OR Spektrum (1998) 20: 21-28

OR Spektrum

© Springer-Verlag 1998

Tabu-search for the multi-mode job-shop problem

Peter Brucker, Jiirgen Neyer

Fachbereich Mathematik/Informatik, Universitit Osnabriick, Albrechtstrasse 28, D-49076 Osnabriick, Germany

Received: 21 November 1996 / Accepted: 18 July 1997

Abstract. In a multi-processor-tasks job-shop problem
(MPTISP) there is a machine set associated with each op-
eration. All machines are needed for the whole processing
period to process the operation. The objective is to find a
schedule which minimizes the makespan. In a multi-mode
job-shop problem (MMIJSP) there is a set of machine sets
associated with each operation. One has to assign a machine
set to each operation and to solve the resulting MPTJSP such
that the resulting makespan is minimized. For the MMJSP
a tabu-search algorithm is presented. Computational results
are reported.

Zusammenfassung. In einem Multi-Processor-Task Job-
Shop Problem (MPTIJSP) wird jeder Operation eine Maschi-
nenmenge zugeordnet. Fiir die Bearbeitung einer Operation
werden dabei wihrend des gesamten Bearbeitungszeitraums
alle Maschinen benotigt. Ziel ist es nun, einen Bearbeitungs-
plan zu bestimmen, in dem die Gesamtbearbeitungsdauer
minimal ist. In einem Multi-Mode Job-Shop Problem
(MMISP) wird jeder Operation eine Menge von Maschi-
nenmengen zugeordnet. Hierbei mufl jeder Operation eine
Maschinenmenge zugewiesen werden und das sich daraus
ergebene MPTJSP mit dem Ziel der Minimierung der Ge-
samtbearbeitungsdauer gelost werden. Fiir das MMISP wird
ein Tabu-Suche Algorithmus vorgestellt. Auflerdem werden
die erhaltenen Rechenergebnisse aufgefiihrt.

Key words: Tabu-search, multi-mode job-shop, multi-
processor-task job-shop, multi-purpose-machine job-shop

Schliisselwdrter: Tabu-Suche, Mehrmodus-Job-Shop, Mehr-
prozessoroperationen-Job-Shop, Mehrzweckmaschinen-Job-
Shop

1 Introduction

In a job-shop problem, n jobs Jy,...,J, have to be pro-
cessed on m machines My,... ,M,,. Job J; consists of n;

Supported by the Deutsche Forschungsgemeinschaft, Project Br389/15-1
Correspondence to: P. Brucker

operations O;1, . .. , Oy, which have to be processed in this
order, i.e. operation O; ;.1 has to be processed after opera-
tion O;; for each stage j=1,... ,n; — 1.

At any time each machine can process at the most one
operation, and for each operation O;; a processing time
p;; > 0 and a machine y;;, on which operation O;; must be
processed, are known in advance.

The objective is to find a schedule which minimizes the

makespan C, = m%x C; where C; denotes the finishing
p

time of the last operation of job J;.

In a multi-processor-task (operation) job-shop problem
(MPT job-shop problem) there is aset A;; C {M;,... , M,,}
of machines associated with each operation O;;. Opera-
tion O;; occupies all machines in this set A;; during its
processing time. Thus, two operations O;; and Oy with
(1,7) # (¢,4) can be processed at the same time only if
Ai; N Ay g = 0. MPT job-shop problems have been investi-
gated in Kriamer (1995) and Brucker and Kramer (1995).

In a multi-purpose-machine job-shop problem (MPM
job-shop problem) there is again a set A;; of machines as-
sociated with each operation O;;. Here we have to assign a
machine j;; € A;; to each operation O;; and to schedule
the operations on the assigned machines such that the corre-
sponding makespan is minimized. MPM job-shop problems
are discussed in Jurisch (1992), Dauzére-Pérés and Paulli
(1995), Hurink et al. (1994), and Brucker and Schlie (1990).

The multi-mode job-shop problem (MMISP) is a com-
bination of both the MPT job-shop problem and the MPM
job-shop problem. Associated with each operation O;; there
is a set Ay = {A%j,... ,AZ"" of machine sets Afj -
{Mi, ..., My} and processing times p¥; > 0,k =1,... ,m,;.
We have to assign a machine set Afj € .7%;; to each opera-
tion O;; on which O;; has to be processed. If Afj is assigned
to Oy, then O;; occupies all machines in A%, for pf; time
units.

Sprecher and Drexl (1996a,b) developed a branch-and-
bound algorithm for the multi-mode resource-constrained
project scheduling problem which is a generalization of the
MMISP.

MMISP is a very difficult problem because the job-shop
problem which is a special case of MMISP is strongly NP-

22

hard. We present a tabu-search heuristic for the MMISP.
The quality of tabu-search is influenced by the quality of
the underlying neighborhood. In Sect. 2 we introduce neigh-
borhood structures which exploit structural properties of
the problem. Corresponding tabu-search procedures are de-
scribed, and computational results with these procedures are
reported in Sect. 3.

2 Neighborhood structures

An illuminating representation for the job-shop problem is
provided by the disjunctive graph model due to Roy and
Sussmann (1964). We use this representation to derive neigh-
borhoods for our tabu-search heuristic. In Sect.2.1 the dis-
junctive graph model is briefly described. Based on this de-
scription and possible ways to improve nonoptimal sched-
ules, neighborhoods for the MMIJSP are derived in Sect.2.2.
Finally, in Sect.2.3 efficient methods are presented for cal-
culating neighbors for a given solution.

2.1 The disjunctive graph model

Given an assignment g, which associates with each operation
O;; a machine set u(0;;) € ./4,;, corresponding schedules
can be represented using the disjunctive graph model. A
disjunctive graph G = (V,C' U D) is defined as follows.

V' is the set of nodes representing the operations of all jobs.
In addition, there are two special nodes, a source 0 and
a sink *. There is a weight associated with each node.
The weights of O and x are zero while the weights of the
other nodes are the processing times of the corresponding
operations.

C' is the set of directed conjunctive arcs. These arcs reflect
the job orders of the operations. Additionally, there are
conjunctive arcs between the source and the first oper-
ations of all jobs and between the last operations of all
jobs and the sink. More precisely, we have

C={O7jj——>01‘7j+1 ‘7;=1,...,7’L; j=l,... ,ni~1}
U{O—>O7:1 |i:1,...,n}
U{Om,,—**|i=l,...,n}.

D is the set of undirected disjunctive arcs. Such an arc
exists for each pair of operations which are incompati-
ble with respect to i, i.e. operations O;; and Oy with

(0 N Oy o)y # 0.

The basic scheduling decision is to define an ordering be-
tween those operations which are incompatible. This can
be done by turning undirected disjunctive arcs into directed
ones. A set S of directed disjunctive arcs is called a selec-
tion. Feasible schedules are represented by complete selec-
tions. A selection S is complete if

~ each disjunctive arc is directed,
- the resulting directed graph G(S5) = (V,C U 5) has no
cycles.

P. Brucker, J. Neyer: Tabu-search for the multi-mode job-shop problem

The schedule represented by a complete selection S is con-
structed as follows. Start each operation O;; at time 7y;
where r;; is the length of a longest path in G(S) from 0
to O;;. The length of a path in G(S) is the sum of the
weights of all nodes belonging to the path, the last node
excluded. A longest path from O to the sink * is called a
critical path. The length L(P) of a critical path P is equal
to the makespan of the schedule.

We call r;; the head of operation O;;. Symmetrically,
the tail of operation O;; is the length of a longest path from
0;; to * in G(S).

2.2 Neighborhood

In this section we introduce operators which are used to
define neighborhoods for the tabu-search. These operators
generalize operators used by Hurink et al. (1994) in con-
nection with the multi-purpose machine job-shop problem.
Again, we consider a given assignment u. Let S be a com-
plete selection with respect to g and let G(S) be the result-
ing directed graph. We have shown that S defines a feasible
schedule. On the other hand, if we have a feasible schedule,
then this schedule induces a complete selection. Therefore
we identify feasible schedules with corresponding complete
selections.

Our search space will be the set of all pairs (i, S) where
S is a complete selection with respect to . (u, S) is called
feasible solution.

The definition of a neighborhood for this search space
is based on necessary conditions for improving a current
solution S. These conditions use the concept of blocks.

Let U =(u,...,u;) be a path in G(S). Then blocks of
U can be defined recursively as follows:

— if u; — uy € C, then the set of blocks of U is equal to
the set of blocks of (ug, ... ,up).

~ ifu; — uy ¢ C, then alongest subpath U’ = (uy, ... , u;)
satisfying the properties
(i) the vertices of U’ are a clique, i.e. u, — u, € CUS

forall 1 <r < s <4,

(i) up = uppy ¢ Cforr=1,...,i—1,
is a block of U. Furthermore, the blocks of (u;, ..., u;)
are blocks of U.

Note that a block contains at least two vertices.

Theorem 1. Let y be a feasible solution for a given MMJSP
and let S be the corresponding complete selection. Let ¢
be a feasible solution which improves y. Then there exists
a block B of a critical path P in G(5) such that one of the
following properties holds.

(i) Iny one operation O;; of B is processed on a machine
set which is different from the machine set for O;; in
Y.

(ii) In y' one operation of B different from the first opera-
tion of B is processed before all operations of B.

(iil) In ' one operation of B different from the last opera-
tion of B is processed after all operations of B.

The proof of this theorem is similar to the proof of a
corresponding theorem in Jurisch (1992) or Kramer (1995).

P. Brucker, J. Neyer: Tabu-search for the multi-mode job-shop problem

We obtain neighbors of a feasible solution y with the cor-
responding graph G(.S) by applying to y one of the three op-
erators change-assignment (O;;), move-before (O;;), move-
after (0y;) where O;; is a suitable operation on a critical
path in G(S).

Change-assignment (O;;), which is defined for any op-
eration on a critical path in G(S), can be specified by the
following steps.

Change-assignment (O;;)

1. Eliminate all (directed) disjunctive arcs which are inci-
dent with Oy;.

2. Add all disjunctive arcs according to the new machine
set assigned to O;.

3. Turn the new disjunctive arcs into directed ones such
that the resulting directed graph is acyclic.

The operator move-before is more complicated. Let O;; be
an operation of a block B belonging to a critical path of
G(S), which is different from the first operation in B. If
in G(5) there exists a path from the first operation in B
to O;;_1, then it is not possible to move O;; before the
first operation in B without creating a cycle. In this case the
operator move-before (O;;) is not defined.

Move-before (O;;)

1. IF no path exists from the first operation in B
to Oi,j—l THEN
BEGIN

2. Eliminate the directions of all disjunctive arcs incident
with Oij;

3. Add a directed disjunctive arc from O;; to the first op-
eration in B;

4. Turn the remaining disjunctive arcs into directed ones
such that the resulting directed graph is acyclic
END

The operator move-after is defined similarly.

In Step 3 of change-assignment (O;;) and Step 4 of
move-before (0;;) there are several possibilities to turn dis-
junctive arcs into directed ones such that the resulting di-
rected graph is acyclic. In the next section we will present a
procedure which chooses from all possible orientations one
which minimizes the makespan.

2.3 Reorientation of disjunctive arcs

In this section we will describe a procedure for the reori-
entation of disjunctive arcs incident with O;; in Step 3 of
change-assignment (O;;) or Step 4 of move-before (O;;).
The reorientation is undertaken such that

— the resulting network has no cycles,
— the makespan of a corresponding schedule is minimal.

Such a reorientation is called optimal.

We start with the reorientation for change-assignment
(O45). A reorientation procedure for move-before (after)
(O;;) can be derived by an easy modification.

Let I be the set of operations which are incompatible
with O after a new machine set is assigned to O;;. Assume

23

that T # () (otherwise there is nothing to do) and denote by
Ip and Ig the sets of disjunctive predecessors and disjunc-
tive successors, respectively, of O;; after a reorientation of
the arcs connecting O,; with the operations in /. Clearly,
any partition of I into disjoint sets /p and Ig defines a
reorientation.

We now study a possible structure of an optimal reori-
entation Ip, Ig. The corresponding heads and tails after this
reorientation are denoted by ry; and gg;.

If in the network NN, which is derived from the origi-
nal network by the elimination of O;;, there exists a path
from O; ;41 to an operation Oy, then Oy; must belong to
Ig. Otherwise the reorientation would create a cycle. Sim-
ilarly, if in N there exists a path from some operation Oy,
to O; ;—1, then Oy; must belong to Ip. Note that there is no
operation Oy, satisfying both properties because otherwise
in the original network we would have a cycle

Okl AR 4 Oi’jVI — Oij — Oi,j+1 — ... Okl~

Let I £ 7l g) be the set of operations Oy; € I such that there
exists a path from O (Oi’j.'.l) to Oi7j_1 (Or). We must
have I{) C Ip and Ig: C Is.

To study how the remaining operations of I split into
Ipuly=I\uburh

we consider the length L(P) of a longest path P from 0 to
* containing O;; in the network induced by Ip, Ig:

L(P) = max{ max (Tx +DPr1), Ts,j—1+ Dij—1} + Dij
Om€lp
(1) +max{ max (P + qr1), Pij+1 + Gijsl }-
Oriels

Let h = maxo,,erp(Tr + pr1). Then all operations Oy, €

Is \ IL with 7, + pr; < h can be moved from Ig to Ip
without increasing the longest path length (1). We also know
that hp = maxg, o s (P +pri) <

We conclude that an optimal partition of I has the form
2) Lok ifurk
where
I} ={On € I\(IJJ; U I£)|sz +pr; < h}
1§ = {Ow € I\ (TH UID)IFh + pra > R}

with h € H := {hf} U {Fkl +pkl|0kl el \ (IIJ; U Ié);?kl +
Pr1 > hy}.

To find an optimal reorientation we have to evaluate par-
tition (2) for each A € H and to choose the best one. All
relevant values % and the corresponding L({P)-value can be
computed easily if we sort the operations Og; € T\ (I f; ur é)
according to their (7y; + pg;) - values.

Next we will show that the network resulting from Ip =
I}i UI% and Ig = Ig U I% has no cycles. To prove this it
is sufficient to show that there is no path from an operation
Og; € Ig to an operation Oy € Ip. This claim holds for

— O € I, Oy € T, because iy + pry > Trrrr +Prryr =
It s D D

Tk/l,’
- Oy € Ig, Oy € I, because otherwise a path
Oi,j+] *’”"Okl — -~-_’Ok’l’

would exist, which would imply O € I é,

24

- Oy € Ig, Opyp € I{,, because otherwise a path

Okl_’~-~_)0k’l’_’~--_>0i,j~1

would exist, which would imply Oy; € I},

- O € If, Oy € I{,, because otherwise we would have
the following cycle in the original graph:

Ot — ... = O — ... = O 5—1 = O = O ju

’’Okl

To calculate an optimal partition we have to evaluate (1)
for the partitions (2). This means that we have to calculate
the heads 7; and tails gz; in (1) in advance.

For O; ;_; we have 7; ;_; = r; j_ and for O; j.1 we
have g; j+1 = g; j+1. This follows from the fact that the head
of O; ;1 (tail of O; ;,1) changes only if, before the new
orientation, O;; belonged to a longest path from 0 to O; ;1
(from Oj ;41 to x). This is impossible because O;; is a con-
junctive successor of O; ;_; (predecessor of O; j.1).

After reorientation, for an operation Oy, € Ip (Oy €
Ig) it is not possible for O;; to belong to a path from 0
to Og; (from Oy, to x). Otherwise we would have a cycle.
Thus, the new heads and tails can be calculated using the
following procedure.

1. Eliminate all disjunctive arcs which are incident to Ol-j;

2. Calculate the new heads and tails by applying longest
path algorithms;

3. Reinsert the disjunctive arcs eliminated in Step 1.

The computational effort for the whole procedure is
bounded by O(m) where m is the number of arcs in the
network.

For the procedure move-before (O;;) we already know
that the first operation in the block, say Oy;, must belong
to Ig. Thus, we have to add Oy to 1 g Furthermore, all
operations Oy € I with the property that a path from Oy
to O exists must be added to 1 g

The procedure move-after (O;;) can be implemented in
a similar way.

The algorithms presented so far are time-consuming be-
cause we have to

— recalculate heads and tails,
— generate the sets [}; and I g to check its feasibility.

Next we try to reduce the computational effort by mod-
ifying the procedure. A consequence of these modifications
is that we can no longer guarantee that the reorientation is
optimal. The modifications are as follows.

1. Replace heads and tails 75, ¢;; by 75, ¢s5.
2. Avoid generation of 1 I{, and I g by considering partitions
satistying
max {7 + < min {rg+
Omelp{ ki + Dk} Oklels{ ki + DKt}
and

max {rg; +pr} € [a,b[
OklEIP{ } ’
where a, b are defined by
- a =1 j-1+Dij-1, b = Ti,g+1 T Ds j+l if another
machine set is assigned to O;;,

P. Brucker, J. Neyer: Tabu-search for the multi-mode job-shop problem

Table 1
m n
mQ6 6 6
m10 10 10
m20 5 20
101 - 105 5 10
106 - 110 5 15
11 - 115 5 20
116 - 120 10 10
121 - 125 10 15
126 - 130 10 20
131 - 135 10 30
136 - 140 15 15
Table 2
[M;;lave | M ;| max
edata: 1.15 2 (m <6)
3 (m > 10)
rdata: 2 3
vdata: %m %m

= Q=T 1+Di -1, b= THB) T Pf(B) if Oij is moved
before the first operation O¢py of the block B con-
taining O;;,
- a=TryByt PUB), b= Ti+1 t Di 5+l if Oij is moved
after the last operation Oy, of the block containing
Oy;.
If b < a, then the corresponding operation is not applied.

It remains to show that the modified procedure always
creates a feasible schedule, i.e. there exists neither a path
from Is to O; ;i nor from O; ;4 to Ip in the reoriented net-
work. We may consider only the case a = r; ;_1+p; j—1, b=
T 441 + Dij+1 because rymy + pumy > i1+ pij1 and
T§B) + Py < Tij+1 + Pij+1. Thus, the intervals [a, b[for
the move operations are contained in the interval for the re-
assignment operation. rygy+pypB) > T;,j—1+Ds,;—1 holds be-
cause otherwise TuB) < TyB) +DPuUB) < Tij—1tD5 51 < Tigs
which is a contradiction to the fact that O;; is a disjunctive
predecessor of I(B). Similarly, r gy +PrB)y < Ts,j+1 +Dij+i
holds.

No path from an operation in Ig to O; ;_; exists because

Try + Py 2> MIN {7g +Prr} > max {rg + Pr
OMGIS{ } OkleIP{ }
ZTig—1+Pig—1 > Ty 41

for all Oy € Ig. Similarly, no path exists from O; ;41 to
Ip.

3 Implementation of tabu-search procedures
and computational results

In Sect. 3.1 the implemented tabu-search procedures are de-
scribed. These procedures have been tested on different types
of problems. The corresponding computational results are
presented in Sect. 3.2

3.1 Tabu-search procedures

We start the tabu-search with a solution calculated by a sim-
ple heuristic. This heuristic works as follows. To each op-

P. Brucker, J. Neyer: Tabu-search for the multi-mode job-shop problem

Table 3
Tabu-search edata
MMISP MPMISP
Data LB UB-start UB-TS CPU UB-start UB-TS CPU
m06 *55 60 55 0.1 57 57 0.3
ml¢ *871 1314 920 325 995 917 7.5
m20 *1088 1699 1210 82.9 1210 1109 69.2
101 609 775 609 2.8 688 611 1.9
02 *655 901 700 15 667 655 123
103 *3550 840 594 1.5 647 573 1.1
104 *368 805 607 1.5 613 578 12.3
105 #3503 622 503 1.8 510 503 1.8
106 *833 968 833 0.7 900 833 33.7
107 *762 1001 777 90.8 807 765 37.3
108 *845 991 850 3.6 949 845 35.9
109 *878 990 878 79.2 912 878 40.5
116 *366 962 873 2.9 830 866 27.3
1 1087 1254 1135 1097 1158 1106 86.3
1z *960 1211 979 10.4 1039 960 84.7
113 *1053 1242 1053 4.0 1215 1053 55.1
114 *1123 1292 1123 1238 1173 1151 70.7
115 *1111 1655 1122 134.6 1217 1111 61.2
116 *892 1230 1013 2.0 961 924 39
17 *707 938 749 10.8 774 757 4.1
118 #8472 1067 894 0.9 364 864 2.3
119 *796 1063 344 217 854 850 3.6
120 *§57 1258 909 9.7 947 919 2.9
121 895 1430 1077 169.1 1259 1066 47.1
122 832 1290 929 203 1049 919 39.6
123 950 1409 977 168.6 1122 980 43.6
124 881 1321 951 1385 1047 952 432
125 894 1375 973 26.0 1148 970 407
126 1089 1664 1160 248.6 1268 1169 794
127 1181 1732 1327 17.1 1403 1230 81.1
128 1116 1605 1247 374 1335 1204 79.7
129 1058 1582 1216 109.0 1369 1210 85.9
130 1147 1712 1272 1247 1436 1253 85.0
131 1523 2139 1566 415.6 1797 1596 272.8
132 1698 2171 1722 405.0 1835 1769 112.6
133 *1547 2062 1599 397.3 1749 1575 294.8
134 1592 2310 1645 386.9 1781 1627 255.0
135 *1736 2504 1760 120.1 1817 1736 236.6
136 1006 1727 1215 227.0 1355 1247 388
137 1355 2019 1455 56.0 1621 1453 579
138 1019 1881 1304 914 1232 1183 55.6
139 1151 1673 1231 2425 1390 1226 58.4
140 1034 1795 1223 2893 1324 1214 113.3

25

eration O;; a machine set Afj with the smallest processing

time pfj is assigned. Using these processing times its total
processing time is calculated for each job. The scheduling
procedure is based on a list which contains all of the jobs
ordered according to nonincreasing total processing times.
All first operations of the jobs are scheduled in this list or-
der. Then the second operations of all jobs are scheduled in
this list order, etc. If a job is completely scheduled, it will
be eleminated from the list. The process stops once all jobs
are eliminated.
The neighbors of a solution are specified by

- an operation Oy,

— the type of operator to be applied to O;;: change-
assignment, move-before, move-after,

— the partition of the set I of jobs which are incompatible
with Oy; into the sets Ip and Ig.

In the tabu-search procedure the neighbors are investi-
gated according to the sequence of the block operations on

the critical path. For each block operation those neighbors
which can be generated by the operator change-assignment
are considered first. After that the neighbors generated by the
operator move-before and move-after are considered succes-
sively if possible.

There are two strategies for choosing a partition g, Ip
of I

S1: Choose the best partition, i.e. a partition of I which min-
imizes the makespan.

S2: Choose the best partition from the restricted set of par-
titions described at the end of Sect.2.3.

The tabu-list is organized as follows. Each tabu-list ele-
ment contains

~ the moved operation O,

— the old machine set for O;;,

~ the predecessor and successor set of O;; in the old sched-
ule.

26

P. Brucker, J. Neyer: Tabu-search for the multi-mode job-shop problem

Table 4
Tabu-search rdata Tabu-search vdata
Data WMISP MPMISP MMTSP MPMISP
LB || UB-start | UB-TS | CPU || UB-start | UB-TS | CPU LB || UB-start | UB-TS | CPU || UB-start | UB-TS | CPU
w06 47 0 7 iz 56 7 13 47 100 37 2 8 7 03
m10 679 1314 701 | 1137 803 737 | 41 || *655 2237 635 543 655 655 27
m20 || 1022 1699 | 1025 | 2503 1072 | 1028 | 275 || 1022 2743 | 1024 | 3532 1038 | 1023 | 2186
01 570 775 555 656 59T 574|240 || %570 1743 577 [945 595 575 436
102 529 901 534 | 624 580 535 | 249 |1 %529 1610 532 | 902 659 531 413
103 477 840 481 | 65.1 537 481 | 266 477 1260 480 | 831 498 a2 | 320
104 502 805 506 | 641 550 509 | 261 || *se2 1197 504 | 745 517 504 | 359
105 #457 622 461 | 684 487 460 | 318 457 1357 464 | 813 486 464 | 342
06 799 968 07 | 1327 831 BT 7813 || 799 7236 BT | 1894 EEH] 807 022
107 749 1001 753 | 1446 780 752 | 664 749 2073 752 | 1780 774 751 7.7
108 765 991 766 | 1254 788 767 | 658 765 1823 766 | 2144 774 766 | 99.1
109 853 990 855 | 1325 893 859 | 700 853 2321 854 | 1975 857 854 | 1112
110 804 962 806 | 127.8 824 806 | 69.4 || *804 2022 805 | 2047 486 805 | 1116
T || #1071 1254 | 1073 | 2369 1003 | 1073 | 1470 || *1071 T84T 1073 | 3416 078073 | 2072
112 936 1211 937 | 2024 961 937 | 157.9 || *936 2421 937 | 2816 951 940 | 260
13 || *1038 1242 | 1041 | 2069 1046 | 1039 | 1564 || *1038 2515 | 1039 | 3084 1052 | 1040 | 2064
14 || *1070 122 | 1072 | 2095 1086 | 1071 | 1510 || 1070 2505 | 1071 | 2856 1091 1071 | 1970
15 1089 1655 1092 | 230.1 1126 | 1093 | 609 || 1089 2800 | 1091 | 3253 1096 | 1091 | 2121
TT3 =717 1230 7351049 535 FI7 | 100] T 3581 7i7 510 77 gy 73
117 646 938 646 | 40 898 646 | 23 | 646 2247 646 | 461 646 646 2.8
18 666 1067 685 | 222 755 647 | 293 || #6563 2732 663 | 562 663 663 28
19 647 1063 w07 | 1008 777 725 | 312 | %617 212 617 | 634 648 617 | 425
120 756 1258 814 | 39 808 756 | 36 || *756 1925 756 | 348 756 756 27
71 808 1430 863 | 2581 960 861|926 B 3324 830 | 6862 844 836 | 2878
122 737 1290 784 | 2331 960 79 | 87.2 733 3154 743 | 5836 757 745 | 2678
123 816 1409 863 | 2516 961 884 | 811 809 3497 827 | 6237 842 826 | 2873
124 775 1321 837 | 2289 925 825 | 934 773 3805 787 | 689.4 817 796 | 287.1
125 752 1375 821 | 2338 914 823 | 817 751 3562 772 | 6645 804 770 | 2864
3% 1056 1664 | 085 | 4352 7148 | 1086 | 2022 || 102 4326 | 1063 | 12048 073 | 1058 | 6556
127 1085 1732 107 | 3974 1214 | 1109 | 1885 || 1084 4418 | 1094 | 12718 1118 1088 | 6533
128 1075 1605 092 | 3824 1165 | 1097 | 1909 || 1069 4776 | 1072 | 12985 109 | 1073 | 6553
129 993 1582 1007 | 4248 1082 | 1016 | 1720 993 4222 | 1002 | 11688 1020 995 | 6473
130 1068 1712 | 101 | 4082 1221 1105 | 1806 || J068 5650 | 1074 | 12951 1078 | 1071 | 69038
31 1520 7135 | 1S3 | 8391 1595 | 1532 | 5522 || 1520 6758|1527 | 36850 543 1521 | 18977
132 1657 2171 1665 | 854.9 1768 | 1668 | 556.1 || 1657 6804 | 1661 | 35472 1662 1658 | 1879.7
133 1497 2062 | 1500 | 803.0 1575 | 1511 | 6043 || 1497 6478 | 1500 | 3349.9 1509 | 1498 | 19715
134 1535 2310 1538 | 8245 1640 | 1542 | S62.6 || 1535 6166 | 1537 | 36012 1550 | 1536 | 2169.4
135 1549 2504 | 1553 | 8957 1629 1550 | 5494 || 1549 6725 | 1566 | 37845 1571 1553 | 21423
3% 1016 1727 1052 | 3548 214 | 105417980 | ¥o48 893 548 | 12555 943 548 | 2238
137 989 2019 | 1116 | 3751 1264 | 1122 | 1123 || 986 5785 986 | 1372.1 993 986 | 255
138 943 1881 988 | 359.8 1134 | 1004 | 1048 || %943 5181 943 | 11217 943 043 | 211
139 966 1673 | 1063 | 1883 1169 | 1041 | 942 || o2 5291 922 | 12726 952 922 | 1105
140 955 1795 1018 | 3850 1105 | 1009 | 1086 || %955 4966 955 | 10722 955 955 | 213
Table S — a tabu-list element exists which contains an operation
Original data sets [AF [ave |AF |max Oy of the new successor set of Oy, as well as the ma-
erdata 2 3 chine set for Oy;, and the new predecessor set of Oy,
emdata edata im im — a tabu-list element exists which contains an operation
evdata im im Oy of the new predecessor set of Oy, as well as the
trdata 2 3 machine set for Oy, and the new successor set of Oy;.
rmdata rdata i;m %m If the best partition is tabu, then the next best partition
rvdata 3m 5™ is chosen. If all partitions are tabu, then O;; and/or the type
vrdata ‘2 33 of the operator is changed. Note that the operators move-
vmdata vdata im sm before and move-after are only applied to operations O;
vvdata Im sm which belong to a block.

A move of an operation (J;; is tabu if one of the follow-
ing conditions is fulfilled:

- a tabu-list element exists which contains O;;, the new
machine set for O;;, and the new predecessor set of Oy,

- a tabu-list element exists which contains O

i

the new

machine set for O;;, and the new successor set of O,

Other features of the tabu-search procedure are imple-
mented as in the tabu-search algorithm of Hurink et al.
(1994).

3.2 Computational results

The multi-purpose machine job-shop problem (MPMISP)
is the special case of the multi-mode job-shop problem

P. Brucker, J. Neyer: Tabu-search for the multi-mode job-shop problem

27

Table 6
Tabu-search e-data
erdata emdata evdata
Data Iter-ave CPU-ave Iter-ave CPU-ave Iter-ave CPU-ave
m06 276.0 109.2 149.0 119.1 510.0 146.1
ml0 721.0 442.1 396.0 1342.7 892.0 1651.8
m20 960.0 901.7 975.0 372.8 480.0 12914
101-105 583.0 222.4 557.2 143.6 431.8 266.6
106-110 706.2 4932 685.4 251.9 351.0 706.6
111-115 507.6 1056.5 577.6 421.3 246.0 1200.1
116-120 659.8 449.5 729.4 1060.2 332.8 1647.3
121-125 885.6 926.3 584.0 2880.3 229.8 4594.2
126-130 890.8 1599.9 409.4 5720.7 318.6 8930.3
131-135 939.0 3952.1 646.6 15075.1 2782 24495.6
136-140 674.6 1496.7 576.0 9881.6 243.2 11299.4
Tabu-search r-data
rrdata rmdata rvdata
Data Tter-ave CPU-ave Iter-ave CPU-ave Iter-ave CPU-ave
m06 436.0 138.6 661.0 139.2 203.0 308.0
ml0 514.0 604.3 866.0 1327.7 95.0 2497.6
m20 824.0 897.7 565.0 499.3 468.0 1473.3
101-105 630.8 289.6 738.0 182.7 581.6 396.3
106-110 778.0 639.6 7974 344.8 512.6 895.6
111-115 908.4 1096.4 839.2 617.0 216.4 1799.5
116-120 684.6 523.5 912.8 1432.2 168.0 2742.1
121-125 653.4 1118.1 694.4 3411.3 489.0 7146.7
126-130 887.2 2145.6 899.4 6634.4 259.2 13342.1
131-135 845.6 4954.2 830.2 16617.7 4922 36989.8
136-140 827.6 1696.1 692.8 14020.8 368.6 20122.1
Tabu-search v-data
vrdata vmdata vvdata
Data Iter-ave CPU-ave Tter-ave CPU-ave Iter-ave CPU-ave
m06 160.0 147.4 389.0 127.6 317.0 299.9
ml10 896.0 664.1 940.0 1935.2 198.0 6149.6
m20 923.0 1161.7 528.0 783.3 991.0 2074.8
101-105 753.0 277.4 456.2 186.3 761.8 463.1
106-110 631.6 7319 612.4 412.6 530.6 1011.5
111-115 867.2 1239.7 704.2 708.3 502.8 1978.4
116-120 835.6 739.0 8394 2396.3 599.6 5250.6
121-125 905.8 1755.5 924.6 6064.4 377.8 125189
126-130 797.0 3609.4 947.0 10070.1 484.2 25458.5
131-135 927.8 9461.5 971.8 311784 481.0 69776.5
136-140 872.8 4191.0 931.8 32271.5 198.8 71068.6

(MMISP) in which all machine sets Afj are one-clement
sets. Therefore we also used the benchmark problems of
Hurink et al. (1994) to test our tabu-search procedures. Fur-
thermore, we extended these benchmark problems to obtain
test data for the general MMIJSP.

The benchmark problems of Hurink et al. are derived
from the job-shop benchmark problems m06, m10, m20 of
Fisher and Thompson (1966) and 101-140 of Adams et al.
(1988). The sizes of these problems are listed in Table 1.
Here, m and n denote the number of machines and jobs,
respectively. For all these problems the number of opera-
tions of each job is equal to the corresponding number of
machines.

To generate test problems for the MPMISP Hurink et
al. added alternative machines to the operations with certain
probabilities. Depending on these probabilities different test
data sets edata, rdata, vdata have been created. The charac-

teristics of these sets are shown in Table 2, where |M;;|ave
denotes the average number of alternative machines and
|M;j|max is the maximal number of alternative machines.

To find out how the S2-version of our tabu-search pro-
cedure performs on instances of the MPMIJSP we applied it
to these test data. Like Hurink et al. (1994) we defined our
tabu-list length to be equal to 30 and limited the number of
iterations by 1000. The results are compared with the results
of Hurink et al. in Table 3 (edata) and Table 4 (rdata, vdata).
These tables contain the following information:

— LB: best known lower bound for the problem instance.
The bounds which are due to Jurisch (1992) are marked
with an asterisk if they are equal to the optimal C\,z-
values.

— MMISP: results for the tabu-search presented in this pa-
per.

28

— MPMISP: results from Hurink et al. (1994).

- UB-Start: C,q4.-value provided by the start heuristic.
- UB-TS: C,,4,-value provided by the tabu-search.

- CPU: CPU-time in seconds.

The small computation times are due to the fact that the
procedure stopped when all neighbours were tabu.

We implemented the S2-version of our tabu-search pro-
cedure on a SUN-SPARC Station 10/40 using the program-
ming language C. Hurink et al. used a slower SUN 4/20
workstation. The average speed-up factor between these two
machines is 3.2.

Note that Hurink et al. used a better start heuristic than
ours. Nevertheless, our tabu-search results are comparable
with those of Hurink et al.

To create MMISP test problems we randomly added
other machine sets to the one-element machine sets of the
test data in the sets edata, rdata, and vdata. Table 5 shows the
different average sizes |Af;|ave and maximal sizes | A,|max
of the machine sets created in connection with edata, rdata,
and vdata.

We tested the S1-version and S2-version of the tabu-
search procedure on these 9 data sets. The C,,,,,-values cal-
culated by both versions are nearly identical. However, the
S1-version which considers all partitions of the set [was
15.7% slower than the other version. Therefore, in Table 6
we only present the test results of the S2-version for the
9 different test sets described in Table 5. In this table the
results for the test problems of the same size are summa-
rized by the average value. Table 6 contains the following
information:

- Iter-ave: The average number of iterations after which
the best (0, 4.-value (of 1000 iterations) was found.
~ CPU: The average CPU-time in seconds.

The other figures for these test problems can be accessed
via
ftp:/ftp.mathematik. Uni-Osnabrueck.DE/pub/osm/preprints
The main results can be summarized as follows:

-~ The tabu-search procedure improves the C,.-values
provided by the start heuristic considerably.

- Except for problem instance 110 of emdata and some
problems for the MPMISP the tabu-search never termi-
nated before reaching the maximal iteration count 1000.

— In many cases Iter-ave is close to 1000. Thus, it seems
that the C,,q,-value can be further improved by increas-
ing the bound on the maximal number of iterations.

— The computational times can be high. For example, the
CPU-time for problem 138 of vvdata was 21.3 hours.
Generally, the CPU-time increases with the number of
operations as well as with the number and size of al-
ternative machine sets. It decreases with the number of
machines.

- No good lower bounds are available for the MMISP.
Thus, we cannot estimate the quality of the solutions.

To test the influence of the number of iterations on the
quality of the (), 4,-value we increased the maximum num-
ber of iterations to 2000 when running the test problems
m06, m10, m20, and 101 - 120 of all problem sets. For 57%
of these instances the C,,,,-value improved. The average

P. Brucker, J. Neyer: Tabu-search for the multi-mode job-shop problem

improvement was 1.39%. The CPU-time doubled. Again,
the tabu-search never stopped before reaching iteration 2000.
Therefore, when testing problems mt06, 103, 104, 107, 108,
113, 114, 119, and 120 we increased the maximum number
of iterations to 5000. For 52% of these instances there was
another improvement of the C,,,-value which, on average,
decreased by an additional 1.35%.

4 Concluding remarks

A tabu-search algorithm for the multi-mode job-shop sched-
uling problem has been introduced and applied to a large
number of test problems. A comparison with a tabu-search
procedure which has been especially designed for MPM job-
shop problems shows that for this special case of the MMJSP
our algorithm provides very good results.

For the general case the tabu-search algorithms provide
new benchmark results. A challenging task is to provide
good lower bounds and/or a branch-and-bound procedure
for the multi-mode job-shop scheduling problem.

References

1. Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure
for job-shop scheduling. Management Science 34:391-401
2. Brucker P, Kriimer A (1995) Shop scheduling problems with multipro-
cessor tasks on dedicated processors. Annals of Operations Research
57:13-27
3. Brucker P, Schlie R (1990) Job-shop scheduling with multi-purpose
machines. Computing 45:369-375
4. Dauzére-Péres S, Paulli J (1995) A global tabu search procedure for
the general multiprocessor job-shop scheduling problem. Department
of Operations Research, University of Aarhus, No 5/95
5. Fisher H, Thompson GL (1963) Probabilistic learning combinations
of local job-shop scheduling rules. In: Muth JF, Thompson GL (eds)
Industrial scheduling, pp. 225-251. Englewood Cliffs: Prentice Hall
6. Hurink J, Jurisch B, Thole M (1994) Tabu search for the job-
shop scheduling problem with multi-purpose machines. OR-Spektrum
15:205-215
7. Jurisch B (1992) Scheduling jobs in shops with multi-purpose ma-
chines. PhD thesis, Department of Mathematics/Informatics, Univer-
sitit Osnabriick
8. Krimer A (1995) Scheduling multiprocessor tasks on dedicated proces-
sors. PhD thesis, Department of Mathematics/Informatics, Universitit
Osnabriick
9. Roy B, Sussmann B (1964) Les problémes d’ordonnancement avec
constraintes disjonctives. Note DS no 9 bis, SEMA, Paris
10. Sprecher A, Drexl A (1996a) Solving multi-mode resource-constrained
project scheduling problems by a simple, general and powerful se-
quencing algorithm. Part I: Theory. Manuskripte aus den Instituten fiir
Betriebswirtschaftslehre der Universitit Kiel, No 385
11. Sprecher A, Drexl A (1996b) Solving multi-mode resource-constrained
project scheduling problems by a simple, general and powerful se-
quencing algorithm. Part II: Computation. Manuskripte aus den Insti-
tuten fiir Betriebswirtschaftslebre der Universitit Kiel, No 386

