

max {rkt +Pkt} < min {rkz +Pkz}
Okt C lp Okl E I s

and

max {rkl +Pk/} �9 [a,b[
O k l E I p

where a, b are defined by
- a = r i , j _ l + P i , j - l ~ b = r i , j+ l + Pi , j+l i f a n o t h e r

machine set is assigned to Oij,

P. Brucker, J. Neyer: Tabu-search for the multi-mode job-shop problem

T a b l e 1

~'rb n

m06

ml0

m20

101 - 105

106 - 110

111 115

116 120

121 125

126 130

131 135

136 140

6 6

10 10

5 20

5 10

5 15

5 20
10 10

10 15

t0 20

10 30

15 15

T a b l e 2

[Mij lave IMi j Imax

edata: 1.15 2 (m < 6)

3 (m > 10)

rdata: 2 3
1 4 vdata: m ~ m

- a = rid 1 +Pi,j 1, b = r f (B) + P f (B) if Oij is moved
before the first operation Of(B) of the b lock/3 con-
taining O~j,

- a = r l (B) + PI(B) , b = r i , j+ l + Pi , j+l i f O i j is m o v e d

after the last operation Ol(B) of the block containing
O~j.

If b _< a, then the corresponding operation is not applied.
It remains to show that the modified procedure always

creates a feasible schedule, i.e. there exists neither a path
from I s to O,i,j_ 1 nor from Oi,j+l to I p in the reoriented net-
work. We may consider only the case a = r~,j_ 1 + P i , j - 1, b =

r i , j+ l + pi,.j+l because rz(B) + Pl(B) > ?~i,j 1 + P i , j 1 and
rf(B) + P f (B) < r i , j+ l + P i , j+ l . Thus, the intervals [a, b[for
the move operations are contained in the interval for the re-
assignment operation, r l (B) + P l (B) > ri,j-1 +Pi,j 1 holds be-
cause otherwise rt(B) < ~l(B) + P l (B) ~_ r i , j - I + P i , j - 1 ~_ T i j ,
which is a contradiction to the fact that Oij is a disjunctive
predecessor of l(B). Similarly, r f(B) + Pf(B) < r i , j+ l + Pi , j+l

holds.
No path from an operation in Is, to @,j 1 exists because

rk,z, +Pk,z' _> min {rkz +Pkl} > max {rkl +Pkl}
Okz E I s Okz EIr,

>_ r i , j - 1 + P i , j - I > r i , j - 1

for all Ok,l, C I s . Similarly, no path exists from Oi,j+l to

3 Implementa t ion of tabu-search procedures
and computat ional results

In Sect. 3.1 the implemented tabu-search procedures are de-
scribed. These procedures have been tested on different types
of problems. The corresponding computational results are
presented in Sect. 3.2.

3.1 Tabu-search procedures

We start the tabu-search with a solution calculated by a sim-
ple heuristic. This heuristic works as follows. To each op-

P. Brucker, J, Neyer: Tabu-search for the multi-mode job-shop problem 25

Table 3

Tabu-search edata

Data
m06

mlO
rn20

101

102

103

104

105

106

107

108

109

110

Il l

I12

113
114

115

116

117

118

119

120

121

122

123

124

125

t26

127

t28

129

130

131

132

133

134

135

136

137

138

139

140

LB

*55

"871

* 1088

*609 [

*655 11
*550

*568

*503

*833

*762

*845

*878

*866

1087

*960

"1053
"1123

*1111

*892

*707

*842

*796

*857

895

832

950

881

894

1089

1181

1116

1058

1147
1523

1698

"1547

1592

"1736

1006

1355

1019

1151

1034

UB-start

60

1314

1699

775

901

840

805

622

968

1001

991

990

962

1254

1211

1242
1292

1655

1230

938

1067

1063

1258

1430

1290

1409

132l

1375

1664

1732

1605

1582

1712

2139

2171

2062

2310

2504

I727

2019

1881

1673

1795

MMJSP

UB -TS

55

920

1210

609

700

594

607

503

833

777

850

878

873

1135

979

1053
1123
1 I22

/013

749

894

844

909

1077

929

977

951

973

1160

1327

1247

1216

1272

1566

1722

1599

1645

1760

1215

1455

1304

1231

1223

CPU

0.1

32.5

82,9

2.8

t.5

1.5

1.5

1.8

0.7

90.8

3.6

792

2.9

109.7
10.4

4.0
123.8

134.6

2.0

10.8

0.9

21,7

9,7

169. l

20.3

168.6

138.5

26.0

248.6

17.1

37.4

109.0

/24,7

415.6

405.0

397.3

386.9

120.1

227.0

56,0

91,4

242.5

289.3

UB-start

57

995

12t0

688

667

647

6t3

510

900

807

949

912

880

1158

1039

1215
1173

t217

961

774

864

854

947

1259

1049

1122

1047

1148
t268

1403

1335

1369

1436

1797

1835

1749

1781

1817

1355

1621

1232

1390

1324

MPMJSP

UB-TS

57

917

1109

6t /

655

573

578

503

833

765

845

878

866

1106

960

1053
1151

11tl

924

757

864

850

919

1066

919

980

952

970

1169

1230

1204

1210

1253

1596

1769

1575

1627

1736

1247

1453

1185

1226

1214

CPU

0.3

7.5

69.2

1.9

12.3

1.1

12.3

1.8

33.7

37.3

35.9

40.5

27.3

86.3

84.7

55.1
70.7

6t.2

3.9

4.1

2.3

3.6

2.9

47.1

39.6

43.6

43.2

40.7

79.4

81.1

79.7

85.9

85.0

272.8

112.6

294.8

255.0

236.6

58.8

57.9

55.6

58.4

113.3

eration O~j a machine set A~} with the smallest processing

k is assigned. Using these processing times its total time Pij
processing time is calculated for each job. The scheduling
procedure is based on a list which contains all of the jobs
ordered according to nonincreasing total processing times.
All first operations of the jobs are scheduled in this list or-
der. Then the second operations of all jobs are scheduled in
this list order, etc. If a job is completely scheduled, it will
be eleminated from the list. The process stops once all jobs
are eliminated.

The neighbors of a solution are specified by

- an operation O~j,
- the type of operator to be applied to O~j: change-

assignment, move-before, move-after,
- the partition of the set I of jobs which are incompatible

with Oij into the sets Ip and Is .

In the tabu-search procedure the neighbors are investi-
gated according to the sequence of the block operations on

the critical path. For each block operation those neighbors
which can be generated by the operator change-assignment
are considered first. After that the neighbors generated by the
operator move-before and move-after are considered succes-
sively if possible.

There are two strategies for choosing a partition Is , !P
of I:

SI: Choose the best partition, i.e. a partition of I which min-
imizes the makespan.

$2: Choose the best partition from the restricted set of par-
titions described at the end of Sect. 2.3.

The tabu-list is organized as follows. Each tabu-list ele-
ment contains

- the moved operation O~ d,
- the old machine set for Oij,
- the predecessor and successor set of Oij in the old sched-

ule.

26

Table 4

Tabu-search rdata
Data MMJSP MPMJSP

LB UB-start UB-TS CPU UB-start UB-TS CPU

" ~ ' 6 -] *47 60 47 1.2 50 47 1.8

ml0 679 1314 701 113.7 803 737 4.1

m20 1022 1699 1025 250.3 1072 1028 27.5

101 570 775 575 65.6 591 574 24.0

102 529 901 534 62.4 580 535 24.9

103 477 840 481 65A 537 481 26,6

104 *502 805 506 64.1 550 509 26.1

105 *457 622 461 68.4 487 460 31.8

106 799 968 802 132,7 831 801 61.3

107 749 1001 753 144~6 780 752 66.4

108 765 991 766 125.4 788 767 65.8

109 853 990 855 132.5 895 859 70.0

I10 804 962 806 127.8 824 806 69.4

I l l "1071 1254 1072 236.9 1093 1073 147.0

112 936 1211 937 202.4 961 937 157.9

/13 '1038 1242 1041 206.9 1046 1039 156.4

114 "1070 1292 1072 209.5 1086 1071 151.0

115 1089 1655 1092 230.1 1126 1093 60.9

116 "717 1230 725 t04.9 835 717 I0.I

1 t7 *646 938 646 4.0 898 646 2.3

118 *666 1067 685 22.2 ! 755 647 29.3

119 647 1063 ~ 7117 1/111.8 777 725 31.2

120 *756 1258 814 3.9 808 756 3.6

121 808 1430 863 258.1 960 861 92.6

122 737 1290 784 233.1 960 790 87.2

123 816 1409 863 251.6 961 884 81.1

124 775 1321 837 228.9 925 825 93.4

125 752 1375 821 233.8 914 823 81.7

126 1056 1664 11185 435.2 1148 1086 202.2

127 1085 1732 1 t07 397.4 1214 1109 188.5

128 1075 1605 t1192 382.4 1165 1097 190.9
129 993 1582 1007 424.8 1082 1016 172.0

130 1068 1712 1101 4118.2 1221 1105 180.6

131 1520 2139 1528 839.1 1595 1532 552.2

132 1657 2171 1665 854.9 1768 1668 556.1

133 1497 2062 1500 8/13.1/ 1575 15ll 604.3

134 1535 2310 1538 824.5 1640 1542 562.6

135 1549 25114 1553 895.7 1629 1559 549.4

136 1016 1727 1052 354.8 1214 1054 98.0

137 989 2019 I 116 375,1 1264 1122 112.3

138 943 1881 I 988 359.8 1134 1004 104,8

139 966 1673 1 (~3 188.3 1169 1041 94.2

140 955 1795 1018 385.0 1105 1009 I 108.6

Table 5

Original data sets il/~.~~ave A~j max
erdata 2 3

emdata edata _1 rn 3 rn
3 ' 5
l 4 m evdata ~ rn 5

rrdata 2 3
!rrz 3 rmdata rdata 3 ~ rn

I , 477 ~ rvdata ~ m

vrdata 2 3

vmdata vdata ~_ rn ~
vvdata 1 m 4 g m

A move of an operation @ j is tabu if one of the follow-
ing conditions is fulfilled:

- a tabu-list element exists which contains @ j , the new
machine set for @j, and the new predecessor set of @ j ,

- a tabu-list element exists which contains 0#, the new
machine set for Oij, and the new successor set of O~j,

P. Brucker, J. Neyer: Tabu-search for the multi-mode job-shop problem

Tabu-searchvdata
MMJSP MPMJSP

H
LB UB-start UB-TS I CPU UB-stal~ UB-TS CPU

*47 100 47 [1.2 48 47 0.3

*655 2237 655 54.3 655 655 2.7

"1022 2743 1024 353.2 1038 1023 218.6

*570 1745 572 94.5 595 573 43.6

*529 1610 532 90.2 659 531 41.3

477 1260 480 83.1 498 482 32.0

*502 1197 504 74.5 517 504 35.9 I
457 1357 464 t 81.3 486 464 34.2

J

*799 2236 801 ! 189.4 841 802 102.2

749 2073 752 179.0 774 751 97.7

765 1823 766 214.4 774 766 99.1

853 232I 854 /97.5 857 854 111.2

*804 2022 805 204.7 486 81)5 111.6

"1071 2641]073 341.6 1079 1073 207.2

*936 2421 937 281.6 951 940 26.0

"1038 2515 1039 308.4 1052 1040 206.4

1070 2505 1071 285.6 1091 1071 197.0

1089 2890 1091 325.3 1096 1091 212.1

"717 2561 717 51.0 717 717 2.8

*646 29-47 646 46.1 646 646 2.8

*663 2732 663 56.2 663 663 2.8

"617 [22t2 617 63.4 648 [617 42.5

*756 1925 756 [34.8 756 756 2.7

800 3324 820 686.2 844 826 287.8

733 3154 743 583.6 757 745 267.8

809 3497 827 623.7 842 826 287.3

773 3805 787 689.4 817 796 287.1

751 3562 772 664.5 804 770 286.4

1052 4226 1063 1204.8 1073 1058 655.6

1084 4418 1094 1271.8 1118 1088 653.3

I1169 4776 1072 1298.5 1109 1073 655,3

993 4222 1002 1t68,8 11120 995 647.3

11168 5659 I074 1295,1 1078 1071 690.8

1520 6758 1521 3685,0 1543 1521 1897.7

1657 6804 166i 3547.2 1662 1658 1879.7

1497 6478 1500 3349.9 1509 1498 t971.5

1535 6166 1537 3601.2 1550 1536 2169.4

1549 6725 1566 3784.5 1571 1553 2142.3

*948 4894 948 1255.5 948 948 22.8

*986 5785 986 1372.1 993 986 25.5

*943 5181 943 1121.7 943 943 21.1

*922 5291 922 1272.6 952 922 110,5

*955 4966 955 1072.2 955 955 21.3

- a tabu-list element exists which contains an operation
Okl of the new successor set of @j, as well as the ma-
chine set for Okz, and the new predecessor set of Ore,

- a tabu-list element exists which contains an operation
Ok~ of the new predecessor set of O~j, as well as the
machine set for Okl, and the new successor set of O~z.

If the best partition is tabu, then the next best partition
is chosen. If all partitions are tabu, then Oij and/or the type
of the operator is changed. Note that the operators move-
before and move-after are only applied to operations @j
which belong to a block.

Other features of the tabu-search procedure are imple-
mented as in the tabu-search algorithm of Hurink et al.
(19941.

3.2 Computational results

The multi-propose machine job-shop problem (MPMJSP)
is the special case of the multi-mode job-shop problem

P. Brucker, J. Neyer: Tabu-search for the multi-mode job-shop problem 27

Table 6

Data Iter-ave

m06 276.0
ml0 721.0
m20 960.0
101-105 583.0
106-110 706.2
111-115 507.6
116-120 659.8
121-125 885.6
126-130 890.8
131-135 939.0
136-140 674.6

Data

m06 436.0
ml0 514.0
m20 824.0
101-105 630.8
106-110 778.0
111-115 908.4
116-120 684.6
121-125 653.4
126-130 887.2
131-135 845.6
136-140 827.6

Data
m06 160.0
ml0 896.0
m20 923.0
101-105 753.0
106-110 631.6
111-115 867.2
116-120 835.6
121-125 905.8
126-130 797.0
131-135 927.8
136-140 872.8

Tabu-search e .data

erdata
CPU-ave

109.2
442.1
901.7
222.4
493.2

1056.5
449.5
926.3

1599.9
3952.1
1496.7

lter-ave

149.0
396.0
975.0
557.2
685.4
577.6
729.4
584.0
409.4
646.6
576.0

emdata
CPU-ave

119.1
1342.7
372.8
143.6
251.9
421.3

1060.2
2880.3
5720.7

15075.1
9881.6

lter-ave
510.0
892.0
480.0
431.8
351.0
246.0
332.8
229.8
318.6
278.2
243.2

evdata
CPU-ave

146.1
1651.8
1291.4
266.6
706.6

1200.1
1647.3
4594.2
8930.3

24495.6
11299.4

Tabu-search r-data

rrdata rmdata rvdata
lter-ave CPU-ave Iter-ave CPU-ave Iter-ave CPU-ave

139.2
1327.7
499.3
182.7
344.8
617.0

1432.2
3411.3
6634.4

16617.7
14020.8

203.0
95.0

468.0
581.6
512.6
216.4
168.0
489.0
259.2
492.2
368.6

138.6
604.3
897.7
289.6
639.6

1096.4
523.5

1118.1
2145.6
4954.2
1696.1

661.0
866.0
565.0
738.0
797.4
839.2
912.8
694.4
899.4
830.2
692.8

308.0
2497.6
1473.3
396.3
895.6

1799.5
2742.1
7146.7

13342.1
36989.8
20122.1

Tabu-search v .data

vrdata vmdata vvdata
lter-ave CPU-ave Iter-ave CPU-ave lter-ave CPU-ave

317.0
198.0
991.0
761.8
530.6
502.8
599.6
377.8
484.2
481.0
198.8

147.4
664.1

1161.7
277.4
731.9

1239.7
739.0

1755.5
3609.4
9461.5
4191.0

389.0
940.0
528.0
456.2
612.4
704.2
839.4
924.6
947.0
971.8
931.8

127.6

1935.2
783.3
186.3
412.6
708.3

2396.3
6064.4

10070.1
31178.4
32271.5

299.9
6149.6
2074.8

463.1
1011.5
1978.4
5250.6

12518.9
25458.5
69776.5
71068.6

(M M J S P) in w h i c h all m a c h i n e sets Ai~j are o n e - e l e m e n t
sets. The re fo re we also used the b e n c h m a r k p r o b l e m s of
H u r i n k et al. (1994) to test our t abu-sea rch procedures . Fur-
the rmore , we ex tended these b e n c h m a r k p r o b l e m s to ob ta in
test da ta for the general M M J S P .

The b e n c h m a r k p r o b l e m s of H u r i n k et al. are de r ived
f rom the j o b - s h o p b e n c h m a r k p rob l ems m06, m l 0 , m 2 0 of
F i she r and T h o m p s o n (1966) and 101-140 of A d a m s et al.
(1988). The sizes of these p r o b l e m s are l is ted in Table 1.
Here , m and n deno te the n u m b e r o f m a c h i n e s and jobs ,
respect ive ly . For all these p rob l ems the n u m b e r of opera-
t ions of each j ob is equal to the co r r e spond ing n u m b e r of
mach ines .

To genera te test p r o b l e m s for the M P M J S P H u r i n k et
al. added a l te rna t ive m a c h i n e s to the opera t ions wi th cer ta in
probabi l i t ies . D e p e n d i n g on these p robab i l i t i e s d i f ferent tes t
da ta sets edata, rdata, vda ta have been created. T he charac-

ter is t ics o f these sets are s h o w n in Table 2, whe re IM, ij [ave
deno tes the ave rage n u m b e r o f a l t e rna t ive m a c h i n e s and
I M i j l m a x is the m a x i m a l n u m b e r o f a l t e rna t ive mach ines .

To f ind out h o w the S2 -ve r s ion of our t abu - sea rch pro-
cedure pe r fo rms on ins tances of the M P M J S P we appl ied it
to these test data. L ike H u r i n k et al. (1994) we def ined our
tabu- l i s t l eng th to be equal to 30 and l imi ted the n u m b e r of
i tera t ions by 1000. The resul ts are c o m p a r e d wi th the resul ts
o f H u r i n k et al. in Table 3 (edata) and Table 4 (rdata, vdata) .
These tab les con ta in the fo l lowing in fo rmat ion :

- LB: bes t k n o w n lower b o u n d for the p r o b l e m ins tance .
The b o u n d s w h i c h are due to Ju r i sch (1992) are m a r k e d
wi th an as te r i sk i f they are equal to the op t ima l C ~ x -
values.

- M M J S P : resul ts for the t abu- sea rch p resen ted in this pa-
per.

28 P. Brucker, J. Neyer: Tabu-search for the multi-mode job-shop problem

- MPMJSP: results from Hurink et al. (1994).
- UB-Start: C,~x-value provided by the start heuristic.
- UB-TS: C.m~.x-value provided by the tabu-search.
- CPU: CPU-tilne in seconds.

The small computation times are due to the fact that the
procedure stopped when all neighbours were tabu.

We implemented the S2-version of our tabu-search pro-
cedure on a SUN-SPARC Station 10/40 using the program-
ming language C. Hurink et al. used a slower SUN 4/20
workstation. The average speed-up factor between these two
machines is 3.2.

Note that Hurink et al. used a better start heuristic than
ours. Nevertheless, our tabu-search results are comparable
with those of Hurink et al.

To create MMJSP test problems we randomly added
other machine sets to the one-element machine sets of the
test data in the sets edata, rdata, and vdata. Table 5 shows the
different average sizes IA~j lave and maximal s izes [A~j Imax
of the machine sets created in connection with edata, rdata,
and vdata.

We tested the Sl-version and S2-version of the tabu-
search procedure on these 9 data sets. The C, m a:values cal-
culated by both versions are nearly identical. However, the
S 1-version which considers all partitions of the set I was
15.7% slower than the other version. Therefore, in Table 6
we only present the test results of the S2-version for the
9 different test sets described in Table 5. In this table the
results for the test problems of the same size are summa-
rized by the average value. Table 6 contains the following
information:

- Iter-ave: The average number of iterations after which
the best C , ~ - v a l u e (of 1000 iterations) was found.

- CPU: The average CPU-time in seconds.

The other figures for these test problems can be accessed
via
ftp://ftp.mathematik.Uni-Osnabrueck.DE/pub/osm/preprints

The main results can be summarized as follows:

- The tabu-search procedure improves the C,,~az-values
provided by the start heuristic considerably.

- Except for problem instance 110 of emdata and some
problems for the MPMJSP the tabu-search never termi-
nated before reaching the maximal iteration count 1000.

- In many cases Iter-ave is close to 1000. Thus, it seems
that the C~ -value can be further improved by increas-
ing the bound on the maximal number of iterations.

- The computational times can be high. For example, the
CPU-time for problem 138 of vvdata was 21.3 hours.
Generally, the CPU-time increases with the number of
operations as well as with the number and size of al-
ternative machine sets. It decreases with the number of
machines.

- No good lower bounds are available for the MMJSP.
Thus, we cannot estimate the quality of the solutions.

To test the influence of the number of iterations on the
quality of the C~a :va lue we increased the maximum num-
ber of iterations to 2000 when running the test problems
m06, ml0, m20, and 101 - 120 of all problem sets. For 57%
of these instances the Cma:value improved. The average

improvement was 1.39%. The CPU-time doubled. Again,
the tabu-search never stopped before reaching iteration 2000.
Therefore, when testing problems rot06, 103, 104, 107, 108,
113, 114, 119, and 120 we increased the maximum number
of iterations to 5000. For 52% of these instances there was
another improvement of the C -value which, on average,
decreased by an additional 1.35%.

4 C o n c l u d i n g r e m a r k s

A tabu-search algorithm for the multi-mode job-shop sched-
uling problem has been introduced and applied to a large
number of test problems. A comparison with a tabu-search
procedure which has been especially designed for MPM job-
shop problems shows that for this special case of the MMJSP
our algorithm provides very good results.

For the general case the tabu-search algorithms provide
new benchmark results. A challenging task is to provide
good lower bounds and/or a branch-and-bound procedure
for the multi-mode job-shop scheduling problem.

R e f e r e n c e s

1. Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure
for job-shop scheduling. Management Science 34:391-401

2. Brucker P, Kr~mer A (1995) Shop scheduling problems with multipro-
cessor tasks on dedicated processors. Annals of Operations Research
57:13-27

3. Brucker P, Schlie R (1990) Job-shop scheduling with multi-purpose
machines. Computing 45:369-375

4. Dauz~re-P~r~s S, Paulli J (1995) A global tabu search procedure for
the general multiprocessor job-shop scheduling problem. Department
of Operations Research, University of Aarhus, No 5/95

5. Fisher H, Thompson GL (1963) Probabilistic learning combinations
of local job-shop scheduling rules. In: Muth JF, Thompson GL (eds)
Industrial scheduling, pp. 225-251. Englewood Cliffs: Prentice Hall

6. Hurink J, Jurisch B, Thole M (1994) Tabu search for the job-
shop scheduling problem with multi-purpose machines. OR-Spektrum
15:205-215

7. Jurisch B (1992) Scheduling jobs in shops with multi-purpose ma-
chines. PhD thesis, Department of Mathematics/Informatics, Univer-
sit,it Osnabrtick

8. KrNner A (1995) Scheduling multiprocessor tasks on dedicated proces-
sors. PhD thesis, Department of Mathematics/lnformatics, Universit~it
Osnabrack

9. Roy B, Sussmann B (1964) Les probI~mes d'ordonnancement avec
constraintes disjonctives. Note DS no 9 bis, SEMA, Paris

10. Sprecher A, Drexl A (1996a) Solving multi-mode resource-constrained
project scheduling problems by a simple, general and powerful se-
quencing algorithm. Part I: Theory. Manuskripte aus den Instituten ftir
Betriebswirtschaftslehre der UniversitSt Kiel, No 385

11. Sprecber A, Drexl A (1996b) Solving multi-mode resource-constrained
project scheduling problems by a simple, genm'al and powerful se-
quencing algorithm. Part II: Computation. Manuskripte aus den Insti-
tuten ftir Betriebswirtschaftstehre der Universit~it Kiel, No 386

