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Abstract. In a multi-processor-tasks job-shop problem 
(MPTJSP) there is a machine set associated with each op- 
eration. All machines are needed for the whole processing 
period to process the operation. The objective is to find a 
schedule which minimizes the makespan. In a multi-mode 
job-shop problem (MMJSP) there is a set of machine sets 
associated with each operation. One has to assign a machine 
set to each operation and to solve the resulting MPTJSP such 
that the resulting makespan is minimized. For the MMJSP 
a tabu-search algorithm is presented. Computational results 
are reported. 

Zusammenfassung. In einem Multi-Processor-Task Job- 
Shop Problem (MPTJSP) wird jeder Operation eine Maschi- 
nenmenge zugeordnet. Fiir die Bearbeitung einer Operation 
werden dabei w~ihrend des gesamten Bearbeitungszeitraums 
alle Maschinen ben6tigt. Ziel ist es nun, einen Bearbeitungs- 
plan zu bestimmen, in dem die Gesamtbearbeitungsdauer 
minimal ist. In einem Multi-Mode Job-Shop Problem 
(MMJSP) wird jeder Operation eine Menge von Maschi- 
nenmengen zugeordnet. Hierbei mug jeder Operation eine 
Maschinenmenge zugewiesen werden und das sich daraus 
ergebene MPTJSP mit dem Ziel der Minimierung der Ge- 
samtbearbeitungsdauer gel6st werden. Ftir das MMJSP wird 
ein Tabu-Suche Algorithmus vorgestellt. Augerdem werden 
die erhaltenen Rechenergebnisse aufgeftihrt. 

Key words: Tabu-search, multi-mode job-shop, multi- 
processor-task job-shop, multi-purpose-machine job-shop 

SchliisselwSrter: Tabu-Suche, Mehrmodus-Job-Shop, Mehr- 
prozessoroperationen-Job-Shop, Mehrzweckmaschinen-Job- 
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1 Introduction 

In a job-shop problem, n jobs J~ , . . .  , J~ have to be pro- 
cessed on m machines M1, �9 �9 , Mm. Job Ji consists of ni 
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operations Oil , .  �9 �9 , Oi~ which have to be processed in this 
order, i.e. operation Oi,j+l has to be processed after opera- 
tion Oij for each stage j = 1 , . . .  , ni - 1. 

At any time each machine can process at the most one 
operation, and for each operation Oij a processing time 
Pij > 0 and a machine #ij, on which operation Oij must be 
processed, are known in advance. 

The objective is to find a schedule which minimizes the 

makespan Cmax = m'ax Ci where Ci denotes the finishing 
i=1 

time of the last operation of job Ji. 
In a multi-processor-task (operation) job-shop problem 

(MPTjob-shop problem) there is a set Aij C_ {M1, � 9  , ~[rn} 

of machines associated with each operation Oij. Opera- 
tion Oij occupies all machines in this set Aij during its 
processing time. Thus, two operations @j and Oi,j, with 
(i, j) r ( i l , f )  can be processed at the same time only if 
Aij N Ai,j, = ~. MPT job-shop problems have been investi- 
gated in Kr~imer (1995) and Brucker and Kr~imer (1995). 

In a multi-purpose-machine job-shop problem (MPM 
job-shop problem) there is again a set Aij of machines as- 
sociated with each operation Oij. Here we have to assign a 
machine #ij C Aij to each operation Oij and to schedule 
the operations on the assigned machines such that the corre- 
sponding makespan is minimized. MPM job-shop problems 
are discussed in Jurisch (1992), Dauzbre-P6r~s and Paulli 
(1995), Hurink et al. (1994), and Brucker and Schlie (1990). 

The multi-mode job-shop problem (MMJSP) is a com- 
bination of both the MPT job-shop problem and the MPM 
job-shop problem. Associated with each operation Oij there 
is a set ~ i j  = {A~j,.. .  m~j k C ,Aij } of machine sets Aij _ 
{M1, . . .  , Mrs} and processing times Pi~ > O, k = 1,. . .  ,miy. 
We have to assign a machine set Aikj C ~z~ij to each opera- 

tion Oij o n  which Oij has to be processed. If Aikj is assigned 
k time to Oij, then Oij occupies all machines in Aikj for Pij 

units. 
Sprecher and Drexl (1996a,b) developed a branch-and- 

bound algorithm for the multi-mode resource-constrained 
project scheduling problem which is a generalization of the 
MMJSP. 

MMJSP is a very difficult problem because the job-shop 
problem which is a special case of MMJSP is strongly NP- 
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hard. We present a tabu-search heuristic for the MMJSP. 
The quality of  tabu-search is influenced by the quality of 
the underlying neighborhood. In Sect. 2 we introduce neigh- 
borhood structures which exploit structural properties of 
the problem. Corresponding tabu-search procedures are de- 
scribed, and computational results with these procedures are 
reported in Sect. 3. 

2 Neighborhood structures 

An illuminating representation for the job-shop problem is 
provided by the disjunctive graph model due to Roy and 
Sussmann (1964). We use this representation to derive neigh- 
borhoods for our tabu-search heuristic. In Sect. 2.1 the dis- 
junctive graph model is briefly described. Based on this de- 
scription and possible ways to improve nonoptimal sched- 
ules, neighborhoods for the MMJSP are derived in Sect. 2.2. 
Finally, in Sect. 2.3 efficient methods are presented for cal- 
culating neighbors for a given solution. 

2.1 The disjunctive graph model 

Given an assignment # which associates with each operation 
O,~j a machine set #(Oq) C ,//~j, corresponding schedules 
can be represented using the disjunctive graph model. A 
disjunctive graph G = iV, C U D) is defined as follows. 

V is the set of nodes representing the operations of all jobs. 
In addition, there are two special nodes, a source 0 and 
a sink . .  There is a weight associated with each node. 
The weights of 0 and * are zero while the weights of the 
other nodes are the processing times of  the corresponding 
operations. 

C is the set of  directed conjunctive arcs. These arcs reflect 
the job orders of the operations. Additionally, there are 
conjunctive arcs between the source and the first oper- 
ations of all jobs and between the last operations of all 
jobs  and the sink. More precisely, we have 

C = { @ j  -+ @,j+~ ] i =  1 , . . .  ,n;  j = 1 , . . .  ,n,z - 1} 
u {0 --+ l i = 1 , . . .  , n} 

u {@,, ,  - + .  I i =  1 , . . .  , n } .  

D is the set of undirected disjunctive arcs. Such an arc 
exists for each pair of operations which are incompati- 
ble with respect to >, i.e. operations @ j  and @,j, with 
/~(@~) n ,u(@,y) r 0. 

The basic scheduling decision is to define an ordering be- 
tween those operations which are incompatible. This can 
be done by turning undirected disjunctive arcs into directed 
ones. A set S of directed disjunctive arcs is called a selec- 
tion. Feasible schedules are represented by complete selec- 
tions. A selection S is comple te  if  

- each disjunctive arc is directed, 
- the resulting directed graph G(S) = (V, C U S) has no 

cycles. 

The schedule represented by a complete selection S is con- 
structed as follows. Start each operation Oij at time rij 
where r i j  is the length of a longest path in G(S) from 0 
to @j. The length of a path in G(S) is the sum of the 
weights of all nodes belonging to the path, the last node 
excluded. A longest path from 0 to the sink * is called a 
critical path. The length L(P) of a critical path P is equal 
to the makespan of the schedule. 

We call rij the head of operation Oij. Symmetrically, 
the tai l  of operation @j is the length of a longest path from 
O~j to * in G(S). 

2.2 Neighborhood 

In this section we introduce operators which are used to 
define neighborhoods for the tabu-search. These operators 
generalize operators used by Hurink et al. (1994) in con- 
nection with the multi-purpose machine job-shop problem. 
Again, we consider a given assignment #. Let S be a com- 
plete selection with respect to # and let G(S)  be the result- 
ing directed graph. We have shown that S defines a feasible 
schedule. On the other hand, if we have a feasible schedule, 
then this schedule induces a complete selection. Therefore 
we identify feasible schedules with corresponding complete 
selections. 

Our search space will be the set of all pairs (#, S) where 
S is a complete selection with respect to #. (#, S) is called 
feasible solution. 

The definition of a neighborhood for this search space 
is based on necessary conditions for improving a current 
solution S. These conditions use the concept of blocks. 

Let U = (ul, . . .  , 'uz) be a path in G(S). Then blocks of 
U can be defined recursively as follows: 

- if U l --~ n2 E C, then the set of blocks of U is equal to 
the set of blocks of ( u 2 , . . .  , 'uz). 

- if  Ul --~ u2 ~ C, then a longest subpath U I = ( u l , . . .  , ui) 
satisfying the properties 
(i) the vertices of U / are a clique, i.e. ur  -~ us ~ C U S 

for all 1 < r < s _ < i ,  
(ii) u~ --+ nr+j ~ C for r = 1 , . . .  , i  - 1, 
is a block of U. Furthermore, the blocks of (u i , .  �9 �9 , uz) 
are blocks of U. 

Note that a block contains at least two vertices. 

Theorem 1. Let y be a feasible solution for a given MMJSP 
and let S be the corresponding complete selection. Let yt 
be a feasible solution which improves y. Then there exists 
a b l o c k / 3  of a critical path P in G(S) such that one of the 
following properties holds. 

(i) In y~ one operation @ j  o f /3  is processed on a machine 
set which is different from the machine set for @j in 
y. 

(ii) In y~ one operation o f / 3  different from the first opera- 
tion of  B is processed before all operations of B. 

(iii) In y~ one operation of B different from the last opera- 
tion o f / 3  is processed after all operations o f /3 .  

The proof of this theorem is similar to the proof of a 
corresponding theorem in Jurisch (1992) or KrSmer (1995). 
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We obtain neighbors of a feasible solution y with the cor- 
responding graph G(S) by applying to y one of the three op- 
erators change-assignment ( O i j ) ,  move-before (@j), move- 
after (00) where 00  is a suitable operation on a critical 
path in G(S). 

Change-assignment (0@, which is defined for any op- 
eration on a critical path in G(S), can be specified by the 
following steps. 

Change-assignment ( O i j ) 

1. Eliminate all (directed) disjunctive arcs which are inci- 
dent with Oij. 

2. Add all disjunctive arcs according to the new machine 
set assigned to Oij. 

3. Turn the new disjunctive arcs into directed ones such 
that the resulting directed graph is acyclic. 

The operator move-before is more complicated. Let Oij be 
an operation of a block B belonging to a critical path of 
G(S), which is different from the first operation in /3. If  
in G(S) there exists a path from the first operation in B 
to @,j-l, then it is not possible to move @j before the 
first operation in /3  without creating a cycle. In this case the 
operator move-before (00) is not defined. 

Move-before (@j) 
1. IF no path exists from the first operation in B 

to Oi,j-~ THEN 
BEGIN 

2. Eliminate the directions of all disjunctive arcs incident 
with 00; 

3. Add a directed disjunctive arc from @j to the first op- 
eration in B; 

4. Turn the remaining disjunctive arcs into directed ones 
such that the resulting directed graph is acyclic 
END 

The operator move-after is defined similarly. 
In Step 3 of  change-assignment (@j) and Step 4 of 

move-before (00) there are several possibilities to turn dis- 
junctive arcs into directed ones such that the resulting di- 
rected graph is acyclic. In the next section we will present a 
procedure which chooses from all possible orientations one 
which minimizes the makespan. 

2.3 Reorientation of disjunctive arcs 

In this section we will describe a procedure for the reori- 
entation of disjunctive arcs incident with Oij in Step 3 of 
change-assignment (Oij) or Step 4 of move-before (Oij). 
The reorientation is undertaken such that 

- the resulting network has no cycles, 
- the makespan of a corresponding schedule is minimal. 

Such a reorientation is called optimal. 
We start with the reorientation for change-assignment 

(OO). A reorientation procedure for move-before (after) 
(@j) can be derived by an easy modification. 

Let I be the set of  operations which are incompatible 
with 00 after a new machine set is assigned to 00.  Assume 

that I r ~ (otherwise there is nothing to do) and denote by 
IF and I s  the sets of disjunctive predecessors and disjunc- 
tive successors, respectively, of 00 after a reorientation of 
the arcs connecting @j with the operations in I .  Clearly, 
any partition of I into disjoint sets IF and Ix  defines a 
reorientation. 

We now study a possible structure of an optimal reori- 
entation IF, Is. The corresponding heads and tails after this 
reorientation are denoted by ~kl and qm. 

If  in the network N,  which is derived from the origi- 
nal network by the elimination of 00,  there exists a path 
from @,j+l to an operation Okl, then Okz must belong to 
I s .  Otherwise the reorientation would create a cycle. Sim- 
ilarly, if in N there exists a path from some operation Okl 
to Oi,j-l, then Okl must belong to Ip .  Note that there is no 
operation Okl satisfying both properties because otherwise 
in the original network we would have a cycle 

Okz --+ ... -" @,j-~ ~ Oij --+ @,j+l --+ ... --+ Okz. 

Let I f ( I f )  be the set of operations Okl E I such that there 
exists a path from Om ( O i , j + l )  to O i , j _  1 ( O k l ) .  We must 

have I f C_ IF and I / C Ix. 
To study how the remaining operations of I split into 

I )  U I;~ = I \ ( I  f U I f )  

we consider the length L(P) of a longest path P from 0 to 
* containing 00 in the network induced by IF, IS: 

L(P) = max{ max (~m +Pkz),~i,j-1 +Pi,j-l} +Pij 
O~z GIp  

(1) +max{ max (Pkz + qkz),Pi,j+! + q-~,j+l}. 
Okt E I s  

Let h = m a x o k ~ i , ( r m  + Pkz). Then all operations Om E 

Is \ I f with rkz + Pkz _< h can be moved from I s  to Ip 
without increasing the longest path length (1). We also know 
that hf := max o ~if(~kz +Pkz) < h. 

k l ~  p 

We conclude that an optimal partition of I has the form 

(2) @ U IF  h , Is  y U I~ 

where 

1p h = {Okz C I \ ( I f  U m )l kz +pkz _< h} 

= {okz z \ @ u Z )l kz +pkz > h} 

with h H := {hs} u { kz +Pk lOkz I \ @ U + 
pkz > hf }. 

To find an optimal reorientation we have to evaluate par- 
tition (2) for each h c H and to choose the best one. A l l  
relevant values h and the corresponding L(P)-value can be 
computed easily i f  we sort the operations Okz 6 I \ ( I Yp U I f )  
according to their (~m + Pkz) - values. 

Next we will show that the network resulting from I p  = 
I f U I h and Is = I f O I h has no cycles. To prove this it 
is sufficient to show that there is no path from an operation 
Okz E Is to an operation Ok,z, E IF. This claim holds for 

- O m  ~ I~, Ok,z, E I h, because 7kz +Pkz > ~ ' z '  +Pk'u _> 
r k ' F  , 

- Okz E I f ,  Ok,u E I h, because otherwise a path 

Oi , j+ l  ~ . . .  --4 O k  I --+ . . .  --+ O M  F 

would exist, which would imply Ok,z, C I f ,  
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- Okz ~ I h, Ok,l, �9 I f ,  because otherwise a path 

O k l  ----+ . . .  ~ OM1,  ~ . . .  ~ O i , j - -  1 

would exist, which would imply Okz �9 I f ,  

- Okz �9 I f ,  Ok,z, �9 I f ,  because otherwise we would have 
the following cycle in the original graph: 

O k l  --~ , , ,  --+ Ok1 l, --~ , . .  ----> O i , j _  I - ~  O i j  ~ O i , j+ l  

--~ . . .  ----+ O k l .  

To calculate an optimal partition we have to evaluate (1) 
for the partitions (2). This means that we have to calculate 
the heads r-k1 and tails qkl in (1) in advance. 

For Oi,j-i we have r~,j-i = ri,j-i and for Oi,j+l we 
have ~,j+l = qi,j+l. This follows from the fact that the head 
of  Oi,j-1 (tail of Oi,j+l) changes only if, before the new 
orientation, Oij belonged to a longest path from 0 to Oi,j-1 
(from Oi,j+l to *). This is impossible because Oij is a con- 
junctive successor of Oi,j-i (predecessor of Oi,j+l). 

After reorientation, for an operation Okz �9 IF (Okl �9 
IS) it is not possible for Oij to belong to a path from 0 
to Okt (from Okz to *). Otherwise we would have a cycle. 
Thus, the new heads and tails can be calculated using the 
following procedure. 

1. Eliminate all disjunctive arcs which are incident to Oij; 
2. Calculate the new heads and tails by applying longest 

path algorithms; 
3. Reinsert the disjunctive arcs eliminated in Step 1. 

The computational effort for the whole procedure is 
bounded by O(m) where m is the number of arcs in the 
network. 

For the procedure move-before (Oij) we already know 
that the first operation in the block, say Okl, must belong 
to I s .  Thus, we have to add Okz to I f .  Furthermore, all 
operations Ok,z, �9 I with the property that a path from Okl 
to Ok,t, exists must be added to I f .  

The procedure move-after (Oij) can be implemented in 
a similar way. 

The algorithms presented so far are time-consuming be- 
cause we have to 

- recalculate heads and tails, 
- generate the sets I f and I f to check its feasibility. 

Next we try to reduce the computational effort by mod- 
ifying the procedure. A consequence of these modifications 
is that we can no longer guarantee that the reorientation is 
optimal. The modifications are as follows. 

1. Replace heads and tails r~ij, qij by rij, qij. 
2. Avoid generation of I f and I f by considering partitions 

satisfying 

max {rkt +Pkt} < min {rkz +Pkz} 
Okt C lp  Okl E I s  

and 

max {rkl +Pk/} �9 [a,b[ 
O k l E I p  

where a, b are defined by 
- a = r i , j _ l  + P i , j - l ~  b = r i , j+ l  + Pi , j+l  i f  a n o t h e r  

machine set is assigned to Oij, 

P. Brucker, J. Neyer: Tabu-search for the multi-mode job-shop problem 

T a b l e  1 

~'rb n 

m06 

ml0 

m20 

101 - 105 

106 - 110 

111 115 

116 120 

121 125 

126 130 

131 135 

136 140 

6 6 

10 10 

5 20 

5 10 

5 15 

5 20 
10 10 

10 15 

t0 20 

10 30 

15 15 

T a b l e  2 

[Mij  lave IMi j  Imax 

edata: 1.15 2 (m < 6) 

3 (m > 10) 

rdata: 2 3 
1 4 vdata: m ~ m 

- a = rid 1 +Pi,j 1, b = r f ( B )  + P f ( B )  if Oij is moved 
before the first operation Of(B) of the b lock/3  con- 
taining O~j, 

- a = r l (B)  + PI(B) ,  b = r i , j+ l  + Pi , j+l  i f  O i j  is m o v e d  

after the last operation Ol(B) of the block containing 
O~j. 

If b _< a, then the corresponding operation is not applied. 
It remains to show that the modified procedure always 

creates a feasible schedule, i.e. there exists neither a path 
from I s  to O,i,j_ 1 nor from Oi,j+l to I p  in the reoriented net- 
work. We may consider only the case a = r~,j_ 1 + P i , j -  1, b = 

r i , j+ l  + pi,.j+l because rz(B) + Pl(B)  > ?~i,j 1 + P i , j  1 and 
rf(B) + P f ( B )  < r i , j+ l  + P i , j+ l .  Thus, the intervals [a, b[ for 
the move operations are contained in the interval for the re- 
assignment operation, r l ( B ) + P l ( B )  > ri,j-1 +Pi,j 1 holds be- 
cause otherwise rt(B) < ~l(B) + P l ( B )  ~_ r i , j - I  + P i , j - 1  ~_ T i j ,  
which is a contradiction to the fact that Oij is a disjunctive 
predecessor of l(B). Similarly, r f(B) + Pf(B) < r i , j+ l  + Pi , j+l  

holds. 
No path from an operation in Is, to @,j 1 exists because 

rk,z, +Pk,z' _> min {rkz +Pkl} > max {rkl +Pkl} 
Okz E I s  Okz EIr, 

>_ r i , j -  1 + P i , j -  I > r i , j -  1 

for all Ok,l, C I s .  Similarly, no path exists from Oi,j+l to 

3 Implementa t ion  of  tabu-search procedures 
and computat ional  results 

In Sect. 3.1 the implemented tabu-search procedures are de- 
scribed. These procedures have been tested on different types 
of problems. The corresponding computational results are 
presented in Sect. 3.2. 

3.1 Tabu-search procedures 

We start the tabu-search with a solution calculated by a sim- 
ple heuristic. This heuristic works as follows. To each op- 
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Table 3 

Tabu-search edata 

Data 
m06 

mlO 
rn20 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

Il l  

I12 

113 
114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

t26 

127 

t28 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

LB 

*55 

"871 

* 1088 

*609 [ 

*655 11 
*550 

*568 

*503 

*833 

*762 

*845 

*878 

*866 

1087 

*960 

"1053 
"1123 

*1111 

*892 

*707 

*842 

*796 

*857 

895 

832 

950 

881 

894 

1089 

1181 

1116 

1058 

1147 
1523 

1698 

"1547 

1592 

"1736 

1006 

1355 

1019 

1151 

1034 

UB-start 

60 

1314 

1699 

775 

901 

840 

805 

622 

968 

1001 

991 

990 

962 

1254 

1211 

1242 
1292 

1655 

1230 

938 

1067 

1063 

1258 

1430 

1290 

1409 

132l 

1375 

1664 

1732 

1605 

1582 

1712 

2139 

2171 

2062 

2310 

2504 

I727 

2019 

1881 

1673 

1795 

MMJSP 

UB -TS 

55 

920 

1210 

609 

700 

594 

607 

503 

833 

777 

850 

878 

873 

1135 

979 

1053 
1123 
1 I22 

/013 

749 

894 

844 

909 

1077 

929 

977 

951 

973 

1160 

1327 

1247 

1216 

1272 

1566 

1722 

1599 

1645 

1760 

1215 

1455 

1304 

1231 

1223 

CPU 

0.1 

32.5 

82,9 

2.8 

t.5 

1.5 

1.5 

1.8 

0.7 

90.8 

3.6 

792 

2.9 

109.7 
10.4 

4.0 
123.8 

134.6 

2.0 

10.8 

0.9 

21,7 

9,7 

169. l 

20.3 

168.6 

138.5 

26.0 

248.6 

17.1 

37.4 

109.0 

/24,7 

415.6 

405.0 

397.3 

386.9 

120.1 

227.0 

56,0 

91,4 

242.5 

289.3 

UB-start 

57 

995 

12t0 

688 

667 

647 

6t3 

510 

900 

807 

949 

912 

880 

1158 

1039 

1215 
1173 

t217 

961 

774 

864 

854 

947 

1259 

1049 

1122 

1047 

1148 
t268 

1403 

1335 

1369 

1436 

1797 

1835 

1749 

1781 

1817 

1355 

1621 

1232 

1390 

1324 

MPMJSP 

UB-TS 

57 

917 

1109 

6t /  

655 

573 

578 

503 

833 

765 

845 

878 

866 

1106 

960 

1053 
1151 

11tl 

924 

757 

864 

850 

919 

1066 

919 

980 

952 

970 

1169 

1230 

1204 

1210 

1253 

1596 

1769 

1575 

1627 

1736 

1247 

1453 

1185 

1226 

1214 

CPU 

0.3 

7.5 

69.2 

1.9 

12.3 

1.1 

12.3 

1.8 

33.7 

37.3 

35.9 

40.5 

27.3 

86.3 

84.7 

55.1 
70.7 

6t.2 

3.9 

4.1 

2.3 

3.6 

2.9 

47.1 

39.6 

43.6 

43.2 

40.7 

79.4 

81.1 

79.7 

85.9 

85.0 

272.8 

112.6 

294.8 

255.0 

236.6 

58.8 

57.9 

55.6 

58.4 

113.3 

eration O~j a machine set A~} with the smallest processing 

k is assigned. Using these processing times its total time Pij 
processing time is calculated for each job. The scheduling 
procedure is based on a list which contains all of  the jobs 
ordered according to nonincreasing total processing times. 
All first operations of  the jobs are scheduled in this list or- 
der. Then the second operations of  all jobs are scheduled in 
this list order, etc. If a job is completely scheduled, it will 
be eleminated from the list. The process stops once all jobs 
are eliminated. 

The neighbors of a solution are specified by 

- an operation O~j, 
- the type of  operator to be applied to O~j: change- 

assignment, move-before, move-after, 
- the partition of  the set I of  jobs which are incompatible 

with Oij into the sets Ip and Is .  

In the tabu-search procedure the neighbors are investi- 
gated according to the sequence of the block operations on 

the critical path. For each block operation those neighbors 
which can be generated by the operator change-assignment 
are considered first. After that the neighbors generated by the 
operator move-before and move-after are considered succes- 
sively if possible. 

There are two strategies for choosing a partition Is ,  !P  
of  I: 

SI: Choose the best partition, i.e. a partition of I which min- 
imizes the makespan. 

$2: Choose the best partition from the restricted set of  par- 
titions described at the end of Sect. 2.3. 

The tabu-list is organized as follows. Each tabu-list ele- 
ment contains 

- the moved operation O~ d, 
- the old machine set for Oij, 
- the predecessor and successor set of Oij in the old sched- 

ule. 
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Table 4 

Tabu-search rdata 
Data MMJSP MPMJSP 

LB UB-start UB-TS CPU UB-start UB-TS CPU 

" ~ ' 6 -  ] *47 60 47 1.2 50 47 1.8 

ml0 679 1314 701 113.7 803 737 4.1 

m20 1022 1699 1025 250.3 1072 1028 27.5 

101 570 775 575 65.6 591 574 24.0 

102 529 901 534 62.4 580 535 24.9 

103 477 840 481 65A 537 481 26,6 

104 *502 805 506 64.1 550 509 26.1 

105 *457 622 461 68.4 487 460 31.8 

106 799 968 802 132,7 831 801 61.3 

107 749 1001 753 144~6 780 752 66.4 

108 765 991 766 125.4 788 767 65.8 

109 853 990 855 132.5 895 859 70.0 

I10 804 962 806 127.8 824 806 69.4 

I l l  "1071 1254 1072 236.9 1093 1073 147.0 

112 936 1211 937 202.4 961 937 157.9 

/13 '1038 1242 1041 206.9 1046 1039 156.4 

114 "1070 1292 1072 209.5 1086 1071 151.0 

115 1089 1655 1092 230.1 1126 1093 60.9 

116 "717 1230 725 t04.9 835 717 I0.I 

1 t7 *646 938 646 4.0 898 646 2.3 

118 *666 1067 685 22.2 ! 755 647 29.3 

119 647 1063 ~ 7117 1/111.8 777 725 31.2 

120 *756 1258 814 3.9 808 756 3.6 

121 808 1430 863 258.1 960 861 92.6 

122 737 1290 784 233.1 960 790 87.2 

123 816 1409 863 251.6 961 884 81.1 

124 775 1321 837 228.9 925 825 93.4 

125 752 1375 821 233.8 914 823 81.7 

126 1056 1664 11185 435.2 1148 1086 202.2 

127 1085 1732 1 t07 397.4 1214 1109 188.5 

128 1075 1605 t1192 382.4 1165 1097 190.9 
129 993 1582 1007 424.8 1082 1016 172.0 

130 1068 1712 1101 4118.2 1221 1105 180.6 

131 1520 2139 1528 839.1 1595 1532 552.2 

132 1657 2171 1665 854.9 1768 1668 556.1 

133 1497 2062 1500 8/13.1/ 1575 15ll 604.3 

134 1535 2310 1538 824.5 1640 1542 562.6 

135 1549 25114 1553 895.7 1629 1559 549.4 

136 1016 1727 1052 354.8 1214 1054 98.0 

137 989 2019 I 116 375,1 1264 1122 112.3 

138 943 1881 I 988 359.8 1134 1004 104,8 

139 966 1673 1 (~3 188.3 1169 1041 94.2 

140 955 1795 1018 385.0 1105 1009 I 108.6 

Table 5 

Original data sets il/~.~~ave A~j max 
erdata 2 3 

emdata edata _1 rn 3 rn 
3 ' 5 
l 4 m evdata ~ rn  5 

rrdata 2 3 
!rrz 3 rmdata rdata 3 ~ rn 

I , 477 ~ rvdata ~ m 

vrdata 2 3 

vmdata vdata ~_ rn ~ 
vvdata 1 m 4 g m  

A move  of  an operation @ j  is tabu if one of the follow- 
ing conditions is fulfilled: 

- a tabu-list element exists which contains @ j ,  the new 
machine set for @j, and the new predecessor set of  @ j ,  

- a tabu-list element exists which contains 0#, the new 
machine set for Oij, and the new successor set of  O~j, 
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Tabu-searchvdata 
MMJSP MPMJSP 

H 
LB UB-start UB-TS I CPU UB-stal~ UB-TS CPU 

*47 100 47 [ 1.2 48 47 0.3 

*655 2237 655 54.3 655 655 2.7 

"1022 2743 1024 353.2 1038 1023 218.6 

*570 1745 572 94.5 595 573 43.6 

*529 1610 532 90.2 659 531 41.3 

477 1260 480 83.1 498 482 32.0 

*502 1197 504 74.5 517 504 35.9 I 
457 1357 464 t 81.3 486 464 34.2 

J 

*799 2236 801 ! 189.4 841 802 102.2 

749 2073 752 179.0 774 751 97.7 

765 1823 766 214.4 774 766 99.1 

853 232I 854 /97.5 857 854 111.2 

*804 2022 805 204.7 486 81)5 111.6 

"1071 2641 ]073 341.6 1079 1073 207.2 

*936 2421 937 281.6 951 940 26.0 

"1038 2515 1039 308.4 1052 1040 206.4 

1070 2505 1071 285.6 1091 1071 197.0 

1089 2890 1091 325.3 1096 1091 212.1 

"717 2561 717 51.0 717 717 2.8 

*646 29-47 646 46.1 646 646 2.8 

*663 2732 663 56.2 663 663 2.8 

"617 [ 22t2 617 63.4 648 [ 617 42.5 

*756 1925 756 [ 34.8 756 756 2.7 

800 3324 820 686.2 844 826 287.8 

733 3154 743 583.6 757 745 267.8 

809 3497 827 623.7 842 826 287.3 

773 3805 787 689.4 817 796 287.1 

751 3562 772 664.5 804 770 286.4 

1052 4226 1063 1204.8 1073 1058 655.6 

1084 4418 1094 1271.8 1118 1088 653.3 

I1169 4776 1072 1298.5 1109 1073 655,3 

993 4222 1002 1t68,8 11120 995 647.3 

11168 5659 I074 1295,1 1078 1071 690.8 

1520 6758 1521 3685,0 1543 1521 1897.7 

1657 6804 166i 3547.2 1662 1658 1879.7 

1497 6478 1500 3349.9 1509 1498 t971.5 

1535 6166 1537 3601.2 1550 1536 2169.4 

1549 6725 1566 3784.5 1571 1553 2142.3 

*948 4894 948 1255.5 948 948 22.8 

*986 5785 986 1372.1 993 986 25.5 

*943 5181 943 1121.7 943 943 21.1 

*922 5291 922 1272.6 952 922 110,5 

*955 4966 955 1072.2 955 955 21.3 

- a tabu-list element exists which contains an operation 
Okl of the new successor set of @j, as well as the ma- 
chine set for Okz, and the new predecessor set of Ore, 

- a tabu-list element exists which contains an operation 
Ok~ of the new predecessor set of O~j, as well as the 
machine set for Okl, and the new successor set of  O~z. 

If  the best partition is tabu, then the next best partition 
is chosen. If  all partitions are tabu, then Oij and/or the type 
of  the operator is changed. Note that the operators move-  
before and move-after are only applied to operations @j 
which belong to a block. 

Other features of  the tabu-search procedure are imple- 
mented as in the tabu-search algorithm of Hurink et al. 
(19941. 

3.2 Computational results 

The multi-propose machine job-shop problem (MPMJSP) 
is the special case of the multi-mode job-shop problem 
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Table 6 

Data Iter-ave 

m06 276.0 
ml0 721.0 
m20 960.0 
101-105 583.0 
106-110 706.2 
111-115 507.6 
116-120 659.8 
121-125 885.6 
126-130 890.8 
131-135 939.0 
136-140 674.6 

Data 

m06 436.0 
ml0 514.0 
m20 824.0 
101-105 630.8 
106-110 778.0 
111-115 908.4 
116-120 684.6 
121-125 653.4 
126-130 887.2 
131-135 845.6 
136-140 827.6 

Data 
m06 160.0 
ml0 896.0 
m20 923.0 
101-105 753.0 
106-110 631.6 
111-115 867.2 
116-120 835.6 
121-125 905.8 
126-130 797.0 
131-135 927.8 
136-140 872.8 

Tabu-search e .data  

erdata 
CPU-ave 

109.2 
442.1 
901.7 
222.4 
493.2 

1056.5 
449.5 
926.3 

1599.9 
3952.1 
1496.7 

lter-ave 

149.0 
396.0 
975.0 
557.2 
685.4 
577.6 
729.4 
584.0 
409.4 
646.6 
576.0 

emdata 
CPU-ave 

119.1 
1342.7 
372.8 
143.6 
251.9 
421.3 

1060.2 
2880.3 
5720.7 

15075.1 
9881.6 

lter-ave 
510.0 
892.0 
480.0 
431.8 
351.0 
246.0 
332.8 
229.8 
318.6 
278.2 
243.2 

evdata 
CPU-ave 

146.1 
1651.8 
1291.4 
266.6 
706.6 

1200.1 
1647.3 
4594.2 
8930.3 

24495.6 
11299.4 

Tabu-search r-data 

rrdata rmdata rvdata 
lter-ave CPU-ave Iter-ave CPU-ave Iter-ave CPU-ave 

139.2 
1327.7 
499.3 
182.7 
344.8 
617.0 

1432.2 
3411.3 
6634.4 

16617.7 
14020.8 

203.0 
95.0 

468.0 
581.6 
512.6 
216.4 
168.0 
489.0 
259.2 
492.2 
368.6 

138.6 
604.3 
897.7 
289.6 
639.6 

1096.4 
523.5 

1118.1 
2145.6 
4954.2 
1696.1 

661.0 
866.0 
565.0 
738.0 
797.4 
839.2 
912.8 
694.4 
899.4 
830.2 
692.8 

308.0 
2497.6 
1473.3 
396.3 
895.6 

1799.5 
2742.1 
7146.7 

13342.1 
36989.8 
20122.1 

Tabu-search v .data  

vrdata vmdata vvdata 
lter-ave CPU-ave Iter-ave CPU-ave lter-ave CPU-ave 

317.0 
198.0 
991.0 
761.8 
530.6 
502.8 
599.6 
377.8 
484.2 
481.0 
198.8 

147.4 
664.1 

1161.7 
277.4 
731.9 

1239.7 
739.0 

1755.5 
3609.4 
9461.5 
4191.0 

389.0 
940.0 
528.0 
456.2 
612.4 
704.2 
839.4 
924.6 
947.0 
971.8 
931.8 

127.6 

1935.2 
783.3 
186.3 
412.6 
708.3 

2396.3 
6064.4 

10070.1 
31178.4 
32271.5 

299.9 
6149.6 
2074.8 

463.1 
1011.5 
1978.4 
5250.6 

12518.9 
25458.5 
69776.5 
71068.6 

( M M J S P )  in w h i c h  all m a c h i n e  sets Ai~j are o n e - e l e m e n t  
sets. The re fo re  we also used  the b e n c h m a r k  p r o b l e m s  of  
H u r i n k  et al. (1994)  to test  our  t abu-sea rch  procedures .  Fur-  
the rmore ,  we ex tended  these  b e n c h m a r k  p r o b l e m s  to ob ta in  
test  da ta  for  the  general  M M J S P .  

The  b e n c h m a r k  p r o b l e m s  of  H u r i n k  et al. are de r ived  
f rom the  j o b - s h o p  b e n c h m a r k  p rob l ems  m06,  m l 0 ,  m 2 0  of  
F i she r  and  T h o m p s o n  (1966)  and  101-140 of  A d a m s  et al. 
(1988).  The  sizes of  these  p r o b l e m s  are l is ted in Table  1. 
Here ,  m and  n deno te  the  n u m b e r  o f  m a c h i n e s  and  jobs ,  
respect ive ly .  For  all these  p rob l ems  the  n u m b e r  of  opera-  
t ions  of  each  j ob  is equal  to the co r r e spond ing  n u m b e r  of  
mach ines .  

To genera te  test  p r o b l e m s  for  the  M P M J S P  H u r i n k  et 
al. added  a l te rna t ive  m a c h i n e s  to the  opera t ions  wi th  cer ta in  
probabi l i t ies .  D e p e n d i n g  on  these  p robab i l i t i e s  d i f ferent  tes t  
da ta  sets edata,  rdata,  vda ta  have  been  created.  T he  charac-  

ter is t ics  o f  these  sets are s h o w n  in Table  2, whe re  IM, ij [ave 
deno tes  the  ave rage  n u m b e r  o f  a l t e rna t ive  m a c h i n e s  and  
I M i j l m a x  is the  m a x i m a l  n u m b e r  o f  a l t e rna t ive  mach ines .  

To f ind out  h o w  the S2 -ve r s ion  of  our  t abu - sea rch  pro-  
cedure  pe r fo rms  on  ins tances  of  the  M P M J S P  we appl ied  it 
to these  test  data.  L ike  H u r i n k  et al. (1994)  we def ined our  
tabu- l i s t  l eng th  to be  equal  to 30 and  l imi ted  the  n u m b e r  of  
i tera t ions  by  1000. The  resul ts  are c o m p a r e d  wi th  the  resul ts  
o f  H u r i n k  et al. in  Table  3 (edata)  and  Table  4 (rdata,  vdata) .  
These  tab les  con ta in  the fo l lowing  in fo rmat ion :  

- LB:  bes t  k n o w n  lower  b o u n d  for  the  p r o b l e m  ins tance .  
The  b o u n d s  w h i c h  are due  to Ju r i sch  (1992)  are m a r k e d  
wi th  an  as te r i sk  i f  they are equal  to the  op t ima l  C ~ x -  
values.  

- M M J S P :  resul ts  for  the  t abu- sea rch  p resen ted  in this  pa-  
per. 
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- MPMJSP: results from Hurink et al. (1994). 
- UB-Start: C,~x-value provided by the start heuristic. 
- UB-TS: C.m~.x-value provided by the tabu-search. 
- CPU: CPU-tilne in seconds. 

The small computation times are due to the fact that the 
procedure stopped when all neighbours were tabu. 

We implemented the S2-version of our tabu-search pro- 
cedure on a SUN-SPARC Station 10/40 using the program- 
ming language C. Hurink et al. used a slower SUN 4/20 
workstation. The average speed-up factor between these two 
machines is 3.2. 

Note that Hurink et al. used a better start heuristic than 
ours. Nevertheless, our tabu-search results are comparable 
with those of Hurink et al. 

To create MMJSP test problems we randomly added 
other machine sets to the one-element machine sets of the 
test data in the sets edata, rdata, and vdata. Table 5 shows the 
different average sizes IA~j lave and maximal s izes  [A~j Imax 
of the machine sets created in connection with edata, rdata, 
and vdata. 

We tested the Sl-version and S2-version of the tabu- 
search procedure on these 9 data sets. The C, m a:values  cal- 
culated by both versions are nearly identical. However, the 
S 1-version which considers all partitions of the set I was 
15.7% slower than the other version. Therefore, in Table 6 
we only present the test results of the S2-version for the 
9 different test sets described in Table 5. In this table the 
results for the test problems of the same size are summa- 
rized by the average value. Table 6 contains the following 
information: 

- Iter-ave: The average number of iterations after which 
the best C , ~ - v a l u e  (of 1000 iterations) was found. 

- CPU: The average CPU-time in seconds. 

The other figures for these test problems can be accessed 
via 
ftp://ftp.mathematik.Uni-Osnabrueck.DE/pub/osm/preprints 

The main results can be summarized as follows: 

- The tabu-search procedure improves the C,,~az-values 
provided by the start heuristic considerably. 

- Except for problem instance 110 of emdata and some 
problems for the MPMJSP the tabu-search never termi- 
nated before reaching the maximal iteration count 1000. 

- In many cases Iter-ave is close to 1000. Thus, it seems 
that the C~ ..... -value can be further improved by increas- 
ing the bound on the maximal number of iterations. 

- The computational times can be high. For example, the 
CPU-time for problem 138 of vvdata was 21.3 hours. 
Generally, the CPU-time increases with the number of 
operations as well as with the number and size of al- 
ternative machine sets. It decreases with the number of 
machines. 

- No good lower bounds are available for the MMJSP. 
Thus, we cannot estimate the quality of the solutions. 

To test the influence of the number of iterations on the 
quality of the C~a :va lue  we increased the maximum num- 
ber of iterations to 2000 when running the test problems 
m06, ml0, m20, and 101 - 120 of all problem sets. For 57% 
of these instances the Cma:value improved. The average 

improvement was 1.39%. The CPU-time doubled. Again, 
the tabu-search never stopped before reaching iteration 2000. 
Therefore, when testing problems rot06, 103, 104, 107, 108, 
113, 114, 119, and 120 we increased the maximum number 
of iterations to 5000. For 52% of these instances there was 
another improvement of the C . . . .  -value which, on average, 
decreased by an additional 1.35%. 

4 C o n c l u d i n g  r e m a r k s  

A tabu-search algorithm for the multi-mode job-shop sched- 
uling problem has been introduced and applied to a large 
number of test problems. A comparison with a tabu-search 
procedure which has been especially designed for MPM job- 
shop problems shows that for this special case of the MMJSP 
our algorithm provides very good results. 

For the general case the tabu-search algorithms provide 
new benchmark results. A challenging task is to provide 
good lower bounds and/or a branch-and-bound procedure 
for the multi-mode job-shop scheduling problem. 
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