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Abstract: A stochastic approach to the analysis of hydrologic processes is defined along with a dis- 
cussion of causes of tendency, periodicity and stochasticity in hydrologic series. Sources of temporal 
non-stationarity are described along with objectives and methods of analysis of processes and, in gen- 
eral, of information extraction from data. Transferred information as measured by correlation coef- 
ficients is compared with the transferable information as measured by entropy coefficients. Various 
multivariate approaches to hydrologic stochastic modeling are classified in light of complexities of 
spatial/temporal hydrologic processes. Alternatives of time series structural decomposition and 
modeling are compared. A special approach to modeling of space properties further contributes to 
approximate simulations of spatial/temporal processes over large areas. Several aspects of stochas- 
tic models in hydrology are concisely reviewed. 
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1 Determinism and stoehastieity 

Determinism and stochasticity constitute the two basic approaches to investigation 
of nature. Axioms of determinism are based on cause-effect relationships. Usually 
they are described by mathematical equations. Axioms of stochasticity lead to 
standpoints that relationships often cannot be expressed in simple or complex 
cause-effect mathematical  forms. Instead, the "effect" variables are observed and 
their properties investigated by using methods of stochastic processes and 
mathematical  statistics (Yevjevich 1974). 

Figure 1 presents schematically three cases: (1) a pure deterministic relationship 
(left graph) as one extreme, (2) a pure stochastic case of cause-effect relationship 
(center graph) as the other extreme; and (3) transitions (right graph) between the 
two extremes. Ordinates of these graphs are partial effects on the resulting total 
"effect" variable by individual causal factors which are given on the abscissa. The 
left graph of Fig. 1 has a limited number of causal factors which jointly produce 
the full "effect" variable. It represents the classical case of a deterministic rela- 
tionship. Errors in measurements act as additional factors, often as random noise. 
The center graph of Fig. 1 represents the case of effect being dependent on an 
infinite number  of causes, each of them with an infinitesimally small partial effect. 
Here, no mathematical  expression is feasible for a description of the cause-effect 
relationship. The effect is then conceived and investigated as a random variable. 
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Figure 1. Cause-effect relationships: left graph, classical deterministic case; center graph, classical 
case of random variables; and right graph, transitional deterministic-stochastic case 

The most current case of cause-effect relationship in the geophysical sciences is 
represented by the right graph of Fig. 1. The partial effects of a large number of 
causal factors are unequal, and assumed sorted in a descending order. A correla- 
tive association function takes into account the partial effects of a limited number 
of causal variables only. Partial effects of the large number of remaining causal 
factors are replaced by a random variable. It is composed of all neglected causal 
factors (which have not.been identified, are not identifiable or are not economically 
observable), plus errors in measurement of variables included in the relationship. 

A correlative equation is always composed of two parts: the mathematical 
regression equation between the n + 1 variables and the random term 

Y = f ( X 1 ,  X 2 . . . . .  Xn )  + e (1) 

It may be conceived as a deterministic-stochastic analysis of cause-effect relation- 
ship. This case and the pure stochastic case (Fig. 1, center) are assumed here to 
represent stochastic processes and models in hydrology. 

2 Causal factors which produce hydrologic space-time processes 

Causal factors which produce continuous or intermittent hydrologic space-time 
processes as effects are essentially provided by three large sources. They are: (1) 
astronomic motions of bodies in the solar system acting through variation in input 
of solar energy to places on the Earth or through tides; (2) thermal processes and 
movements of fluids in the atmosphere, oceans and surface and subsurface con- 
tincntial environments; and (3) anthropogenic influences. 

The first source of causal factors (Fig. 2, left side) basically produce: the short- 
range periodic solar energy inputs to places on the Earth's surface (with day and 
year as cycles), the lunar/solar almost-periodic tides, and the long-range almost- 
periodic astronomic movements (the three Milankovich cycles, the Earth/Moon 
orbital eccentricity, the precession of equinoxes and the obliquity of Earth's axis). 
The additional astronomic causal factors may come from the periodic-stochastic 
process of sunspot activity, which has an average cycle of 11.3 years but is subject 
to some random time-dependent fluctuation. 

Causal factors of the Earth's environments, which affect hydrologic space-time 
processes (Fig. 2, center), include many thermal and fluid motion random processes 
on the Earth. The atmosphere is most important in creating randomness because it 
is a light non-conservative fluid. It not only generates basic randomness, but also 
acts in transmitting and modifying periodicities and almost-periodicities of solar 
energy inputs and other causes of periodicity to other environments. In turn these 
environments further contribute stochasticity and modify randomness and periodici- 
ties produced by the atmosphere. 
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Figure 2. Three basic sources of causal factors of hydrologic relationships (upper line), with main 
impacts (center line) and resulting structure of time series (lower line) 
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Figure 3. Sequence of monthly precipitation at Hicita, New Mexico, 1946 through 1960, which is 
composed of periodic mean, periodic standard deviation and an independent stochastic component 
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Figure 4. Sequence of monthly river flows for the Middle Fork of the American River near Auburn, 
California, 1946 through 1960, which is composed of periodic mean, periodic standard deviation and 
a dependent stochastic component 

The resulting continuous or intermittent  natural hydrologic time series are com- 
bined periodic-stochastic processes. They incorporate part ial  effects of many 
causal  factors from these two distinct sources. 

To il lustrate the periodic-stochastic t ime series in a simplified way, a series of 
monthly values of precipitat ion (Fig. 3) and of runoff (Fig. 4) are presented. Fig- 
ure 3 shows a t ime process with evidently periodic mean and periodic s tandard 
deviation, and a nearly independent stochastic component. Figure 4 shows evi- 
dently periodic mean and periodic standard deviation, but with a highly time 
dependent  stochastic component. No trends seem to exist in these time series. 

The third important  source of causal factors in hydrology are various human 
activities (Fig. 2, right side). Hydrology is the geophysical discipline with the larg- 
est influence of human activities on its space-time processes. Activit ies in water 
resources development,  conservation, control and protection are often expressed as 
water demand t ime series. Through water deliveries and returns, governed by these 
demands,  the hydrologic processes are often radical ly changed, usually becoming a 
combination of natural  hydrologic and water-use affected time series. Anthropo- 
genic effects have completely changed entire river basins in the world, including 
not only the major quanti tat ive water processes but also water quality processes. 
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Figure 5. Monthly water use for Dallas, Texas, 1950-1969, with an approximate upward linear 
trend, periodicities and a stochastic component 

These causal factors mainly create trends and slippages (jumps). They also modify 
existing trends and periodicity in basic parameters of the resulting hydrologic time 
series, change their space properties and/or modify the inherent stochasticity. 

3 Characteristics of resulting processes 

The resulting processes are trend-periodic-stochastic time series of hydrology. They 
are exemplified here by a simple water supply (delivery) series to a large city (Fig. 
5). The combined series of natural flows and water-use return series are often very 
complex processes. Two general characteristics of observed space-time hydrologic 
processes are particularly important: (1) how the various causal factors and the 
effects of the three main sources mutually interact and how their effects propagate 
through the Earth's environments; and (2) the basic structure possessed by the 
resulting hydrologic time series. 

Several questions either do not yet have answers or are only partially answered 
for the first general characteristic. Examples are: Do astronomical causal factors 
produce periodicity and almost-periodicity only in the basic parameters of time 
series, such as mean and standard deviation, or do they also affect series structure 
beyond the major parameters? Are all parameters periodic or only some of them? 
Why do the twelve average monthly values of the hydrologic variables often show a 
nearly sinusoidal pattern (within-the-year temperature and precipitation fluctua- 
tions in the Great Plains of the USA), fitted by the 12-month harmonic only, while 
other variables may need all six harmonics in the Fourier series description of their 
periodic processes (Fig. 6)? How are periodicities in hydrologic time series related 
to periodicities of atmospheric and oceanic variables and currents, or how do 
periodicities propagate through environments? What are the effects of various 
storage capacities for water and heat of the Earth on frequencies, amplitudes and 
phases of fitted harmonics to periodicity in parameters of hydrologic time series? 

Similarly, questions may be raised regarding various aspects of randomness in 
hydrologic time series, though processes of heat transfer and transport, and of tur- 
bulence and vorticities at various space/time scales on the Earth are well studied 
and described. Such questions are: What are the major properties of stochastic 
dependence (persistence) on short, median and long range time scales? How is per- 
sistence best defined? Does persistence exist on all time scales? How is stochasti- 
city transformed (attenuated or amplified) and its time dependence changed as 
water moves through various Earth's environments? How do periodicity and sto- 
chasticity interact? How is their significance best measured? What are the major 
sources and types of non-stationarity in hydrologic time processes? 
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Figure 6. Spectral density graphs of daily river flows: left graph, the Greenbrier River near Alder- 
son, West Virginia (USA); and right graph, the Jump River near Sheldon, Wisconsin (USA), for the 
period 1921-1960 (40 years) of observation 

Versatile aspects of anthropogenic causal factors in hydrology have eluded pro- 
fessionals in the sense that there has not yet been a significant generalization of 
results and methods of their analysis. The complexity is often overwhelming. The 
lack of pertinent data is a limiting factor of analysis. Water resource developments 
have definitely introduced trends and slippages into hydrologic time series. Their 
effects on periodicity and stochasticity have been much less well investigated and 
generalized. Extensive studies of water use series in past decades show decisively 
that they are basically trend-periodic-stochastic time processes. The importance of 
each of the three properties depends highly on the character of human activity, the 
type of water use and their direct impacts. 

An important factor in analysis of stochastic processes and models in hydrology 
is the precise definition of random variables. Most hydrologic variables are posi- 
tive. Their values are greater than or equal to zero (such variables as precipitation. 
runoff, evaporation, ground water recharge, etc.). Some of them are intermittent if 
the probability of zero value is not negligible, or are not intermittent if that proba- 
bility is negligible. The sources of causal factors and definition of random vari- 
ables lead to the conclusion that the complex, general structure of many hydrologic 
time processes is composed of four basic properties of tendency, intermittency, 
periodicity and stochasticity (or the TIPS-structure). Various methods of investiga- 
tion in stochastic hydrology depend on how these complex processes are conceived, 
approximated and decomposed in their structural analysis and mathematical model- 
ing. In general and as an example, the three components of tendency, periodicity 
and stochasticity may be approximated by the following model of the general 
trend-periodic-stochastic process (Salas and Yevjevich 1972): 

dependence structure 
/ m  "N 

+,,= fc (2) 
+ ' t t J = l ~  i : l j : l  + + ~ l 

( Trend 1 (Peri~ 1 ( Sec~176176 t [ 

\ Component / \Component/ \ Independent stochastic component/ 

with xp., = random process under study, p = sequence of years, 
= sequence of intervals within the year, as fractions of the year, 

Tmpa = trend in the mean, TSpa = trend in the standard deviation, 
g, = periodicity in the mean of detrended series, 
(~, = periodicity in the standard deviation of detrended series, 
ap,,_j = stochastic component having periodic dependence coefficients and having trends 
and periodicities in the mean and standard deviation removed, 
{p., = independent, second-order stationary, stochastic component, 
P I *-J I.*-k = periodic autoregressive dependence coefficients of 8pa, and 
ali-j[,~-k = periodic autocorrelation coefficients of 8pa. 
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Similar or more complex models with the second or higher order stationarity 
may be designed and implemented. 

4 Basic aspects of stochastic hydrology 
Stochastic hydrology is conceived as that part of general hydrology which treats 
the random processes of hydrology and in which the random components should not 
be neglected. Of all problems encountered in stochastic hydrology, four groups are 
usually singled out as important in practice: (1) extraction of information from 
available data; (2) transfer of information from place to place or from variable to 
variable; (3) condensed description of processes for purposes of their simulation in 
the form of potential samples; and (4) forecasting of pending occurrence of hydro- 
logic random variables by stochastic and/or deterministic/stochastic forecasting 
methods. 

Stochastic modeling in hydrology is then conceived as the search for the set of 
mathematical expressions (one or more), with parameters estimated from data, 
which describe the processes in nature as closely to their true characteristics as the 
data and other information permit or is economically justified. Equation (2), with 
the additional equations for Tin, Ts,  tx, ~, c~ and p and distributions of ~, represents a 
set of equations for the model. 

Stochastic modeling in hydrology is as old as the application of mathematics to 
geophysical disciplines. However, it was not called by that name. Fitting probabil- 
ity distribution functions to frequency curves or correlating hydrologic random vari- 
ables were likely the first simple stochastic mathematical models used in hydrol- 
ogy. Not until the advent of digital computers were these original simple models 
exhausted as well as extended to more complex cases of modeling, such as of 
short-interval discrete time series or of space-time stochastic processes. 

An important aspect of stochastic modeling is the problem of non-stationarity in 
hydrologic time series. Deterministic sources of non-stationarity are periodicities, 
almost-periodicities and trends and slippages in series parameters. They are rela- 
tively easy to treat by series decomposition (Eq. (2)). However, this usually leads 
only to second-order stationarity, if the variables leading to the stochastic com- 
ponent are not first normalized, leaving higher-order non-stationarity relatively dif- 
ficult to attain. 

An important case of random sources of non-stationarity is the occurrence of 
rare events conceived as disruptions in nature. Their effects may be sudden, slowly 
evolving or combined. Such events include earthquakes, large landslides, eruption 
of volcanos, large basin-wide fires, exceptional avalanches, basin-wide plant 
diseases, extremely rare floods or droughts, and similar occurrences. In this case 
the relatively homogeneous random noise in hydrologic processes on short time 
scales (days, months, years) is superposed by the random noise on long time scales 
(decades, centuries, millenia) in which the latter act as non-stationarity in the 
former. It  is often nearly impossible to distinguish higher-order deterministic non- 
stationarity from the eventual effects of rare catastrophic random events. 

Stochastic processes in hydrology have been studied from two standpoints: (1) 
utilitarian, with the purpose of applying results to various water resources and 
hydrologic problems; and (2) the human urge to understand and describe nature. 
The first standpoint has prevailed basically by developing models tested on 
observed data. Recently, the second standpoint has induced hydrologic studies of 
conceptual and physical nature, particularly through efforts to bridge the cause- 
effect deterministic type of information and the stochastic analysis, as well as by 
deriving forms of mathematical models from physical relationships which, in 
Klem~s' words (1~86), is to give the hydrologic content to stochastic modeling. 
Simulation of samples of known, assumed or fitted stochastic models on computers 
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by the Monte Carlo method, with the purpose of studying properties of complex 
stochastic processes, gives a further impetus to better understand and model hydro- 
logic stochastic processes. 

Stochastic modeling in hydrology is often the product of three distinct inputs: 
(1) knowledge from probability theory, stochastic processes and mathematical 
statistics, when axioms and hypotheses underlying the development of their 
theorems, methods and techniques fit the reality of hydrologic processes; (2) gen- 
eral geophysical knowledge related to hydrology which provides the physical back- 
ground to stochastic modeling and includes knowledge of atmospheric, oceanic, geo- 
logic and other continental backgrounds and effects; and (3) knowledge of various 
physical processes and relationships of hydrology, which guides stochastic modeling 
and provides underlying axioms, hypotheses and approaches to modeling. 

In general, hydrologic stochastic modeling is a synthesis of inputs rather than an 
analysis of any specific problem. It stimulates developments through feedbacks in 
sciences from which knowledge is derived. Contributions by hydrologic research to 
mathematical statistics and stochastic processes are already significant (theories of 
range, runs, water storage, etc.). They have stimulated scientists of other discip- 
lines to study problems relevant to hydrology and to contribute to their solutions. 
Hydrologists in turn have contributed their share to these feedbacks. This sym- 
biosis is evident not only between stochastic hydrology and statistics but also 
between general hydrology and various environmental and geophysical disciplines. 

While scientists from disciplines other than hydrology have contributed to or 
affected the positive developments in hydrologic stochastic modeling, they have 
also passed on to hydrology some of their own biases and misconceptions. Simple 
examples are: (1) for years the search for "hidden periodicities" has claimed many 
cycles in hydrologic time processes, which could not be substantiated by the rigor 
of hydrologic tests on the best available data; and (2) often statistical approaches 
have been uncritically applied to hydrology, with the proper tests proving them not 
to be appropriate in hydrology. 

5 Extraction of hydrologic information 

Observed hydrologic data vary in overall reliability. Measuring methods produce 
random and systematic errors. Significant changes in river basins or in other 
environments induce non-homogeneities. Observed data are subject to sampling 
errors due to limited sample sizes. While these latter errors are taken into account 
by statistical inference techniques, the first three types need special and elaborate 
techniques for assessment and consideration. These actions are decisive since the 
accuracy of extracted information is no better than the accuracy of basic data. 
Furthermore, the study of non-homogeneities helps their extrapolation into the 
future. 

Extraction of information on a random variable x involves several of its proper- 
ties: (1) estimation of parameters and other characteristic values; (2) estimation of 
probability distribution functions; (3) modeling of processes in space and time; and 
(4) determination of properties of random variables derived from the basic 
processes. Advanced mathematical statistics offers already classical techniques for 
all the information extraction. The hydrologic reality enters into play basically in 
two areas of modeling: (l) criteria or approaches for selection of mathematical 
functions for models, especially probability distribution functions of variables and 
functions for description of space-time processes; and (2) direct determination of 
properties of random variables derived from a basic process, such as the model of 
most intense daily rainfall from the model of hourly precipitation series, or the 
model of flood peaks from the model of continuous runoff series. 

In selecting mathematical forms of models, three approaches seem to have 
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evolved with time: 

1. Finding functions which best fit the data from a set of available functions 
(often from those traditionally used in the past), as the classical statistical 
approach; 

2. Use of model functions which have been already found to best fit a large per- 
centage of cases (say 95 percent or more), instead of making a new selection 
on each occasion by simple fitting criteria; and 

3. Support of the functions selected by physical information, established relation- 
ships and analytical derivation based on already used functions for related 
processes. This third case is often conceived as using both deterministic and 
stochastic information in the selection, or the use of hydrologic physical 
knowledge in making the selection of stochastic models. 

Simple fitting of functions by statistical techniques using only the available data 
is inherent in practice. However, many hydrologic cases provide additional informa- 
tion. If  one finds that a particular function fits data of a large number of regional 
or worldwide cases well and fits much better than any other function, this informa- 
tion becomes valuable until changed by new investigations. Furthermore, physical 
information regarding the variables involved may lead to functions of models under 
some circumstances. An example is the use of a lognormal probability distribution 
function for the distribution of the size of sediment grains. This is related to the 
study of crashing rocks into small sand and gravel particles under some basic 
assumptions that fit reality (Kolmogorov 1941). Experience with the large number 
of sediment samples and the theoretical derivation often reinforce each other. The 
physical processes of transferring precipitation into runoff may often lead to con- 
clusions concerning which models may be most appropriate for runoff variables and 
their time processes. 

It is hypothesized here that integration of information contained in data with 
the other types of information for selecting hydrologic stochastic model functions is 
an easier task than derivation of model parameters from physical information. 
Exceptions are available. Often autocorrelation coefficients may be related to coef- 
ficients of equations which describe hydrologic runoff recession curves. The ques- 
tion is then which approach should be used, simple estimation of parameters from 
data or a combination of that information with information provided by the physics 
of the processes. 

6 Transfer of information in hydrology 

Variables observed at fixed points are determined by design of hydrologic networks 
or by other criteria. Information often is needed: (1) at points others than those of 
gauging stations, (2) for variables that are related to variables observed, and (3) for 
ranges of variables outside of their historic observed ranges. These cases then 
require transfer of information from point to point for a given variable or from 
variable to variable, extrapolation.., of information to ungauged ranges of observed 
variables and combinations of the three cases. Information transfer requires simul- 
taneous observations for a minimum length of time at both or several points for the 
same variable in case (1) or for two or more variables in case (2) in order to estab- 
lish the information transfer relationships. For case (3) a relationship is needed 
(probability function, correlative function, etc.) for purposes of extrapolation. For 
case (4) complex relationships may be required. Basically, regression techniques 
are used for cases (1) and (2) with correlation coefficients measuring the degree of 
association, and fitting procedure of given goodness-of-fit measure for case (3). 

In relating variables by using their trend-periodic-stochastic time series, a 
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question seems pertinent, namely how each property of these processes affects the 
degree of correlative association. The answer is given through an example, Fig. 7 
and 8, for the case of correlating 10 years of mean daily flows of the Esencay 
River in Southwest Turkey (Harmancioglu and Yevjevich 1968) for its two gauging 
stations, Orenkoy (upstream) and Yapilar (downstream). Water from the upstream 
station passes the downstream station (defined as "throughflow") together with the 
intermediate inflow between the two stations. Squares of the correlation coefficient 
(r 2) for linear correlation (1), and linear correlation of logarithms of mean daily 
flows (2) are presented in Fig. 7 for five cases of decomposed time series: original 
data (OR), detrended series in the mean (DT), detrended and deseasonalized series 
in the mean (DS-M), detrended in the mean and deseasonalized series in the mean 
and standard deviation (DS-MS), and independent stochastic series with stochastic 
dependence removed (IND). Regardless of throughflow increasing correlation 
between station series, the removal from the series of the periodic mean, periodic 
standard deviation and time dependence in the stochastic component significantly 
decreased r 2, from 0.88 to 0.60 for the non-linear case and from 0.72 to 0.45 for the 
linear case. The greatest decrease was achieved by removing the periodic standard 
deviation in the linear case. 

Figure 8 shows the same graphs as in Fig. 7 except for the correlation of the 
mean daily flows at the upstream station only with the intermediate flow between 
the two stations (obtained as the downstream station flows minus the concurrent 
upstream station flows). This figure shows the same pattern of effects of series 
components on the square of correlation coefficient except that they are smaller in 
comparison with those of Fig. 7 because of the removed throughflow from down- 
stream station series. Figures 7 and 8 show then three basic properties: (1) correla- 
tion with throughflow retained in downstream time series is much greater than 
without it for all five cases of decomposed series; (2) non-linear correlation (or 
linear correlation of logarithms of mean daily flows) is stronger than linear correla- 
tion; (3) major sources of correlative association result from parallelism in periodic 
parameters and in stochastic dependence of correlated series of mean daily flows; 
and (4) correlating only independent stochastic components often does not reach 
the limit values of r 2 for the transfer of information. 

Not only do the concurrent values of the correlated series contribute to the 
degree of correlation, but the non-zero lag cross-correlation may also be a signifi- 
cant contributor. Figure 9 illustrates this case for the same example as used in 
Figs. 7 and 8. It gives the square of multiple correlation coefficient versus the 
largest lag j of the multiple linear lag cross-correlation between the mean daily 
flows of the two gauging stations (Yapilar, Orenkoy) of the Esencay River. Six 
cases are: (1) linear correlation of original data (with throughflow), (2) linear corre- 
lation of original data with throughflow removed from the downstream station 
series; (3) linear correlation of independent stochastic component without through- 
flow; (4) same as in (3) but with throughflow removed in the Yapilar series; (5) 
same as for (1) but for the multiple non-linear (linear case between logarithms) lag 
cross-correlation; and (6) same as for (2) but for the multiple non-linear case of lag 
cross-correlation between the logarithms of values. Figure 9 demonstrates clearly 
that non-zero lag cross-correlation terms in the multiple regression equation signifi- 
cantly increased the transferred information. Though this figure relates to two sta- 
tions along the same river, the non-zero lag cross-correlation should be investigated 
in most cases for an increase in transferable and in transferred information. 

The transferable information contained in data, which can be maximally 
transferred, seems to be best, measured by the square of entropy coefficient. 
Entropy of a discrete random variable with N elementary events of probability 
Pn = p(Xn),  n = 1,2 ..... N is defined by (Shannon and Weaver 1949) 
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Figure 7. Effects of various decompositions of series on correlation (r 2) for linear, line (l) ,  and non- 
linear, line (2), correlation cases, with entropy coefficients (R 2) measuring the transferable informa- 
tion between mean daily flows of Yapilar and Orenkoy gauging stations of the Esencay River 
(Southwest Turkey), for three different numbers of class intervals. 
Figure 8. Effects of various decompositions of series on correlation (r 2) for linear, line (1), and non- 
linear, line (2), correlation cases (without throughflow in downstream station series), with entropy 
coefficients (Ro 2) measuring the transferable information between mean daily flows of Yapilar and 
Orenkoy gauging stations of the Esencay River (Southwest Turkey), for three different numbers of 
class intervals. 
Figure 9. Multiple lag cross-correlation coefficients (R z) between the mean daily flows of Yapilar 
and Orenkoy gauging stations of the Esencay River (Southwest Turkey): (1) Original data with 
throughflows; (2) Original data without throughflow in Yapilar series; (3) Independent stochastic 
component of series with throughflow unremoved in Yapilar series; (4) same as in (3) with through- 
flow removed in Yapilar series; (5) same as ( l )  but for non-linear case; and (6) same as in (2) but 
for non-linear case (or linear case between logarithms of series values) 

U 1 
H ( X )  = K ~., P ( X n ) l O g - - "  K = 1. (3) 

.=1 P ( & ) '  
The entropy of two independent variables X and Y is H ( X , Y )  = H(X)  + H(Y) ,  
and of two dependent variables is 

N N l 

H ( X , Y )  = K ~_~ Z p(Xn,Ym)l~ K = 1, (4) 
n = l r n = l  

with T(X ,Y)  = H(X)  + H ( Y )  -- H ( X , Y )  defined as transinformation (informa- 
tion repeated in both X and Y). For X and Y independent, T(X,Y)  = O. 

For continuous density functions, p (X)  is approximated by f ( X ) A X ,  for small 
AX, with the entropy defined by 

+oo 1 1 
H(X;AX) = f -oo f ( X ) l o g - ~ - ~ -  dX + log AX (5) 

and the joint entropy of X and Y by 
+co 1 1 

H ( X , Y ; A X , A Y )  = f-oo f ( X ' Y ) l ~  f ( x , y )  dxdy + log.AXAY , (6) 

with both entropies dependent on the selected class interval AX, or AX and AY, 
respectively. 

The entropy information coefficient R o is defined by (Linfoot 1957) 
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R o = (1 -- e - 2 T ~  1/2, (7) 

where R o is a dimensionless measure of dependence between variables, and T o is 
the upper limit of transferable information (mutual information between variables). 
This does not assume variables to be normal (Rajski 1961) as classical correlation 
does. 

The transferred information T 1 by regression is related to the square of correla- 
tion coefficient as 

T 1 = [ln(1 -- r2)]/2. 

By comparing T o and 

I i = ( T  O - -  T 1 ) / T o ,  

(8) 

TI,  a new dimensionless measure 

(9) 

indicates how much information a regression equation leaves untransferred out of 
the total transferable information. 

In the bivariate case, r 2 shows how much of information is transferred out of 
the total transferable information, measured by R 2 (or by T 0, or t i ,  whichever is 
appropriate). In the multivariate regression case (including the case of non-zero 
lag cross multiple regression), the multiple correlation coefficient, R,  is compared 
with R o (Harmancioglu et al. 1986). A drawback is that R o depends on the size of 
the class interval and therefore on the selection of the number of class intervals in 
the case of continuous density functions (Amorocho and Espildora 1973). This dif- 
ficulty is best resolved by using several numbers of class intervals for a given fre- 
quency distribution, showing a relatively narrow band of variation of R o in com- 
parison with the difference R o - r ,  or R o - -  R ,  respectively for bivariate and 
multivariate case. 

Figures 7 and 8 show also examples of comparison of transferred and transfer- 
able information for the case of the Esencay River. Three numbers of class inter- 
vals are used in these figures for X and Y variables: 12, 16, and 22, with R o values 
being in a relatively narrow band. In cases of nonqinear correlation of mean daily 
flows between gauging stations (Fig. 7), the transferred information (2) nearly coin- 
cides with the transferable information (3) of an average of the three curves. With 
or without throughflow in the downstream station series and for linear cases the 
transferred information in Figs. 7 and 8 is much smaller than the transferable 
information. 

The above presentation shows that tools are available at present to measure, at 
least approximately, whether the method used in information transfer extracts 
none, some or most of the transferable information. This can then guide investiga- 
tors to search for those regression functions and/or  for variables to be correlated 
which minimize the parameter t i of Eq. (9). Using entropy coefficients as the 
measure of transferable information and correlation coefficients as the measure of 
transferred information definitely deserves further analysis and development. 

7 General properties of hydrologic stochastic modeling 

Physical, spatial/temporal, hydrologic natural processes are continuous in  space 
and time (each point in space has either a finite value or a zero value, at each time 
instant). Their mathematical descriptions are generally approximated by three 
types of multivariate processes: (1) as a set X 1, X2,...,X k of k well-defined random 
variables (such set as precipitation, evaporation, infiltration, runoff and other vari- 
ables) for a point in finite space and of finite time length, basically for studying 
their relationships; (2) as a set Y1, Y2 . . . . .  Y m  of each variable X, for m discrete 
in space, which approximate continuous spatial process of one or more X variables, 
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basically for studying space properties as a multipoint spatial multivariate process; 
and (3) as a set Z1,  Z 2 . . . . .  Z n for each X variable for n discrete points or inter- 
vals in time, either along a cycle or along the entire sample of data, which approxi- 
mates the continuous temporal process (including zero values), basically for study- 
ing time properties as a multipoint temporal multivariate process. In this third 
case an extension is made so that the multivariate process implies that the size n 
(either cycle or sample) can be repeatedly observed in form of many sets of n 
values, with each datum of the cycle or sample, i = 1,2,...,n, having outcomes of 
the marginal random variable. 

As the right graph of Fig. 1 demonstrates, the larger k is in studying the sto- 
chastic processes of hydrology, the closer the mathematical description is to a true 
cause-effect relationship. Similarly, the larger the selected numbers m and n of 
discrete points of space and time, for limited space and given time, the more accu- 
rate is the description of a process. The parameter p = krnn, with k m n  > O, 
determines the accuracy of approximation of nature. It also measures the cost of 
providing and processing the necessary data in modeling hydrologic stochastic 
processes. For k = 1, rn = 1, and p = n, this is the simple temporal point 
discrete process. This case is then studied as a time series. For k = 1, n = 1, 
and p = m, this is the simple spatial or lines, or area, process for give time point 
or interval. The case is studied as synoptic maps of times t = 1,2 .... for selected 
variables. For m = 1, n = 1, and p = k, this is the case of space/t ime point 
values of a set of k distinct variables. By combining various numbers of k,  m and 
n, all practical study cases of hydrologic stochastic processes are covered. 

The question of why the mathematical modeling is needed should be often 
re-examined. One reason is utilitarian, namely to better solve practical problems. 
Another reason is that mathematics is the stenography of description of natural and 
human-affected processes, whenever their complexities permit such an approach. 
In the general human urge to know and describe, whether or not there is any utili- 
tarian effect from it, mathematical modeling is the standard approach used in 
description. For larger values of k,  m and n, one is usually searching for that 
knowledge. For the cases where some of these three determinants are small, utili- 
tarian objectives most often prevail. 

In general, modeling of stochastic processes of hydrology requires estimation of 
the model of multipoint spatial/temporal multivariate process. For the three "mar- 
ginal multivariates", 

F x ( X l ,  X 2 ...... X k )  = 0 (10) 

represents the search for hydrologic relationships and marginal, conditional or joint 
probability distributions; 

Fy(Y1 ,  Y2 . . . . .  Ym)  = 0 (11) 

for any X i enables the study of spatial dependence and spatial variation with coor- 
dinates x,  y ,  z,  of parameters of X; and 

F z ( Z 1 ,  Z 2 . . . . .  Zn)  = 0 (12) 

for any X/ at a space point (x  o, Yo, Zo) enables the study of temporal structure and 
dependence, as well as the type and degree of non-stationarities. 

The study of non-zero space-lag and non-zero time-lag relationships among 
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variables in hydrology is important. A variable may be related to upwind or 
upstream non-zero spatial and temporal lag values apart from being related to 
values of zero lag at the time point and the same time. Furthermore, one should 
account for the TIPS-structure of complex time series of hydrology (tendency- 
intermittency-periodicity-stochasticity). The three cases of Eqs. (10)-(12), two 
cases of non-zero lag relationship, and four cases of structural time properties, help 
to describe the complexities of hydrologic stochastic processes. 

History of contemporaneous stochastic modeling in hydrology is likely tied 
either to the individual analysis and description of the above 3 N 2 N 4  = 24 cases 
of single modeling problems, or to the joint analysis and description of two or more 
of these 24 cases. Most hydrologic variables are mutually related, however, indivi- 
dual variables are also spatially and temporally dependent. This three-pronged 
dependence is likely the main reason why complex multipoint spatial/temporal 
multivariate processes should be investigated in depth, but also it produces com- 
plexities which make this joint investigative approach extremely difficult. There- 
fore, modeling of stochastic processes in hydrology requires the symbiosis of 
analysis of well-defined individual problems and synthesis of their properties and 
results into the general space/time multivariate models. 

Purposes of modeling vary widely. In general, if there is a pool of data, the 
corresponding model should be an extraction of all or most information contained 
in it. In other words, if samples are generated by the model (and the Monte Carlo 
method), the new samples should be as close to the true but unknown population as 
the inferred population from the original data permits. The implication is that a 
reliable model can replace data in applications. In practice, this is not yet the case 
for two reasons: (1) models are often considered only as an idealized approxima- 
tion, not accepted as fully equivalent to the information contained in data; and (2) 
there is an unfortunate but prevailing attitude that samples generated by the model 
should closely reproduce nearly all the parameters inferred from the original data, 
even those parameters which have very large sampling variations; this decreases 
confidence in the results of modeling and simulation. Modelers may be partially 
responsible for these two attitudes. Often, processes are modeled by fits before 
their structure and physical interactions and relationships are well-understood. 

In general, models are useful in helping solutions of hydrologic and water 
resource problems, for which planners or designers must look at the long time hor- 
izons (say, large overyear storage capacities). In this case, historic samples give 
only one or a small number of solutions for a design random variable, therefore 
they may be unreliable for decision making and lead to overdesign or underdesign. 
Simulation of stochastic processes on computers is in some way equivalent to physi- 
cal experimental laboratories. The simulated samples provide data points like a 
string of experimental runs in physical laboratories. Thus, one is able to study pro- 
perties of processes with assumed stochastic models, and to test various related 
hypotheses. 

8 Time series analysis 

In the TIPS-structural analysis (Yevjevich 1984) and modeling of hydrologic time 
series, various approaches may be used: 
1. Tendency is basically assumed in parameters, usually in the mean T,n and stan- 
dard deviation T s of the variable X, removed simply by (using Eq. (2)): 
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Up,, = (Xp , ,  - r m p , O / T ~ p , , ,  (13) 

with Up,~ considered as trendless series (regardless that trends may exist in other 
parameters). 
2. Intermittency is treated in one of the three ways: (i) as point processes, YES- 
NO, and then modeled within the YES-process with the variable distribution and 
time structure as the periodic-stochastic process (Chin 1977; Roldan and Woolhiser 
1982; Waymire and Gupta 1981; etc.); (ii) as the spell (storm) processess, with 
each event (cell, spell, storm . . . .  ) having random characteristics of time, volume, 
shape, etc. (Todorovic and Yevjevich, 1969); and (iii) as inferred non-truncated 
positive-negative process, with its model estimated from data on the positive but 
truncated process at X = 0 (Kelman 1977; Richardson 1977). 
3. Periodicity of hydrologic series is treated in two ways: (i) for each cycle (say 
day, year) there is a given number w of intervals or points in a discrete series, with 
values of each interval considered as a marginal random variable out of w temporal 
multivariates of periodicity (say w = 12 for monthly, w ~ 52 for weekly and 
w = 365 for daily series, in case of the annual cycle), with periodic parameters 
estimated from data by a non-parametric approach (not by the fit of periodic func- 
tions); and (ii) basic periodic parameters are modeled in mathematical forms 
(Fourier series fits), then removed by leaving the stochastic process with constant 
(or even some periodic) parameters, with such removal leading to 

8p .~ = ( U p ?  - g.O/(~.~, (14) 

with U p .  c that of Eq. (13) and g~ and G~ the mathematical Fourier series models of 
periodic mean and periodic standard deviation of Up.c. When feasible, Equation 
(14) is adjusted to produce a stochastic process and is studied as such. 
4. Stochasticity is studied also in two ways: (i) similar to the first approach of 
treating periodiocity, namely stochasticity is studied as marginal random variables 
of 8p,,~ and ~p,~ of Eq. (2); and (ii) similar to the second approach of treating 
periodicity, with the unique time stochastic (preferable stationary) process (with or 
without periodic parameters) studied as the 8p,, - process of Eq. (2). 

Each of the four structural TIPS-characteristics requires a corresponding number 
of parameters of tendency, intermittency, periodicity and stochasticity, with the 
total number: 

a = a t 4- a i + ap 4- a s, (15) 

While methods are available to infer the most parsimonious number of model 
parameters for stationary stochastic processes (Akaike 1974), there is no method 
available for optimizing the sum of Eq. (15). Inclination tends to the use of too 
many parameters. For a weekly hydrologic series the sum a t + a i 4- ap may be 
very large. For periodicity only, the mean, standard deviation, skewness coefficient 
and two autocorrelation coefficients of each week of the year account for 260 
parameters. For daily series it becomes 1825 parameters. Therefore, the second 
method of analysis, fitting periodic functions with a small but necessary number of 
harmonics to periodic parameters becomes necessary in order to avoid the 
avalanche of parameters required using the non-functional approach to description 
of periodicity. 

In the first approach using )the w marginal variables, the resulting stochastic 
variables ap,~ = (Up,~ - -  m O / s  ~, with rnz and s~ the estimates of the mean and 
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Figure 10. Periodicity of daily precipitation means of the Austin (Texas) Station: (1) 365 estimates 
of means, rn~; (2) Fitted periodic function Ix, by the Fourier series to the 365 values of m,, with five 
significant harmonics; and (3) Daily means, rn h averaged over the 28-day intervals (13 average 
values) 
Figure 11. Isolines (full lines) and fitted plane (dashed lines) for the general monthly mean 2- for 40 
years of data in the Northern Great Planes of the United States 

s tandard derivation of the Ups marginal variables, are all s tandardized 
(g = 0, var g = 1), and all the inclependent components ~p,~ of Eq. (2) will have 
consecutive pairwise zero autocorrelation coefficients. In the second approach, 
with the Fourier  series modeling of periodic parameters,  gp ~ of Eq. (14), the result- 
ing {p,~ independent components of Eq. (2) are s tandardized as a series, with zero 
autocorrelat ion coefficient for the entire sample only, and not for each consecutive 
pair of marginal  variables. In this approach periodicity as a determinist ic property 
is separated from the remaining stochastic stationary or non-stationary process. 

Figure 10 demonstrates the difference between the two approaches visually in an 
extreme case of w = 365 for daily precipitation process. It is clear that  the use of 
non-functional methods of treating periodicity with w values of each rn~ and s~ in 
removing periodici ty in parameters ,  also removes a large random sampling varia- 
tion in the means, and similarly in the standard deviations, from the resulting sto- 
chastic components. A question to ask is whether and what kind of distortion is 
being introduced in the generated samples, and if the generated gp,~ values are 
located around the extreme mean values of Fig. 10? This distortion decreases with 
a decrease of w. 

9 Analysis of spatial characteristics 

Spat ia l  distributions of model parameters  and other relationships of characterist ics 
are usually used to describe spatial  properties of hydrologic processes. A simple 
example is given here for the monthly precipitat ion space / t ime  process of the 
Northern  Grea t  Plains of the United States  ( lat i tude 43.75~ - to 47.75~ longi- 
tude 92.50~ - 100.00~ with 77 stations of monthly precipitat ion series of 40 
years of record used (Yevjevich and Karplus 1973). 

Basic parameters  (mean, s tandard deviation, ampli tude and phase of harmonics 
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of the mean and standard deviation) are areally studied by drawing their isolines. 
Figure 11 gives the case of the areal variation of the overall monthly mean precipi- 
tation. It shows an increase in values from West to East, and a slight increase 
from South to North. A fit of the plane gi  = a + b X  i + c ~ . ,  with X i and Yi the 
latitude and longitude, through 77 point values of ~ gives then the fitted function 
of the overall mean monthly precipitation gi. Because flat areas predominate in 
landscape, the fit of a plane in Fig. 11 looks good. However, the isolines are less 
regular in case of mountains, and fits of functions are complex. 

Monthly precipitation in the above example appears to be composed only of the 
12-month harmonic (pure sine or cosine periodic mean) and an independent sto- 
chastic component, as the spectrum of all monthly values of a station demonstrates 
in Fig. 12. One-harmonic Fourier series functions are fitted to parameters, with 
their ampitudes and phases also regionalized by isolines and isolines fitted by func- 
tions of X i ,  Y i .  The resulting random processes then become independent stochas- 
tic components. Frequency distribution curves of these time independent com- 
ponents are often indistinguishable among themselves in a homogeneous precipita- 
tion region, such as the Great Plains. These components are spatially dependent. 
Figure 13 shows the relationship of the simple linear bivariate correlation coeffi- 
cient of pairs of station series to the distance between stations for the region of Fig. 
11. There is also a slight effect of the azimuth of station-connected straight lines 
on the correlation coefficient. A function r ~ f ( d )  is fitted in Fig. 13, with its 
confidence limits at the 95% probability level also drawn. They show that spatial 
dependence can be mathematically modeled. 

With Fourier functions for periodic parameters, regional functions for parame- 
ters of fitted Fourier functions, probability distribution functions for independent 
stochastic components (only one or several, depending on homogeneity of precipita- 
tion over the region), and the r = f ( d )  function (only with distance d, or with 
both distance and azimuth), the model may be used for simulation of spatial 
characteristics of the process. This model then enables: (1) generation of 
spatial/temporal samples at a grid of stations, namely at other positions than those 
of gauging stations; (2) selection of a desired density of stations (each station 
assumed to be at the center of a regular network area); (3) application of principal 
components into the m spatially independent stochastic components; (4) preserva- 
tion of spatial variation of parameters; (5) preservation of spatial dependence; and 
(6) preservation of basic periodic characteristics of the temporal process. 

10 Forecasting hydrologic variables 

A special area of stochastic modeling is the hydrologic forecast. The usual deter- 
ministic methods of forecast show that various errors in forecast variables are spa- 
tially and temporally dependent. Therefore, they still contain information for 
improving forecast. The use of conditional random variables and the Kalman 
filtering technique has provided tools to increase the forecast accuracy in many 
cases. (For details see Szi~ll6si-Nagy 1987). It seems that a combination of deter- 
ministic and stochastic methods of forecast will most often lead to smaller forecast 
errors than either a purely deterministic or a purely stochastic approach. 
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Figure 12. Spectral density graph of monthly precipitation series in Northern Great Plains of the 
United States (Alexandria Airport Station, latitude 45.867N and longitude 95.383W, elevation 1421 
feet) 
Figure 13. Correlation coefficient r of monthly precipitation n between the pairs of stations versus 
their distances, with relationship fitted by the model r = (1 + A D )  -n  with A = 0.016 and 
n = 0.534, for the pairs of station series in Northern Great Plains of the United States (position as 
in Fig. 11) 

11 Various aspects of stochastic modeling 

Most hydrologic random variables are non-normally distributed. The majori ty of 
techniques for investigation of stochastic processes are based on the assumption of 
normality.  Therefore,  hydrologic variables are often normalized by transformations 
in order to take advantage of these techniques. This approach makes the linear 
dependence of t ransformed normal variables nonlinear for the original variables. 
The question arises whether this nonlinearity is or is not a realistic, physically 
based condition. If  no transformation is made, what nonlinear models can be 
developed to treat  various types of asymmetr ical ly  distr ibuted stochastic com- 
ponents (Bernier 1970; Tong 1983)? 

Classical statist ical  techniques often standardize random variables. By doing so, 
the variables are studied for various other properties (skewness, kurtosis, shape, 
boundaries,  sequential dependence, etc.). However, in water resources the removed 
mean is a crucial parameter  because all or most effects of various water resource 
projects are either proportional to or in some complex way related to the mean. 
Similarly,  the removed s tandard deviatii3n is also very important,  since the needed 
storage capacity,  with all other factors being the same, is proportional to the stan- 
dard deviation of the series of storage input minus storage output�9 By standardiza- 
tion it is feasible to study effects of each major characteris t ic  of an original ran- 
dom process on water resources problems and solutions. 

For short-interval t ime series (say daily), the sample sizes are very large (for 40 
years of data  the size is 14,600 values). I t  is known in statistics that  very large 
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samples are as troublesome as are the small samples. It is quite difficult in such 
large samples for normalized singled-out independent (and ideally stationary) sto- 
chastic components of complex series of the TIPS type to pass tests of normality 
and independence. Therefore, it is easy to explain why professionals have been 
either avoiding, or studying in an approximate way, the short-interval large size 
hydrologic time series. 

The common stochastic models in hydrology are ARMA (autoregressive moving 
average), with variations such as ARIMA and others (Fernandez and Salas 1986; 
Salas et al. 1984). The physical background of AR and MA parts of ARMA 
models are relatively easy to explain. An infinite MA model can be transformed 
into a finite AR model and vice versa the finite MA model into an infinite AR 
model. So, a long memory MA model (very long tail of hydrograph of groundwa- 
ter or lake and swamp outflows) can be replaced by an AR model with a small 
number of terms, while the surface flow response (unit hydrograph) of a limited 
number of ordinates already represents an MA model of finite number of terms. 
This simplest physical explanation, however, requires either constant unit response 
hydrograph throughout the year if the ARMA parameters are constant, or periodic 
unit hydrographs for the periodic parameters of ARMA models (PARMA models). 
If  in the final analysis the changing unit hydrographs over the year come up to fol- 
low the periodic-stochastic processes, with the classical constant unit hydrograph 
being the average values of ordinates of these processes, the simple ARMA or 
ARIMA models would need some adjustments as further generalization beyond 
periodic ARMA and periodic ARIMA models. Furthermore, there are all transi- 
tions of tails between finite short tail and nearly infinite tail of response hydro- 
graphs. Therefore, the A R / M A  mixture is often based on the presence of these 
two extreme cases of response hydrographs, which may not be always a realistic 
assumption. 

The detailed study of continuous hydrologic space/time processes appears then 
often to be very complex. The problem is always how far one should probe into 
these complexities in stochastic modeling. Objectives of study, sensitivity analysis, 
size and accuracy of data, cost of modeling and testing, and other factors affect 
this decision. As a consequence one should clearly stay either with the utilitarian 
objectives of modeling or with the desire to probe and describe nature in detail by 
attacking its complexities. If theoretical papers for a hydrologic symposium are 
solicited, chances are very high that predominately utilitarian (applied) contribu- 
tions would be submitted. This is to be expected since applicability of results is 
often the leading objective of hydrologic research. 

Models in practice are tested in several ways: (1) data of only one or few sta- 
tions are used; (2) regional data of many stations are jointly analyzed; (3) represen- 
tative stations over large continental areas are used as the basic modeling material; 
and (4) global data of stations selected worldwide are collected and used in model- 
ing. The model development from small number of stations is useful for local 
applications. Claims for models to be general or universal becomes credible only if 
data of a large number of representative, regional or global stations are properly 
screened, eventually corrected for man-made non-homogeneities, and used. Com- 
puters and data banks facilitate such tasks at present. 
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12 Conclusions 

Deve lopmen t s  of  s tochast ic  model ing  in hydrology have been signif icant  for the last 
25 years.  Of t en  mode l ing  was not p receeded  by detai led s t ructura l  and physical  
analysis of processes.  Recen t  efforts  were  d i rec ted  at br idging the physical  (deter-  
minist ic)  proper t ies  with s tochast ic  model ing,  or to have as m u c h  physical  back- 
ground to es t imate  models  and their  pa ramete rs  as feasible. Complex  hydrologic  
s p a c e / t i m e  processes require  approximat ions  which can be jus t i f ied  by the utili- 
tar ian object ives  of  model ing.  They  m a y  not be accep tab le  f rom the point  of  view 
of the basic unders tanding  and descr ipt ion of nature.  Fu ture  progress will l ikely be 

th rough evolut ion of current  t rends in model ing  ra ther  than  through breakthroughs.  
This  progress may  depend in large measure  on cri t ical  evaluat ion of exist ing model-  
ing principles and techniques .  Resul ts  of reassessment  of some prevail ing,  classical,  
hydrologic  physical  concepts  may  fur ther  af fec t  s tochast ic  model ing  in hydrology 

and water  resources.  
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