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1 Introduction 

An Ito stochastic process X={Xt;t>O} with jump component has the form 

t t t 

Xt=Xo+Ia(Xs)ds +Ib(Xs)dWs+I Ic(Xs,u )M (du,ds ) (1) 
0 0 0u 

for t~ [0,T]. See Ito (1951). It consists of an initial value X0=x 0, which may be random, 

a slowly varying continuous component called the drift, a rapidly varying continuous ran- 
dom component called the diffusion, and a jump component representing shot noise or 
discontinuous noise. The second integral in (1) is an Ito stochastic integral with respect 
to the Wiener process W={Wt;O<t_<T } and the third is defined with respect to a Pois- 

sonian martingale measure M. The integral equation (1) is often written in differential 
form and is then calIed an Ito stochastic differential equation. When the jump component 
in (1) is absent the resulting process is a diffusion process, called an Ito diffusion. 

Stochastic differential equations, both with and without jumps, are being used to 
model a rapidly expanding variety of random dynamical processes. Of particular interest 
to engineers are applications to hydrology (eg Unny (1984); Unny and Karmeshu 
(1983)), structural engineering and seismology (eg Kozin (1977); Shinozuka and Sato 
(1967)), biological waste treatment (eg Harris (1975); Michail et al. (1987)), fatigue 
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cracking (eg Sobcyzk (1986)), turbulence (eg Bywater and Chang (1973); Haworth and 
Pope (1986); Yaglom (1980)), satellite dynamics (eg Balakrishnan (1985); Sagirow 
(1970)), helicopter stability (eg Pardoux and Pignol (1986)), telecommunication (Viterbi 
(1965)), filtering (eg Kallianpur (1980)), and control (eg Krylov (1980)). They are 
widely used in the basic sciences such as astronomy (eg Legland (1981)), chemistry and 
physics (eg Horsthemke and Lefevre (1984); Van Kampen (1981)), genetics (eg Kimura 
and Ohm (1971)) and population dynamics (eg Gard (1988)). They are also starting to be 
used in the social sciences, such as economics (eg Karatzas and Shreve (1988); Merton 
(1971)), and experimental psychology (eg Schoener et al. (1986)). In addition stochastic 
differential equations have been used in essentially nonstochastic problems, for example 
in stochastic annealing (eg Geman and Hwang (1986)) where diffusive noise of small 
intensity is added to the gradient drift of a function for which the global minimum is 
sought. 

Unfortunately explicit solutions of Ito stochastic differential equations are rare in prac- 
tical applications. There are however a number of papers which deal with numerical 
methods for these equations. Nevertheless there exists a wide gap between the well 
developed theory of stochastic differential equations and its application. The crucial task 
in bridging this gap is the development of efficient numerical methods, which obviously 
should be implementable on modem digital computers. In view of the need to simulate a 
large number of different sample paths in order to estimate various statistical features of 
the solutions, vector or super computers will play an rapidly increasing role here. 

In this paper we shall review time discretized numerical methods which are appropri- 
ate for the simulation of Ito processes or functionals of Ito processes on digitaI comput- 
ers. First we briefly look at Ito stochastic differential equations and discuss a variety of 
different approaches that have been proposed for their numerical solution. Then we con-. 
sider strong and weak convergence criteria for time discretized methods and introduce 
the stochastic Taylor formula. In the remainder of paper we present some basic strong 
and weak approximation methods for Ito stochastic differential equations, in particular 
truncated Taylor approximations and related Runge-Kutta methods. We do this firstly in 
some detail for Ito diffusions and then note the modifications needed to handle Ito 
processes with jumps. Finally we conclude with some remarks on how to choose and 
implement an appropriate numerical scheme. These and related matters will be discussed 
extensively in a forthcoming book Kloeden and Platen (1990). 

2 Ito stochastic differential equations 
We assume that the reader is familiar with the contents of the review article on Ito sto- 
chastic differential equations by Bodo et al. (1987), which appeared in this journal, or 
have a similar background knowledge. In addition we require the following notation. 
We denote by C[0,T] the class of functions f:[O,T]--~R d which are continuous and by 
D [0,T] those which are piecewise continuous, to be specific continuous from the right 
with finite limits from the left. Here d=1,2,3 .... corresponds to the dimension of the 
problem being discussed, and obviously C[0,T]cD [0,T] for the same dimension d. The 
triplet (~, A,P) denotes the underlying probability space and consists of a sample space 
D of possibilities, a collection A of subsets of s called events, and a probability measure 
P which assigns to each event A~A a number P(A)~ [0,1] called its probability. 

Technically A is a G-algebra of subsets and contains the empty set ~ (nonevent) and 
the sample space ~ (sure event). Moreover if A is an event, so is its complement 
A C=f~-A and P (A c)= 1-P (A). Events are those subsets of elementary events (or samples) 
that can be detected by their occurrence or nonoccurrence. Further we denote by 
A={At;t~ [0,T]} a family of sub-G-algebras of A which, in what follows, will be gen- 
erated by the Wiener process under consideration. Essentially A t consists of the events 
that can be detected, with respect to the Wiener process, by their occurrence or 
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nonoccurrence up to and including time t. We say that a stochastic process 
X={Xt;t~ [0,T]} is A-adapted if the random variable X t is measurable (ie detectable) with 

respect to the o-algebra of  events A t for each time instant t~ [0,T]. 

The Ito process X={Xt;t~ [0,T]} in (1) with sample paths in D[0,T] can be expressed 
equivalently in terms of the Ito stochastic differential equation: 

clXt=a (Xt)dt +b (Xt)dWt + S c(Xt.u )M ( du,dt ) (2) 
u 

for 0<_t_<T with the initial condition (possible random) 

X0=x0. (3) 

Here U=R r {0) for some integer r=1,2,3 .... and W={Wt;t~ [0,T]} is an m-dimensional 

standard A-adapted Wiener process with independent components {Wj)~I. In addition 

M ( du ,dt )=p ( du ,dt )-~( du )dt (4) 

is a Poisson martingale measure on U• which is defined as follows. For each Borel 
subset B of  U the process {p(B,[O,t]);t~ [0,T]} is a Poisson process with finite expecta- 
tion 

t 

E p (B,[O,t])=S~rc(du)ds<_K<oo (5) 
0B 

for all O<t<T, and is independent of the Wiener process W. Here ~(du)ds denotes the 
intensity measure which can be chosen in the standard form as 

rr( du )ds = duds/lu I r+l (6) 

In (2) the drift coefficient a(x)={ai(x)}~=l and the jump coefficient c(x,u)= {ci(x,u)}id=l 
are d-dimensional vectors and the diffusion coefficient b(x)  ={bJ(x)}}n-_l is a d• matrix 

with d-dimensional column vectors bJ(x) for j=l,2,...,m. Time dependent drift and dif- 
fusion coefficients can be included in this formulation by considering the first component 
of  Xt={X]}ia=l as the time component xt l=t  , which requires a l l  and c1-=0, bLJ=o for 

j=l,2,...,m. Note that in the absence of jumps, that is when ci~O for i=1,2 ..... d, the Ito 
process satisfying (2) and (3) is a diffusion process with sample paths in C [0,T]. 

An accessible textbook on this kind of  stochastic differential equation is Arnold 
(1972). In addition see Gard (1988), which has a chapter on numerical methods for these 
equations. For the general case with jumps the standard references are Gikhmann and 
Skorokhod (1972) and Ikeda and Watanabe (1981). These books present complete defini- 
tions and a detailed investigation of  the properties of  Ito processes both with and without 
jumps, including existence and uniqueness theorems. Such theorems hold for instance if 
the coefficient functions a, b and c are Lipschitz continuous and satisfy a linear growth 
bound for large x. A mathematical statement of these conditions can also be found in 
Bodo et al. (1987). 

3 Numerical approaches to stochastic differential equations 
To begin we shall briefly mention some different approaches that have been suggested 
for the numerical solution of  stochastic differential equations (SDEs). On the very gen- 
eral level there is a method due to Boyce (1978) by means of  which one can investigate, 
in principle, general random systems numerically by Monte Carlo simulations. For SDEs 
this method is somewhat inefficient because it does not use the special structure of these 
equations, in particular that of  the drift, diffusion and jump coefficients 
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Kushner (1977) (see also Kushner and Di Masi (1978)) proposed the discretization of 
both time and space variables, so the approximating processes are then discrete-time fin- 
ite state Markov chains. These can be handled on digital computers via their probability 
transition matrices. In comparison with the information encompassed succinctly in the 
drift, diffusion and jump coefficients of an SDE, the transition matrices contain consider- 
able superfluous information. Moreover all of this information must be processed when 
implementing numerical algorithms. Consequently this Markov chain approach seems to 
be applicable to low dimensional problems on bounded domains. Similar disadvantages, 
at least in higher dimensions, also arise when standard numerical methods are used to 
solve the parabolic integro-differential equations, such as the Fokker-Planck equation and 
its adjoint, related to functionals of the solution processes of SDEs. We shall not say any 
more about these methods here. 

Dashevski and Liptser (1966) and Fahrmeier (1976) used analog computers to obtain 
solutions of Ito SDEs without jumps. The use of such computers is however restricted to 
those SDEs for which it is technically possible to construct the corresponding electronic 
circuits. Consequently they cannot be used in many important situation. 

The most efficient and widely applicable approach to solving SDEs seems to be the 
simulation of sample paths of time discrete approximations on digital computers. This 
simulation approach is based on a finite discretization of the time interval [0,T] under 
consideration and generates step by step approximate values to the sample paths of the 
solution process at the discretization times. These simulated sample paths can then be 
analyzed by the usual statistical methods to determine how good an approximation is, 
and in which sense it is close to the exact solution. Here the state variables are not 
discretized as in Kushner's Markov chain approach and the structure of the SDE as pro- 
vided by the drift, diffusion and jump coefficients is fully used in a natural way. Simula- 
tion studies of, for example Pardoux and Talay (1985) and Liske and Platen (1987), show 
the efficiency of, in particular, higher order time discretization methods. An advantage 
of considerable practical importance with this approach is that computational costs such 
as CPU time and required memory increase only proportionally with the dimension of the' 
problem. These methods are particularly suited to super or vector array computers, 
because the parallel structure allows the simultaneous computation of independent sam- 
ple paths, so their use and development will be greatly stimulated by as these computers 
become more and more widespread. See Petersen (1987). 

4 Time discrete approximations 
Simulation studies and theoretical investigations by Clements and Anderson (1973), 
Clark and Cameron (1980), Fahrmeier (1976), Rumelin (1982), Wright (1974) and others 
show that not all heuristic time discrete approximations of an SDE (2.1) converge in a 
useful sense to the solution process as the maximum step size 8 tends to zero. In particu- 
lar these papers show that one cannot simply use some deterministic numerical method 
for ordinary differential equations, such as a higher-order Runge-Kutta method. Conse- 
quently a careful and systematic investigation of different methods is needed in order to 
choose a sufficiently efficient method for the task at hand. 

For simplicity we shall consider an equidistant time discretization (x)~ with 

0=1:0<'C1 <...<'Cn=T (7) 

of an interval [0,T] with step size 

?~==T/n. (8) 

We note that one can use more general time discretizations, which may even be random. 
See Platen (1981) and Mikulevicius and Platen (1988). For instance they may include 
jump times of the Poisson jump measurep, .a s we will assume in Section 10. In any case 
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it is not necessary to use an equidistant time discretization, but usually a maximum step 
size ~ must be specified. 

The simplest heuristic time discrete approximation is the stochastic generalization of 
the Euler approximation, which is sometimes call the Euler-Maruyama approximation. 
See Maruyama (1955). It has the form 

~i+l 

Yi+l=Yi+a(Yi)Ai+b(Yi)AWi+ ~ Ic(Yi,u)p(ds,du)-~c(Yi,u)x(du)Ai (9) 
% u  u 

for i=0,1 ..... n-1 with the initial value 

Y0=x0, (10) 

where 

Ai=T,i+l---~ i (11) 

and 
Aw~=w~,.-w~, (12) 

for i--0,1 ..... n-1. Essentially it is formed by fixing the integrands in (9) to their values at 
the beginning of each discretization time interval. Obviously the recursive scheme (9) 
only gives values at the discrefization times. If values are required at intermediate 
instants either piecewise constant values from the preceding discrefizafion point or some 
interpolation, especially linear, of the values at the two immediate enclosing discretiza- 
tion times could be used. 

The random variables AW i (12) are independent m-dimensional random vector 

AWi={AW]}~I with independent N(0,Ai)-normally distributed components, that is with 

means EAW]---O and variances E(AW])2=Ai for i=l,2,...,m and j=l ,2  ..... n-1. In simula- 
tions we can generate such random numbers from independent uniformly distributed ran- 
dom variables on [0,1]. The latter are usually provided by a pseudo-random number gen- 
erator on a digital computer. These are generally adequate for the simulation of stochas- 
tic differential equations. See Ermakov (1975), Morgan (1984) or Rubinstein (1981). 
We mention two methods here for transforming a pair (U1,U2) of independent random 

ivariables uniformly distributed on [0,1] into pair (N1,N2) of independent standard 
iN(0,1)-normally distributed random variables. The first is the Box-Mueller method 
which uses the transformations 

Nl=(-21ogU1)l12cos(2xU2), N2=(-21ogU1)ll2sin(2xU2). (13) 

The second is the Polar-Marsaglia method which avoids the time consuming computa- 
tion of trigonometric functions. Instead it uses only those pairs (U1,U2) for which 

W=(2 U r 1 )2+(2 U z-  1 )2_< 1 (14) 

holds, with 

NI=(2UI-1){(-21ogW)/W} 112, N2=(2U2-1){(-21ogW)/W} 1/2 (15) 

While it discards the fraction l -x/4  of pairs (U 1,U2), the Polar-Marsaglia method is often 
more efficient computationally than the Box-Mueller method when a large quantity of 
numbers is generated. Obviously, from a standard N(0,1)-normally distributed random 
variable N s we obtain an N(0,Ai)-normally distributed random variable AW j by the sim- 
ple transformation 
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AW i = NsA 1/2 (16) 

by which means we can simulate the components AW,/for j=l,2,...,m of the i-th incre- 

ment of the Wiener process. 
Let us now consider how to generate the Poisson jump measure p.  The process 

p=[p(U,[O,t]); t~ [0,T]} is a Poisson process with intensity ~(U)<,,o. Since a Poisson 
process has independent increments, the time intervals between successive jumps are 
exponentially distributed with expectation g--~(U) -1 and are independent of each other. 

We can obtain an exponentially distributed random variable B~t with mean ~t from a 

random variable U 1 uniformly distributed on [0,1] by the inverse transformation method, 
which gives 

Bl~=-glogU t (17) 

In this way we can generate a sequence of jump points {Cl,~ 2 . . . . .  ok,...} of  the Poisson 

process p.  It remains then to generate the random marks {ut,u 2 . . . . .  Uk,...} associated 
with these jumps. This is a sequence of independent identically distributed random vari- 
ables with distribution 

Fuk (B )=P (ukeB )=x(B )/x(U) (18) 

for all Borel subsets B of U. If  the set of marks U is discrete it is easy to generate a 
sequence of marks from random variables which are uniformly distributed on [0,1]. On 
the other hand, if the distribution function is continuous and invertible we can use the 
inverse transformation method and obtain an Fuk distributed random variable u* from a 

random variable U1, which is uniformly distributed on [0,1], by 

u*=F~ 1 (U1). (19) 

We combine the two methods when Fuk consists of both a continuous part and a 

discrete part. 
From the preceding hints it is easy to generate the increments of the Euler approxima- 

tion (9). In the diffusion term we use the expression (10) for the increments of the com- 
ponents of  the Wiener process and in the integral with respect to the Poisson jump meas- 
ure we use the above jump times ok and marks u k to obtain 

"~i+1 

f fc (ri, u)p (du,as Z c (ri,uk) 1 (20) 
% u k=l  

where 1A is the indicator function of the set A. The Euler approximation (9) with noise 

terms generated as described is then obviously a recursive algorithm for calculating 
approximate values of  the Ito process at the specified discretization points. 

Maruyama (1955) proved the mean-square convergence of the Euler approximation of  
the Ito process without jumps, this being one of the first papers on the approximation of 
Ito processes. The corresponding result for Ito processes with jumps can be found in 
Gikhmann and Skorokhod (1979). Results concerning the weak convergence, that is in 
distribution, of the Euler approximation are contained in Grigelonius and Mikulevicius 
(1981), Jacod and Shirayaev (1987), Platen and Rebolledo (1985) and in other papers. 

As in deterministic numerical analysis, the order of convergence plays an important 
role in the construction of efficient stochastic algorithms. In the stochastic case there are 
however several different useful types of convergences. The choice of a convergence cri- 
teflon depends on the character of  the problem that is to be solved by a time discrete 
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simulation method, in particular on whether approximations to the sample paths or to the 
distributions are required. We shall classify these as strong or weak convergence criteria, 
respectively, and shall consider each type in some detail. 

5 Strong convergence criterion 
In problems involving direct simulations, filtering or testing statistical estimates of Ito 
processes, amongst other things, it is important that the approximating trajectores, that is 
the sample paths, are close to those of the Ito process. Thus this implies that some strong 
convergence criterion should be used. From a mathematical viewpoint it is often advan- 
tageous to investigate the absolute error at the terminal instant t=T: 

A~=E IXr-rn I (21) 

Here, A~ can be estimated by the root mean square error via the Lyapunov inequality 

As=E ~T-Yn ]<E( ~(T-Yn 12) 1/2 (22) 

This absolute error is certainly a criterion for the closeness of the sample paths of the Ito 
process X and the approximation Y at time T. 

In what follows we shall say that an approximating process Y converges in the strong 
sense with order T~ (0,oo] if there exists a constant KE (0,oo) such that 

E I x r - rn  I<-x~ ~ (23) 

for any time discretization with maximum step size ~ (0,1]. In the deterministic case 
with vanishing diffusion and jump coefficients b=0, c-=0 this strong convergence cri- 
teflon reduces to the usual deterministic criterion used for the approximation of ordinary 
differential equations; see Butcher (1987) and Gear (1971). The order of a scheme is 
however sometimes less in the stochastic case than in the corresponding deterministic 
case, essentially because the increments AW/are of root mean square order ~1/2 and not 
5. In fact the Euler approximation for Ito stochastic differential equations has strong 
order y=  0.5 in contrast with order 1.0 for Euler approximations for ordinary differential 
equations. See Atalla (1986), Gikhmann and Skoroldaod (1979) and Maruyama (1955). 

Higher order time discrete strong approximations of Ito diffusion have been proposed 
and investigated by Chang (1985), Clark (1978), Clark and Cameron (1980), Glorennec 
(1977), Jannsen (1982, 1984), Milstein (1974), Newton (1986), Nikitin and Razevig 
(1978), Platen (1980), Rao et al. (1974), Shimizu and Kawachi (1984), Talay (1982, 
1983) and Wagner and Platen (1978). Strong approximations for Ito processes with 
jumps can be found in Dsagnidse and Tschitaschvili (1975), Platen (1982) and Wright 
(1980). In addition Runge-Kutta type approximations have been considered by Chang 
(1987), Clements and Anderson (1973), Kloeden and Pearson (1977), McShane (1974), 
Milstein (1974), Nikitin and Razevig (1978), Rumelin (1982) and Wright (1974). 

6 Weak convergence criterion 

In many practical situations it is not necessary to have a pathwise approximation of the 
Ito process. Often one may only be interested in the expectation of some function of the 
value of the Ito process at a given terminal time T, for instance the first two moments 
E X  T and E(XT) 2. Generally one may be interested in the expectation Eg(XT) for some 
function g. In the simulation of such a functional it is not necessary to approximate the 
exact path of the Ito process X. Rather, it is sufficient to approximate the probability dis- 
tribution of the random variable X T. Consequently we only require an approximation of 
the Ito process which is much weaker than the strong convergence criterion (23). 

We shall say that a time discrete approximation Y converges.in the weak sense with 
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order ~e (0,oo] if for any polynomial g there exists a constant K~ (0,oo) such that 

I v, g(Xr)--V, gO,,,)I<_Ks~ (24) 

for any time discretization with maximum step size 8~ (0,1]. Obviously this weak conver- 
gence criterion reduces to the usual convergence in the deterministic case with 
b=-0, c-=0, g (x)--=-x, just as it does for the strong convergence criterion. 

Under assumptions of sufficient smoothness of the drift and diffusion coefficients, it 
was shown by Milstein (1978), Platen (1984) and Talay (1984) that an Euler approxima- 
tion of an Ito diffusion has weak order of convergence [3=1.0. (Compare this with the 
strong order T = 0.5). For Holder continuous coefficients, that is Lipschitz like to a frac- 
tional power, the order of weak approximation is lower; see Mikulevicius and Platen 
(1986). For discontinuous coefficients refer to Jannsen (1982). Higher order weak 
approximations have been extensively investigated by Milstein (1986), Pardoux and 
Talay (1985), Platen (1984) and Talay (1984). In particular, weak approximations of the 
Runge-Kutta type have been proposed and studied by Artemev (1985), Averina and 
Artemev (1986), Greenside and Helfand (1981), Haworth and Pope (1986), Helfand 
(1979), Klauder and Petersen (1985), Milstein (1986), Platen (1984), Petersen (1987) and 
Talay (1984). Higher order weak approximations for Ito processes with jumps can be 
found in Mikulevicius and Platen (1988). In addition, Wagner (1987) has investigated 
unbiased weak approximations, that is with 17) =oo, to estimate functionals of Ito diffusions. 
Finally, Chang (1987) and Wagner (1988) have applied variance reduction techniques to 
weak approximations of Ito diffusions. 

7 The stochastic Taylor formula 
In the last two sections we grouped the literature on numerical methods for stochastic dif- 
ferential equations according to strong and weak convergence criteria. Another natural 
means of classification is to compare them with strong and weak Taylor approximations. 
The increments of such approximations are obtained by truncating the stochastic Taylor 
formula, which was derived in Wagner and Platen (1978) by the iterated application of 
the Ito formula. It was generalized and investigated in Azencott (1982), Platen (1982) 
and Platen and Wagner (1982). 

The stochastic Taylor formula allows a function of an Ito process, that is f(Xt), to be 

expanded about f(Xto ) in terms of multiple stochastic integrals weighted by coefficients 

,which are evaluated at Xto. These coefficients are formed from the drift, diffusion and 

'jump coefficients of the Ito process and their derivatives up to some specified order. The 
remainder term in the formula contains a finite number of multiple stochastic integrals of 
the next highest multiplicity, but with nonconstant integrands. For example, in the one 
dimensional case d=m=l a stochastic Taylor expansion for f (X t) about f(Xto) for 

t0~ [t0,T] and t~ [t0,T] may have the form 

t 

:(x,)--s(x,)+ 
to 

. t t 

+ ~ {f (Xt+c (Xto ,u ) ) - f  (Xto)-- c (Xto,U )f" (X,o)} ~ (du ) ~ds +b(Xto)f" (X ) ~dW s t  
U to to 
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t 

+ f f[f(X,o+C(X,o,U))-f(X,)JdM(du,ds) 
to+U 

ts~ 

-I-b (Xto) {b (Xto)f" (Xto)+b' (Xto) f" (X,o) } f ~ dWsdWs~R (25) 
toto 

Here the remainder term R consists of stochastic integrals of higher multiplicity than 
those appearing in the expansion part of the formula. The stochastic Taylor formula can 
thus be thought of as a generalization of both the Ito formula and the deterministic Taylor 
formula. 

By truncating stochastic Taylor expansions about successive discretization points, we 
can form time discrete Taylor approximations as functions of a Wiener process, which 
we may interpret as basic numerical schemes. In addition we can compare other 
schemes, such as those of the Runge-Kutta type, with the corresponding time discrete 
Taylor approximations. As we shall see, in order to get a higher order of strong or weak 
convergence in a numerical scheme we must use additional terms from the stochastic 
Taylor expansion. 

8 Strong approximations of Ito diffusions 
In the following two sections we shall consider approximations of Ito diffusions and then 
in Section 10 consider approximations for Ito processes with jump component. 

8.1 Strong Taylor approximations 
The simplest strong Taylor approximation of an Ito diffusion process is the Euler 
scheme. In the one dimensional case d=m=l it has form 

Yi+l=Yi+aAi+bAWi (26) 

for i=0,1,2 ..... n-1 with initial value 

Yo=xo . (27) 

Here Ai--Zi+l--~, i denotes the step size and AWi=Wxi+l-Wxl the N(0,Ai) normally distri- 

buted increment of the standard Wiener process on the partition subinterval Ix i, xi+l]. 
For example, the Euler scheme for the Ito stochastic differential equation 

dXt=-(sin2Xt+V4 sin4Xt)dt+~12cos2XtdWt (28) 

is 

Yi+l=Yi-(sin2Yi+V4 sin4Yi)Ai+~cos2YiAWi (29) 

We shall indicate the results of a comparative study of different numerical schemes for 
this particular stochastic differential equation in Section 11. 

In the general multidimensional case with d, m=1,2,3 ..... the drift coefficient a is a 
d-dimensional vector, the diffusion coefficient b is a dxrn-matrix and the increment 
AWi={AW/}~= 1 an m-dimensional random vector of independent N(0,Ai) normally distri- 

buted random variables AWj for j=l,2 ..... m. To simplify our notation we abbreviate 

f(Yi) to f for any function f (usually components of a and b, or their derivatives) in our 
following statements of numerical schemes. In addition we omit the standard initial con- 
dition (27). Then the k-th component of the multidimensional Euler scheme is given by 
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Y~l=Yik+ak Ai + ~bk'J AW/ (30) 
j= t  

for i=0,1 ..... n -1  where k=l,2,...,d. Note that the different components are coupled 
through the coefficients as in the corresponding stochastic differential equation. Under 
Lipschitz and linear growth conditions on a and b, the Euler scheme is shown in 
Gikhmann and Skorokhod (1972) to converge with strong order ~'=0.5. 

If  in the one dimensional case d=m=l  we include an additional term from the Taylor 
expansion, then we obtain the Milstein scheme : 
Yi+l=Yi+aA i+bAW i+l/2bb" {(AW i)2-Ai) (31) 

for i=0,1 ..... n - l ;  see Milstein (1974). This additional term is from the double Wiener 
integral in (25), which can be easily computed from the increment AW i since 

xu:~ 

I IdWs, dWs: V2 {(AWil2-A~ (32) 

The Milstein scheme (31) for the stochastic differential equation (28) is 

Yi~Tl=Yi-(sin2Yi+V4 sin4Yi)Ai+'q~cos2yiAWi-2cos3y i sinYi {(AWi)2-Ai} (33) 

It turns out that the Milstein scheme (31) has strong order of convergence "/=1.0 under the 
assumptions that E(X0)4<oo, that a and b are twice continuously differentiable, and that 

a,  a ' ,  b, b" and b" are uniformly Lipschitz. 
In the multidimensional case the k-th component of the Milstein scheme is 

m a -x.k,j2 '~i+1s2 
.k =y~+akA.+ bk ,JAW/+l /2  m " bl,J~ O0 ~" dWJXdwJ2  Y/+I , ' ~ ' )-" ~ -, l S S s~ s2 (34) 

j= l  jl,j2=ll=l OX xl xl 

for i=0,1 ..... n -1  and k=l,2,...,d. Again, the different components are coupled thought the 
coefficients here. For m_>2 this involves multiple Wiener integrals 

x~.ls2 

I(i,,jz)= I IdWJs:dWJ: (35) 
'171 "~i 

with jl~:J2, which cannot be expressed simply in terms of the increments AW/~ and AW/2 
of the corresponding components of the Wiener process, as in (32). At the end of this 
section we will suggest one possible way of approximating higher order multiple stochas- 
tic integrals like (35). 

Suppose that the diffusion coefficient b satisfies the commutativity condition 
d . �9 ~l.k,j2 d . . 5t.kJ~ 

t,j 1 v u  t,j2 tpo, ~b (x)--~xt (X)=~,b (x)~__; (x) (36) 
l=l l=l OX 

for all xeR d, k=l,2 ..... d and jl,j2=l,2,...,m. See Clark and Cameron (1980) and Suss- 
man (1978). Then the Milstein scheme (34) reduces to the form 

ykx=yik- l -ak  Ai-{- ~ b k'j A W /  

j= l  
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m d 1 0 b  k'h ' " rn d ~bk,J 
+'/2 ~, ~,b 4L----r-AWJs~AWIs~-V2 E E b l ' J - - A i  (37) 

jl,j2=ll=l OX' j=l/=l 0X' 

for i=0,1 ..... n-1 where k=l,2,...,d, which involves no multiple stochastic integrals of the 
form (35). The commutativity condition (36) is satisfied, for instance, when the diffusion 
coefficient is a constant or when each component of the Ito process is disturbed only by 
noise from another component of the Wiener process. 

Generally speaking we can obtain more accurate strong Taylor approximations by 
including further multiple stochastic integrals from the stochastic Taylor expansion. 
Such integrals contain additional information about the sample paths of the Wiener pro- 
cess. Their presence is a fundamental difference between the numerical analysis of sto- 
chastic differential equations and ordinary differential equations. In the one dimensional 
case d=m=l we obtain the following strong Taylor approximation of order 3t=1.5 

Yi+l=Yi+aAi+b AWi +V2bb" { (AWi)2-Ai}+ba'AZi+Vz {aa'+V2b2a"} Ai 2 

+{ab "+V2 b 2 b"} {AWiAi-AZi}+V2 b {bb"+(b') 2} {V2 (AWi)2-Ai}AWi (3 8) 

for i=0,1,...,n-1. 
double integral 

ti+ls2 

AZi= I IdWs, dS2 (39) 
xlxl 

It is normally distributed with mean EAZi=0, variance E (AZi)2=I/3(Ai) 3 and correlation 

E(AZiAWi)=�89 2. All other multiple stochastic integrals appearing in the truncated 
Taylor expansion used to derive (38) can be expressed in terms of A i, AW i and AZ i, thus 
resulting in (38). Under Lipschitz and linear growth conditions and sufficient smooth- 
ness on the coefficients a and b, the strong order of convergence y=l.5 for (38) has been 
established in Wagner and Platen (1978) and Platen (1981). We remark that there is no 
difficulty in generating the pair (AWi,AZi) of correlated normally distributed random 
variables using the transformation 

AWi-~i,1 All2, AZi=I/2(~i.I+T3 ~i,2)A 3/2 (40) 

where ~i,1 and ~i,2 are independent N(0,1) random variables. 
In order to express the multidimensional version of the strong order of 1.5 scheme (38) 

in a compact form we need some extra terminology. We introduce the operators: 

d d 
L~ at ~. +V2 ~" br,tbl,J 02 

- -  ~ x '  ~ ( 4 1 )  ~=1 r.I=1 3xr 3x t 

and 
�9 d 

LJ=X'b L) ~ (42) 
~x ~ 

for j= l ,2  ..... m, and write dW~ and bk'~ k for k=l,2 ..... d. In addition we denote 
multiple integrals up to multiplicity three by 

Here an additional random variable AZ i is required to represent the 
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~i+I 

I(/)= I dWJ, (43) 
x~ 

xms2 

I(jbj2) = I af dW JXd~V 1 $2 ' ( 4 4 )  

and 
"~i+as3s2 

Jl J2dwJ3 I(i~,h,A) = I IIdWs~dWs s3 (45) 

for j,jl,J2,J3,=O,1 ..... m. Then the k-th component of the multidimensional strong Taylor 
approximation of order 1.5 satisfies 

m k "  Y~+l=Yik+Y,b "YI(j)+ ~ LJlbk'J2I(jt,j2)+ ~ LJlLJ2bk'J3I(jl,j2,j3) (46) 
j--O jl,j~=O jl,jz,j3= l 

for i=0,1 ..... n-1 and k=l,2,...,m. See Platen (1981). 
In Wagner and Platen (1978) and Platen (1981) it is described how schemes of any 

desired order of convergence can be constructed from the corresponding strong Taylor 
approximations. The practical implementation of such schemes involves the generation 
of multiple stochastic integrals such a s  I(jbj2) and l(jljzj3), and of higher multiplicity, 

which is usually not easily done. If one is not willing to use such higher order multiple 
stochastic integrals, one could follow Clark (1978) and Newton (1986), who propose 
schemes which only use increments of the Wiener process. These numerical schemes ~ e  
similar to the above strong Taylor approximations with modified random variables, in 
addition they are optimal in a sense within the class of strong order T=0.5, or "W1.0 if the 
commutativity condition (36) holds, time discrete approximations. 

8.2 Strong Runge-Kutta approximations 
A disadvantage of the above Taylor approximations is that the derivatives of various ord- 
ers of the drift and diffusion coefficients must be evaluated at each step in addition to the 
drift and diffusion coefficients themselves. There are time discrete strong approximation 
schemes which avoid the use of derivatives. In analogy with ordinary differential equa- 
tions we shall call these Runge-Kutta approximations, but we remark that they cannot 
always be obtained as simple generalizations of the widely used deterministic Runge- 
Kutta schemes because of the difference between Ito and ordinary calculus. See for 
example Clements and Anderson (1973) and Wright (1974). 

In the one dimensional case with d=m=l a Runge-Kutta scheme of strong order T=I.O 
is given by 

Yi+l=Yi+aAi+b AWi+VzATllZ {b(Y i)-b }{ (AWi)2-Ai} (47) 

with Yi=Yi+bAy 2, for i=O,1,..,n-1. See Platen (1984). For the stochastic differential 

equation (29) this scheme is takes the form 

Yi+l=Yi-(sin2Yi+l/4 sin4Yi)Ai+x/2cos2yiAW i 

+ 1  (COS2(yi+ 2~iiCOS2r i).._cOs2Yi){(Aw i)2_Ai) ( 4 8 )  
~ Z/A i 
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The multidimensional version of the above first order strong Runge-Kutta scheme is 
component wise 

k m �9 . Yi+l =Y:+akAi + • bk'J AWJ+ ~ :l"k'j2[~r k ~l~k,j21A-1/21 (49) l t~ ~ i , j l f  -~" /~i  *(Jt,jz) 
j=l jl,jz=l 

with }'~A=Yi~+bk'J~Ai 1/2 for i--0,1 ..... n-1  where k=l,2,...,d. Here the I(jl,j9 are the multiple 

stochastic integrals defined by (44). 
Heuristically these Runge-Kutta schemes (47) and (49) can be obtained from the Mil- 

stein schemes (31) and (34) simply by replacing the derivatives there by the correspond- 
ing finite differences. From Clark and Cameron (1980) and Rumelin (1984) it follows 
with the restriction of  using only the increments AW~J of the Wiener process to approxi- 
mate the double integrals (44) that the Runge-Kutta scheme (49) has strong order of con- 
vergence y=0.5, or y : l  if the commutativity condition (36) holds. In Rumelin (1984) 
more general Rnnge-Kutta schemes can be found. However they do not give a higher 
order of strong convergence than (49) unless higher order multiple stochastic integrals 
are used, but that also applies to (49). 

A detailed discussion of multistep and implicit methods is given in Kloeden and Platen 
(1990). Also see Petersen (1987). 

Another type of  strong approximation was investigated in Gorostiza (1980) and New- 
ton (1986). In the one dimensional case d=l time is discretized in such a way that a ran- 
dom walk takes place on a given set of levels in the state space. By this it is meant that 
the approximating process remains on a fixed level for a random time and then switches 
with given intensity to the next level above or below. For other more theoretical studies 
on strong approximations of  Ito diffusions the reader is also referred to Doss (1977), 
Roemisch and Wakolbinger (1987), Sussman (1978) and Talay (1982). 

8.3 Approximation of  multiple stochastic integrals 
It seems to be numerically impossible to generate exact values of multiple stochastic 
integrals such as I(jl,j2 ) defined by (44) for jir with jl,j2=l,..,m. However for numerical 

purposes it often sufficies to have a good approximation of  these integrals. Such an 
approximation can be obtained from the series expansion of  the Wiener process. For 
example the j- th component of  a Wiener process can be written as the series 

�9 . - (2Ai) 1/2~ 1 �9 . rrts 
Wlx;+s-W~=sA:~l/2~~ 7~ r__~=l '~.I ~ r  san( W ) (50) 

for s e  [0,A/], j= l ,2  ..... rn and i=0,1 ..... n - l ,  where the ~Jr are independent standard nor- 
really distributed random variables. Following Liske et al. (1982) we then have 

xi+as2 O312A rl:Jl ~.J2 ~ J l  ~J2 
__ J1 J2 1 J1 J2 [(J,J2)'- ~ f . . . .  z, ~i ~ k%i,2k-l~i,O'--~i,Obi,2k-1) 

dWs, dW~z-V2Ai~ i ,o~ i , o+~  Z (2k_1) 2 

4Ai ~ (~Jl ~Jz ~jl ~J2 ) 
..F71r I b i,2k- l %i,21"-%i,21%i,2k- I (51) 

�9 = (2k-  1)2--(2l) 2 

If  we truncate this series by using only the first p= l ,2  .... normally distributed random 
variables, we obtain the following approximation I~.1,j9 of I(i,,j2 ) 
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�9 , �9 k%i,2k_l%i,O~.oi,O%i,2k_l! 
23/2A~ [(p~)/2] r~J, ~.ja ~ : j l  ~ j2  x 

l~t.Y9 =V2Ai~,b~[,2~ ~2 ~-, (2k_i)2 

J, j2 Jl j z  
4Ai [(p+l)J21[p/21 (~i ,2k- l~l ,21--~i ,21~i ,2k-1)  

where [q] is the integer part of q. When p=5, for example, the mean square error esti- 
mate E [l(j,.jz)-I~.l,jz ) I <0.01(Ai) 2 can be derived for such an approximation. In principle 

other multiple stochastic integrals can be approximated in the same way. 

9. Weak approximations of Ito diffusions 

9.1 Weak Taylor approximations 
When we axe interested only in weak approximations of an Ito process, that is a process 
with approximately the same probability distribution, we have many more degrees of 
freedom than with strong approximations. For example it suffices to use an initial value 
Yo=Xo with a convenient probability distribution which approximates that of X 0 in an 

appropriate way. In addition the random increments^AWi of the Wiener process can be 
replaced by other more convenient approximation AW/which have similar moment pro- 
perties to the AW i. In a weak approximation of order [~=1 we could, for instance, choose 
independent AW/for i=0,1 ..... n -1  and j=1,2 ..... m with 

IA for r=l or 3 

g (~)r  = [Zi(Ai ) r=2 (53) 
for r--4,5 .... 

where 

[Zr(Az) [<_KA~ (54) 

for r=4,5 .... and some constant K~ (0,~). This means we could use an easily generated 
telegraphic noise process instead of the normally distributed increments AW i, that is a 

two point process AW/taking values +_Ay 2 with equal probabilities: 

e(a~--+__a~/:)=v2 (55) 

The simplest useful weak Taylor approximation is again the Euler approximation intro- 
duced in Section 8.1, that is (26) for the one dimensional case and (27) for the multidi- 
mensional case. Then it follows from results in Talay (1984) that the weak Euler scheme 

m . ^ . 

r k l  =tik+al: Ai+ • b k'J AWl (56) 
j=l 

for i=0,1 ..... n -1  and k=l,2,...,d has weak order []=1.0. This holds if the coefficients a and 
b are four times continuously differentiable with these derivatives satisfying a growth 
condition. Compare this with the strong order of convergence y=0.5 of (30). ff the drift 
and diffusion coefficients are not so smooth or even if they are only Holder continuous, 
then from a result of Mikulevicius and Platen (1986) the scheme (56) is still weakly con- 
vergent but with a smaller order [3< 1. 

Using the truncated stochastic Taylor expansion we can also construct weak Taylor 
approximations of  higher order [~=2,3 .... In the one dimensional case 4=m=1 the weak 
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Taylor approximation of order 15=2 has, following Milstein (1978) and Talay (1984), the 
form 

Yi+ l=Yi+a Ai+O AWi+�89 bb'{ ( A l~i)2-A~ 

+ba'AZi+�89 {aa' + �89 + �89 (57) 

for i=0,1 ..... n-1. Here AW/ approximates AW i and Zi the multiple stochastic integral 
"~/+1$2 

(39), that is AZi= I IdWs~ds2 

As with the weak Euler scheme (56) we can use random variables AW i and AZ i which 
have approximately the same moment properties of AW i and AZ i. For example, we could 
choose 

AWi=AWi, ~i=l/2AiAWi (58) 

See Platen (1984) and Talay (1984). Alternately we could use a three point random vari- 
able T i with probability distribution 

e(Ti---~-'13)=l/6, P(T i = 0)=2/3 (59) 

and set 

AWi=A ll2T i, AZ, i=�89 (60) 

The multidimensional version of the second order weak Taylor approximation can be 
written compactly as 

Ykl=yik+ ~bk'Ji(i)+ ~ LJlbk'j2](jlj 9 (61) 
j--O Ji,j~-O 

for i=1,2 ..... n--1 and k=l,2 ..... d using the operators L j defined in (41)-(42)and the other 
notation introduced there. (See Platen (1982)). Here the random variables I (/) and I (Jl,h) 
are approximations of the corresponding multiple stochastic integrals I(/) and I(il,j2 ) 
defined by (43) and (44), respectively. We can generate them in the following way. For 
i=0,1 ..... n-1 and j=l,2,...,m we generate independent standard normally distributed ran- 
dom variable Zi, j. Alternately we could use the three point random variables with the 
distribution (59). In addition for i=0,1 ..... n-1 and r=l,2,...,j-1 with j=l,2,...,m we gen- 
erate independent telegraphic random variables Vi,j, r with 

P (Vi,j,r---'~-I )=�89 (62) 

and for r=j+l,...,m we define 

Vi,j,r=-Vi,,. j (63) 

In terms of these random variables we then form the following approximations of the 
multiple stochastic integrals for i--O,1;...;n-1 and jt,J2=l,2i.,,m: 

" i -A1/Zz  " = �89  z, i<o,~,)=icix,o)=�89 I(0)=Ai , (j~)- i i,j? I(0,0) 

] (jx,jx)=�89 i (j~,j2>=l/2Ai{Zi.j Zi,HI-Vi,j,,j2} for jlcJ2 (64) 

The second order weak convergence of the numerical scheme (61) was verified in Platen 
(1984) and Talay (1984) under the assumptions that E(X0)6<~*, that the coefficients a 
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and b are six times continuously differentiable with bounded derivatives, and that the 

function b k'A and LAb k'j2 for k=l,2 ..... d and jl,j2=O,1,...,m satisfy a linear growth bound. 

In order to derive the third order weak Taylor approximation we need to consider the 
third order multiple stochastic integrals 

I(jx,j2&~= S f fdWJ'dwJ2dwJ3 ~ J  s~ s2 s3 ( 6 5 )  

or some convenient approximation J (Jlj2,h) for jpj2,J3=0,1,...r (Recall that we denote 

dW~ Following Platen (1984) the third order weak Taylor approximation has com- 
ponent wise form 

k m .^ ri+l=r/k+Ebk'Jtq>+ E LJ'bk'hi~j,j~3+ ~ LJXLJ2bk'hi , (Jl,j2,J3) (66) 
j=O jl,j2=o jl,jz,j3--O 

A ^ 
for i=1,2 ..... n-1  and k=l,2 ..... d. As above the random variables I(j) and I(i~,j9 are con- 

venient approximations of the first and second order multiple stochastic integrals I(/) and 

I(j~,jz ). For instance in the case of a single component Wiener process, that is when m=l,  

we can use independent standard normally distributed random variables Ni, 1 and Ni, 2 for 
i=0,1 ..... n-1  and take 

~ ^ 1 3 
I(o)=Ai, I(o,o)=V2A 2, l(o,o,o)=-ffAi, 

i -A 1/2N ^ i(0 I)=V2A3/2{Ni l+~3Ni (t)- i i,1, IOA)=V2Ai[Ni2,1-1}, , , ,2}, (67) 

i(1,O)=V2A3/2{Ni,I-~3N1,2}, i =I - ;  _ 1 A5/6xr (0,0,1)-- (0,1,0) - l  (1,0,0)--X~i lvi,1, 

i ( 0 1  lo)=lAi2{Ni2.,_l}, ~ 1 3/2 2 . . . . . .  1)=I(10 t)=Io 6 ' I(1'1'1)='6 -Ai Ni'l{Ni'l-3} 

It was shown in Platen (1984) that the scheme (56) has third order weak convergence 
under the assumptions that the coefficients a and b are eight times continuously differen- 

tiable with bounded derivatives, and that the functions b k'jl, L Jib k'jz and LJXLJ2bk'J3 for 
k=l,2 ..... d and jt,j2,j3----O,1 ..... m satisfy a linear growth bound. 

Under corresponding assumptions it was shown in Mikulevicius and Platen (1988) and 
Platen (1984) that a Taylor approximation of a general weak order of convergence 
1~-1,2,3 .... Using the preceeding terminology we can write such a weak Taylor approxi- 
mation of order [~ as 

yik+ ~ m L j  ' L j , _ , b k , r i  Y~a = E "" (j,,j~ .... j,) (68) 
r= l jl,j2,j3---O 

for i=0,1 ..... n-1  and k=l,2,...,d. 

9.2 Weak Runge-Kutta approximations 
As with strong approximations it is often desirable practically to have weak approxima- 
tions of the Runge-Kutta type which avoid the use Of derivatives, particularly higher 
order derivatives, of the drift and diffusion coefficients. One of the earliest schemes of 
this kind is the second order weak Runge-Kutta approximation proposed by Milstein 
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(1986) for the one dimensional case d=m=l.  It has the form 

Yi+l=V2{a'bb'}Ai+l/2bAWi+�89189 (69) 

with 

Yi=Yi+aAi+bAWi, and YiY-=-Yi+aA_+_lbAwi 

for i--0,1 ..... n -1 .  Another second order weak Runge-Kutta scheme was presented in 
Talay (1984) and has 

Yi+ I=Yi+Y2 {a (Yi)-�89 b (Yi)b'(~ )} Ai+b {Ai-Bi} [1/2 Ai] 1/2 

+b (Yi)Bi (2Ai) 1/2+1/2A i{b (~)b'(Y i)-bb'}Bi2-Y2 bb'AiB iA i (70) 

with 

Yi=Yi+l/2 {a-�89 bb'}Ai+bAi[�89 1/2+1/4 bb'Ai2Ai 

for i--0,1 ..... n-1 .  Here the A i and B i are independent random variables, which are for 
example either standard normally distributed or as in (59). A multidimensional version 
of (70) can be found in Pardoux and Talay (1985). 

Both of the above schemes still use the derivative b" of  the diffusion coefficient b, but 
always in the product combination 1/2bb. This is the correction term relating the Ito and 
Stratonovich interpretations of  a stochastic differential equation and occurs here because, 
roughly speaking, a deterministic Runge-Kutta scheme applied to a stochastic differential 
equation converges to the Stratonovich version of the equation. It is however possible to 
also avoid using the derivative b'. A second order weak Runge-Kutta approximation with 
this feature is, in the scalar case d=m=l ,  given by 

Yi+ l=Yi + 1/2 {a (~'i)+a} Ai+ 1/4 {b (Y+)+b (Yi-)+2b } AWl 

+1/4 {b (Y+)-b (YT)} {(AI~/)2-AdA/-1/2 (71) 

with 

~ri=Yi+aAi+bAVr i, and Yi~'=Yi+aAi+_bA 1/2 

for i=0,1 ..... n -1  where the AI~/ can be chosen as in (58) and (60). See Platen (1984). 
The multidimensional generalization of this scheme is 

Y~l=Yik+�89 {ak(Yi)+ak}Ai 

+Y, ~ [{bk'J (Yi+j)+bk'J (Yi-dl+2bk'J}+ ~ {bk'J (~" +j)+b(IrT, j)--2be'J}li (i) 
j=l r=l,r:~j 

+�89 ~ {bk'J(Yi+,r)-bk'J(~'7,rl}i(r,j)] (72) 
j=l r=l,r~j 

with 

~r--~.k_yk +hk,JA 1/2 ~k m . ̂  Yi~=Y&a g Aim b kj Ay 2, and _ i,j-, i,j__ -i , Yi =yk-t-ak Ai+ ]~ b tc'~I (/) 
j=l 

for i=0,1 ..... n -1  and k=l,2,...,d, where the random variables I can be chosen as in (64). 
The second order weak convergence of the Runge-Kutta schemes has been established in 
Platen (1984) and Talay (1984) under the same assumptions as for second order weak 
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Taylor approximations. 
In Greenside and Helfand (1984), Haworth and Pope (1986), Helfand (1979), Klauder 

and Petersen (1985) and Petersen (1987), amongst others, Runge-Kutta schemes are con- 
sidered with convergence only in first two moments. This is a weaker convergence cri- 
terion than the weak convergence criterion (24) considered above. Obviously a scheme 
which converges with weak order [5=0,t,2 .... will converge not only in the first two 
moments but also in all higher moments when they exist. 

Another way of constructing weak approximations for diffusion processes has been 
proposed by Wagner (1987). It is based on the Monte Carlo simulation of functional 
integrals and uses unbiased, variance reduced approximations to estimate functionals of 
an Ito diffusion process. 

10 Strong and weak approximations of lto processes with jump components 
10.1 Jump adapted time discretizations 
The Poisson process p={p(U,[O,t]);t_>O} generates with f'mite intensity x(U) a sequence 
of jump times c={~1 o 2 . . . . .  ok,... }. These jump times are realizations of a random pro- 
cess, so if we include those which are not greater than T in a time discretization of the 
interval [0,T] we obtain a random time discretization. To be compatible with the Wiener 
process these random discretization times should be A-adapted. To be specific, we con- 
sider a time discretization (x)~ = {Xo,Xl,...} of [0,T] with maximum step size 8>0 to be a 

sequence of A-adapted stopping times {'r with O='cO<Xl<...<Xir=T where iT<~ 
with probability one, which includes all of the jump times from (~) not greater than T. 
Here we are using the integer 

it=max{i:zi<__t for i=0,1,2,...} (73) 

for all t~ [0,T]. In addition for all i=0,1 ..... iT-1 we assume that the stopping time Xi+l is 

Ax.-measurable if it is not a jump time of the Poisson process. More precisely, for each 

i=0,1,2 .... we define the sub-o-algebra of A 

Af=o(1 [p(U,[%O)~))vA~ 

and assume that ~i+1 is A~-measurable. Finally we suppose that 

max{zi---~i_l ;i=l,2 ..... iT}-<5 (74) 

For instance, the time discretization ('c)~ could be the superposition of all jump times o fp  

not greater than T with a deterministic time discretization [0,T] with maximum step size 
5. Another example which permits more control over the step size can be constructed as 
follows. At the initial discretization time x0=0 we first compute an A~0-measurable next 

possible discretization time ~1 with ~l--X0<_.& If there is no jump between "c o and ~1 we 

take ~1 to be the next discretization instant 'cl- Otherwise we choose the first jump time 

of the Poisson process greater than "c o to be 'cl. Then we start the procedure again at x I in 
the same manner, and so on until we reach time T. 

10.2 Jump adapted time discrete approximations 
For a given deterministic time discretation similar results to those for strong approxima- 
tions of  Ito diffusions based on stochastic Taylor expansions are proved in Platen (1982) 
for Ito processes with jump components. This paper uses multiple stochastic integrals 
with respect to the Poisson jump measure p,  which are generally difficult to calculate 
numerically. 
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For strong time discrete approximations based on jump adapted time discretizations it 
is also shown in Platen (1984) that any desired order of strong approximation can be 
obtained under appropriate assumptions on the coefficients. Moreover these approxima- 
tions are generally much easier to calculate. We recall that for such a jump adapted time 
discretization the jumps of  p only occur at discretization points. Consequently between 
any two discretization points x i and xi+ t we need only approximate the increment in the 

diffusion until time zi+ 1 by Y~I-Yi- Then at time xi+t we approximate the jump which 

may occur there by an expression Yi+l-Y~+l, which will be zero if no jump occurs at 1:i+ l. 
To be more precise, in the one dimensional case d=m=l  we have the following recursion 
for the jump adapted Euler approximation 

Yi+l=Yi+{a-Sc(Yi,u)~(du)}Ai+bAWi, (75) 
u 

Yi+l=Yi+l+ ~ c(Y~+l ,ur) 1/~,~,§ 
r=l 

for i=0,1 ..... n -1  where as in (20) t~ r denotes the r-th jump and u r the r-th jump mark of 
the Poisson process p={p(U,[O,t]);t>O}. 

We note that we split the Euler approximation (9) into two parts, with the first approxi- 
mating a diffusion with modified drift 

a* (x)=a (x)-Sc (x,u)n(du) (76) 
U 

formed from the original drift a and the jump compensation term, and with diffusion 
coefficient b. The second part then approximates only the jumps according to the Pois- 
son process p. For Lipschitz and growth conditions on the coefficients a, b, c it follows 
as in the pure diffusion case that this jump adapted Euler process converges with y =  0.5. 

In order to formulate general jump adapted approximations we denote by Fka,t,,i the 

increment in the k-th component of a time discrete approximation on the interval ['~i,'~i+1] 
of a diffusion process with drift a and diffusion coefficient b, starting at x at time x i. 
Then we have: 

y -k  ~ k k k y - k + ~  -k i+l=Yi+Fa',b,i(Yi) Yi+l = i+1 ~c(Yi+l,Ur)lr (77) 
r 

for i=0,1 ..... n-1  and k=l,2 ..... d. If the Fka.,b,i correspond to one of the time discrete dif- 

fusion approximations of  strong order "/> 0 which were discussed in Section 8, then it has 
been shown in Platen (1984) that the jump adapted approximation (77) also converges 
with strong order ~/under analogous assumptions on the coefficients a, b, c as for the dif- 
fusion approximations of the same order. For weak approximations a similar result was 

k proved in Mikulevicius and Platen (1988). To be specific, if the Fa.b, i correspond to one 

of  the time discrete diffusion approximations of weak order ~>0 as described in Section 
9, then the jump adapted process (77) also converges with weak order 13 under analogous 
assumptions on the coefficients a, b, c. 

11 Choosing and implementing a numerical scheme 

The choice and implementation of an appropriate numerical method for solving a particu- 
lar stochastic differential equation is much more complicated than for ordinary differen- 
tial equation. This is due not only to the greater complexity of the schemes and general 
lack of  software, but also to the additional demands of the stochastic situation. In the 
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space available we cannot do more than briefly mention some of the important issues that 
must be taken into account. 

Probably the simplest choice is between a strong and a weak scheme, this being deter- 
mined by the purpose of the task at hand. Then comes the choice of the order of the 
scheme to be used and of the actual scheme itself. In making this choice the user must 
bear in mind the discretization error, the ease of determining the coefficients of the 
scheme and of programming it, the computational efficiency of the scheme, the computa- 
tional round-off errors, the sampling errors from the use of pseudo-random number gen- 
erators and, of course, the computing resources available. When the scheme has been 
programmed and is ready for implementation, the user must then choose an appropriate 
time step, time discretization and number of different sample paths to be calculated. 
Usually calculations are performed with different time steps and sample numbers, and the 
outputs tested numerically and statistically to obtain some indication of their stability, 
convergence and validity. Unfortunately there are few definitive answers to these ques- 
tions, so some amount of experimentation is required. 

Much of the literature cited in the preceding sections concentrates on the theoretical 
aspects of the numerical methods, such as proving a particular order of convergence, 
although some also give results of test runs on simple examples for the method under dis- 
cussion. The paper of Liske and Platen (1987) gives a detailed computational and sta- 
tistical comparison of the mean and mean square errors for the Euler (26), Milstein (31), 
second order derivative free Runge-Kutta (71) and third order Taylor (57) schemes for 
the nonlinear stochastic differential equation (29), which is explicitly solvable. Specifi- 
cally, for each scheme 100 blocks of 100 sample paths were calculated for each of three 
different time steps, and Student t-tests carded out on the results. In addition a com- 
parison of CPU times is given, being roughly in the ratio 1:1.4:1.6:4.5 for the four 
schemes and doubling as the time step is halved. The derivative free Runge-Kutta 
scheme seemed preferable in these experiments in the sense of a balance between pro- 
gramming effort, computational efficiency and statistical reliability, see also Greiner et 
al. (1987). 

An extensive investigation and statistical analysis of sample estimates for the Euler 
method can be found in Schenkl (1988). Klauder and Petersen (1985) and Petersen 
(1987) compare test runs on explicitly solvable equations for a specific second order 
weak Runge-Kutta scheme. In particular, Klauder and Petersen (1985) consider different 
numbers of sample paths and discuss their simultaneous calculation on vector array com- 
puters. They also compare the discretization error due to the time step size with the sam- 
piing errors and round-off errors. They found that the latter tended to dominate when the 
time step was too small, particularly in a third order version of their scheme which con- 
tained 65 seperate terms! Haworth and Pope (1987) comment that the error in generating 
pseudo-random numbers is generally negligible compared to the above mentioned errors, 
and that the CPU time required to generate such numbers is typically about 2% of the 
total for fairly large, complicated problems, although in very simple test examples it can 
be as high as 50%. 

Those readers who have worked out the various numerical schemes surveyed in this 
article for the simple nonlinear stochastic differential equation (29) will have discovered 
that the coefficients corresponding to higher order terms soon become algebraically com- 
plicated. Leblond and Talay (1986) have developed an expert system package called 
PRESTO which used the algebraic manipulator REDUCE to determine the appropriate 
scheme coefficients for given drift and diffusion coefficients for a number of different 
numerical schemes and to generate a Fortran program. 

We conclude this survey with the remark that the theoretical understanding and the 
practical application of numerical methods for stochastic differential equations are still in 
their infancy. The existing literature is in many ways ad hoc and contains many gaps. 
The future theoretical development and applicability of the subject will be greatly 
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stimulated by feedback f rom those who  apply such methods to real problems. 
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