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1. Introduction 

Much research in the last few years has centered upon an idea called negation 
as failure. The basic idea of negation as failure is that, if an atomic "fact"  
(atomic sentence) is true, it must be demonstrably true - so if we cannot 
demonstrate  that the atomic sentence is true, we should infer it to be false. 

Negation as failure clearly is not logically sound. In classical logic, to infer a 
sentence to be false, we must demonstrate  that the atomic sentence is false - 
not merely that it is undemonstrable.  Nevertheless it has natural  appeal. Most 
noticeably, as pointed out by McCarthy, Reiter, and others, it is invoked in a 
great many "common-sense"  human inferences. 

Example 1.1 (Reiter) 
If a patient goes to a physician with a problem that could be caused by either 

pneumonia  or a sprained ankle, the physician assumes - in the absence of 
evidence to the contrary - that the patient has only one of these problems. 

Example 1.2 
If company records do not show that Mr. Jones was ever a vice president, 

then management  infers that he never was a vice president. 

A major research topic concerning negation as failure is the at tempt to find 
the "correct"  semantics. We shall use the term semantics to mean what is 
usually called declarative semantics. The declarative semantics of a logic pro- 
gram tells what is to inferred - but does not prescribe how. Our point of view 
here is that goal of the study of semantics for negation as failure is to find a 
reasonable and fairly elegant mathematical  formalism that captures as much as 
possible of ordinary human negation-as-failure type reasoning. There  is of course 
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a danger: human negation-as-failure type reasoning often appears ad hoc, so it 
seems entirely possible that there is no entirely satisfactory way to capture it 
formally. But we believe the goal of finding one approach that captures much, or 
most, of "common sense reasoning" needs to be pursued. 

Our starting point is not a search through ordinary human usage. Rather,  we 
start by comparing various semantics people have already given for negation as 
failure. These semantics, we feel, all have clear "common sense" justification. 
We shall identify certain features of these semantics as goals of a semantics for 
a common sense negation as failure. 

We start from the following vague statement of negations as failure: 

If it becomes obvious that an atomic sentence R(tl ,  t 2 , . . . , t n )  is not 
provable (in whatever logical system is chosen as a paradigm), infer that the 
sentence is false. 

Of course, there are then two natural questions: 

(1) When is it obvious that an atomic sentence is not provable? 
(2) What logical system is chosen as the paradigm? 

From our perspective here, these two questions distinguish many of the standard 
semantics for negation as failure. And we shall show that, by choosing a 
standard cautious interpretation of obvious and by creating an appropriate 
paradigm for the logic, we can meet  all but one of the goals we suggest. 

2. Logic programming background 

The whole endeavor is simplified in the restricted realm of logic program- 
ming. 

Example 2.1 
The following is a logic program: 

{even(0), even ( succ (  ucc ( x ) ) ) even (x )  A even (  ucc ( x ) ) } 

DEFINITION 2.1 
A literal is an atomic formula R(t  1, t2 , . . . ,  t n) (a positive literal) or a negated 

atomic formula --1 R( t 1, t2,  . . . , t n) (a negative literal). 
A logic program is a finite, or countably infinite, set of rules, (implicitly 

universally quantified) formulas of the form 

~ ~'--/~1A ~2 A . . .  A/~n, 

where a is a positive literal and the /3,'s are all literals - positive or negative. 
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The literal a is called the head of the rule; each /3, is a subgoal, and the 
c o n j u n c t i o n  131 A 132 A . . .  A 13n is called the body. The ~ symbol is some sort of 
implication. 

Later  on it will be convenient to treat a rule p ~ with no body as being 
implicitly p ~ true. 

At tent ion is traditionally limited to Herbrand models: 

DEFINITION 2.2 
An Herbrand  model  is a model  whose universe is the Herbrand universe of 

the program: the set of variable-free terms of the language. (Distinct terms are 
unequal  elements.) 

Example 2.2 
For the program {even(O), even( succ( succ( x ) ) ) ~ even(x) A -1 even( succ( x ) )} 

the Herbrand  universe is the set of terms {0, succ(O), succ(succ(O)), 
succ(succ(succ(O))), . . .  } - the natural  model  of the integers with the successor 
function. 

Using the Herbrand  universe blurs the distinction between the language and 
the model. This is a convenience in definitions. 

DEFINITION 2.3 

The ground instantiation of a logic program is formed by substituting ele- 
ments of the Herbrand universe in for variables of the logic program in all 
possible ways. 

Example 2.3 
Consider again {even(O), even( succ( suec( x ) ) ) ~ even(x) A -1 even( succ( x ) )}. 

Its ground instantiation is: 

{even(O), 

even(succ(succ(O))) ~ even(O) A ~ even(succ(O)), 

even (succ (succ (succ (0)))) ~ even (succ (0)) A --1 even (succ (succ (0))), 

even(succ(succ(succ(succ(O)))) 

*-- even( succ(succ(O))) A ~ even(succ(succ(succ(O))) ), 

...,} 

OBSERVATION 2.1 (WELL KNOWN) 

An Herbrand  model  is a model  of a logic program if and only if it is a model  
of the ground instantiation of the logic program. 
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Since the ground instantiation contains no variables at all, each atomic 
sentence R(ta, . . .  , t~) of the instantiation may be t reated as a proposition letter 
PR~tl . . . .  tk)" Hence,  over its Herbrand  universe, each logic program is equivalent 
to a propositional logic program. (Of course, a finite logic program in proposi- 
tional logic usually has an infinite ground instantiation.) Hence  from now on we 
may make all our definitions in terms of infinite programs of  propositional logic. 
The terms positive literal and negative literal will be used for these proposition 
letters and their negations. 

DEFINITION 2.4 
A partial interpretation is a set of  proposition letters and negated proposition 

letters. A partial interpretat ion I is consistent, or 3-valued, if for no proposition 
letter a are a and -7 a both in I. A partial interpretat ion I is 2-valued if for 
each proposition letter a, ei ther a or -7 a is in I, but not both. A model of  a 
program is a 2-valued interpretat ion which is a model  in the ordinary sense of 
classical logic. 

Think of a partial interpretat ion I as a set inferences made.  In only one 
circumstance in this paper  will inconsistent partial interpretations arise: when a 
logic programming semantics "considers" a logic program incoherent  and infers 
all proposition letters, both positive and negative. 

DEFINITION 2.5 
A logic programming semantics is a function S which assigns, to each logic 

program P, a partial interpretat ion S(P). S(P) is the set of  literals which the 
semantics "tells us to infer" from P. 

3. A semantics  survey 

We begin with a survey of some of the logic programming semantics. We do 
this, in part, because of our motivation: to try to find a formalism describing as 
much as possible of the way negation as failure has been applied. 2 It is part  of 
this goal to accept, at least in part, and to try to reconcile, several of  the major 
semantics for logic programming. But in addition, our suggested semantics is 
constructed identically to other  semantics, except that it changes the logical 
paradigm, and many of the properties are analogous. 

3.1. SEMANTICS BASED UPON CLASSICAL LOGIC 

The most obvious semantics is that of classical logic: infer all proposition 
letters true in all classical models of the (ground instantiation of the) program. 

2 Of course, we present the various semantics from a point of view appropriate to this paper. 
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Steeped in classical logic as we are, we accept these inferences as valid. But 
these inferences totally miss negation as failure. 

OBSERVATION 3.1 (WELL KNOWN) 
Consider any logic program P. Since every rule has a positive head, P is 

satisfied if all proposition letters are true. Hence  the set of classical conse- 
quences of P may contain no negative literals. 

The original declarative semantics for logic programs is the Van E m d e n -  
Kowalski semantics [17] for Horn  clause programs. There,  a positive literal is 
inferred if an only if it is true in all (2-valued) models of the program; otherwise, 
its negation is inferred. This interpretation is itself a model  of the program. 
Moreover,  a proposition letter is in this interpretation if and only if it can be 
inferred from the program using only modus ponens as a deduction rule. 3 The 
Van Emden-Kowalsk i  semantics captures both classical consequence and nega- 
tion as failure in the limited context of Horn  clause programs. But attempts to 
extend its notions to other  logic programs have produced varied generalizations. 

3.1.1. Minimal model semantics and the G C W H  

DEFINITION 3.1 
For (2-valued) models ~ ' ,  J F  of a program P, say ~ / c  ,/K if every proposition 

letter true in ~ / i s  also true in 
A (2-valued) model  ~ / o f  P is minimal if it is minimal in the c ordering. 

Example 3.1 
Let P be {hasPneumonial(MrJones)~ -7 hasSprainedAnkle(MrJones)}, which 

has the form {a ~ -~b}. Then  P has three models: {a, b}, {a, --7 b}, {-7 a, b}. The 
last two are minimal, the first is not. 

THEOREM 3.2 (WELL KNOWN) 
Every logic program has a minimal model. Given any model  J F  for a logic 

program Q, there is a minimal model ~ / o f  Q where  ~'c_ JK. 

DEFINITION 3.2 
The minimal model semantics for logic program P, Min(P), is the set of all 

literals true in all minimal models of P. 

3 Actually, we are using a variant of modus ponens: from a ~ - / ~ 1 / ~  . . .  /~ fin and/31,...,/3~, infer a. 
Thus we are really making inferences using just modus ponens and the A -introduction rule. We 
shall continue to refer to this variant as modus ponens. 
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Example 3.2 
Let Q be 

{ hasPneumonia ( MrJones ) ~ --1 hasSprainedAnkle ( MrJones ) 

willMakeMeRich ( X ) ~ hasPneumonia ( X ) A hasSprainedAnkle ( X ) } 

Its g round  instantiat ion has the form {a ~ --1 b, c ~ a A b}. That  has two mini- 
mal models:  {a, -7 b, -7 c}, { ~ a, b, --1 c} so Min(Q) = { -1 c}, i.e., { --1 wiUMa- 
keMeRich( MrJones )}. 

OBSERVATION 3.3 
For  p a proposi t ion letter  appear ing in a p rogram P,  

(1) p ~ Min(P) if and only if p is provable f rom P in classical logic. 
(2) --1 p ~ Min(P) if and only if, for no set { -~ q l , . . . ,  ~ q~} of negative literals 

consistent  with P, is p provable f rom P U { -1 q l , . . . ,  --1 q~}. 

DEFINITION 3.3 
The  General ized Closed World Hypothesis  (GCWH) is the inference rule that  if 
an atomic sentence is false in all minimal  models,  it should be inferred to be 
false. 

The  G C W H  was first formula ted  by Minker.  

3.2. SEMANTICS BASED UPON A MORE CONSTRUCTIVE INTERPRETATION OF 

Later  semantics have rejected the classical logic interpretat ions as too weak. 
They adopt  a more  constructive-logic type of paradigm,  approximately: 

The  only way to infer an atomic sentence is to deduce  it f rom known facts 
by modus ponens. 

Alternatively, the rules with any given atomic sentence in their  head  may be 
thought  of as a definition of that  atomic sentence.  

Example 3.3 
Let  P be {a *-- --1 b}. Then  b cannot  be inferred by modus ponens alone, so 

these semantics infer --1 b. T h e n  by modus ponens, they infer a. 

Note  that  this point  of view explicitly rejects proof  by contradiction.  This can 
also be thought  of as a re in terpre ta t ion  of ~ ,  rejecting the classical notion.  
Fitt ing [5] used this to develop his semantics,  discussed briefly below. 
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3.2.1. Stratified semantics 

Example 3.4 
Let program P contain the atomic formulas 

married(A, B), married(C, D), parent(A, C), parent(B, C) 

plus the rules 

married(X, Y ) ~  married(Y, X),  

relative(X, Y) ~ parent(X, Y), 

relative(X, Y ) ~  relative(Y, X)  

relative(X, Y) ~ relative(X, Z) A relative(Z, Y), 

inLaw(X, Y ) ~  married(X, Z)/x relative(Z, Y) A -7 relative(X, Y), 

inLaw( X, Y) ~ inLaw(g, X)  

The stratified semantics chooses here among minimal models. It divides the 
program into two pieces called strata, P2, the last two lines, and P1, all the rest. 
It exploits properties of the program: (1) Each relation is defined (appears as 
the head of a rule) in only one of the pieces. (2) The relation, inLaw, defined in 
P2 does not appear at all in P~. (3) Any relation defined R defined in any 
stratum P, is used only positively in the bodies of rules in P~, though relations 
defined in P1 may appear both positively and negatively in the bodies of rules in 
P2. 

In the stratified semantics the two strata are treated separately. The minimal 
model 11 is constructed for the first part, as in the Van Emden-Kowalski 
semantics. So --1 relative(A, D) ~ 11. Then a minimal model I 2 is chosen for the 
entire program where 11 c_I 2. Since -1 relative(A, D) ~ 11, -~ relative(A, D) e 12 
also. Hence the stratified semantics prefers a minimal interpretation containing 
-~relative(A, D), inLaw(A, D) to one containing relative(A, D), 

inLaw( A, D ). 
A program is stratified if it can be broken into a finite set of strata obeying 

the positive and negative occurrence properties above. The stratified semantics 
assigns truth values stratum by stratum as described. It was developed indepen- 
dently in [1,3,18]. Przymusinski [13] considered the extension, called local 
stratification, where the ground instantiation (as a propositional logic program) 
is stratified (in a possibly infinite but well-ordered set of strata). The failing of 
the stratified semantics is that many interesting programs (an example will be 
mentioned below) are not stratified, nor even locally stratified. 

We isolate a property of the stratified semantics below. This property seems 
to be a consequence of both of the justifications we presented for the construc- 
tive semantics. 
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DEFINITION 3.4 

A stratified pair of programs is a pair of programs P, Q where for each 
relation R, if R occurs in the head of a rule in Q, it does not appear at all in P. 

DEFINITION 3.5 

A logic programming semantics S obeys the Weak Principle of  Stratification if, 
for every stratified pair P, Q of logic programs, if a relation R appears in P at 
all, then an atomic sentence R(t~, t 2 , . . . , t  n) ~ S(PU Q) if and only if 
R(t 1, t 2 , . . .  , t n) ~ S(P). 

So the weak principle of stratification asserts that, if P, Q is a stratified pair 
of programs, P u Q is a conservative extension of P. 

From a programming point of view, one way to think of the weak principle of 
stratification is to consider a stratified pair P, Q of logic programs as two 
program modules. Think of each module as defining the relations which appear 
in the heads of its clauses. Thus module P defines certain relations, and Q 
defines other relations using the relations defined in P. If a semantics for logic 
programming obeys the weak principle of stratification, then these modules 
operate more or less independently: in particular, module Q will not alter the 
definitions made by P. 

OBSERVATION 3.4 

The minimal model semantics does not obey the weak principle of stratifica- 
tion. 

Proof 
Consider the programs P = {a <--- b}, and Q = (c <--- -~ a}. P has one minimal 

model: {--1 a, -7 b}. So the minimal model semantics will infer both those 
formulas from P. On the other hand, P u Q  has two minimal models: 
{ -~ a, -7 b, c} and {a, -7 b, -1 c}, so the minimal model semantics for P u Q can 
infer only { -~ b}. [] 

3.2.2. Program completions: 2-ualued and 3-ualued 
Clark proposed treating the rules explicitly as definitions. Hence an atomic 

formula R(t 1 . . . .  , t,,) is true if and only if it is implied by one of the rules. 

DEFINITION 3.6 

For a propositional program P, for each proposition letter p occurring in P, 
the completion of P contains the formula 

p <--> V{q lA .. .  A qk :P  <---ql A . . .  A qk is a rule of P}. 

The completion contains no other formulas. 
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(Note that, in general, the disjunction V above may well be a disjunction over 
an infinite set of formulas. The disjunction of 0 formulas is defined to be the 
constant false.) 

Example 3.5 
The completion of {a ~ --1 b, b ~- c, b ~ -~ c, d} is 

{ c o f a l s e ,  b o c V  ~ c , a ~ - T b ,  d o t r u e }  

which has one 2-valued model, { -7 a, b, -~ c, d}. 

DEFINITION 3.7 
The 2-valued program completion semantics PC2(P) of a program P is the set 

of all literals true in all 2-valued models of the program completion. 

Example 3.6 
The logic program P = {p ~ -7 p} in classical logic is equivalent to {p}, but its 

completion, {p ~ --1 p}, is inconsistent. So PC2(P) = {p, -1 p}. 

Fitting and Kunen [5,9] suggested a 3-valued interpretation, where  the third 
truth value is "undef ined"  (denoted •  corresponding to neither a proposition 
letter nor its negation being in the partial interpretation. 

Given a consistent partial interpretation, they use Lukasiewicz's truth tables 
to define the notion of a partial interpretat ion being a 3-valued model  of the 
completion of a program. A conjunction is true if all the conjuncts are true, false 
if one conjunct is false, and undefined otherwise, disjunctions are dual. And  

T = F, -1 F = T, and -1 2 = _1_. Lukasiewicz's truth table for ~ (the opera- 
tor he called =-) is: 

,-) b: 

a: r 
F 
_k 

T F • 

T F F 
F T F 
F F T 

The propositional constants true and false, of course, evaluate to T and F. 

DEFINITION 3.8 
The semantics PC3(P) is the set of all literals true in all 3-valued partial 

models of the completion of P. 

Example 3. 7 
The completion of the logic program Q = { p ~ --7 p, a, b ~ -~ c} is 

{p ~ --7 p ,  a ~ true,  ,b ~ ~ c,  c ~ false},  

which is inconsistent, so PC2(Q) -- {p, --1 p, a, -7 a, b, -1 b, c, -7 c}. But PC3(Q) 
={a ,  b, -~c). 
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The semantics PC3, like all three-valued semantics discussed in this paper,  
has an inductive construction. For  a program P, define a knowledge extension 
operator  Ke  as follows: For I a set of  literals, 
(1) p is in K r ( I )  if there is a rule p *-/31 A . . .  A/3~ in P where/31 A . . .  A/3 k is 
true in I; 
(2) -7 p is in Kp( I )  if for every rule p ~131 A . . .  A/3 k in P with head p ,  

131 A . . .  A/3~ is false in I. Now define by transfinite induction 

1< 7 = U v<7I~ 

I7 = Kp(I<n) .  

PC3(P) is the least fixed point of the operator  K r,  i.e., the first 17 where 

I n = I <  n. 

THEOREM 3.5 [5] 
For any logic program P, PC3(P) is itself a (consistent) 3-valued model  of P. 

P r o o f  ( ske tch)  
It is straightforward to show that if a partial interpretat ion I is consistent, so 

is Kp(I ) .  It then can be shown by transfinite induction, on the stages of the 
construction above, that the least fixed point is consistent. Finally, it is straight- 
forward to show that a 3-valued interpretat ion is a fixed point of Kp if and only 
if it is a 3-valued model  of P. [] 

(Analogous results will hold for the other  3-valued semantics discussed in this 
paper.) 

OBSERVATION 3.6 
The 3-valued program completion semantics obeys the weak principle of 

stratification; the 2-valued does not. 

P r o o f  
The inductive construction of the 3-valued version makes the weak principle 

obvious. 
We construct a counterexample for the 2-valued version from an example of 

Van Gelder  [20]: P1 = {a ~ --7 b, b ~ -1 a}; P2 = {P ~ ~ P, P ~ a}. The comple- 
tion of P1 is {a o -7 b, b ~ --7 a} - a or b but not both - and it gives no way to 
choose between them. So, if the semantics satisfied the weak principle of 
stratification, it would infer nei ther  a nor ~ a when applied to P1 U P2' 

The rule p ,--- --, p is classically equivalent to p ,  so it forces p to be true in all 
2-valued models, but its completion is p o - 7  p, which is inconsistent. The 
completion of the two rules in P2 is p ~ -1 p v a, which amounts to a way to 
force a to be true without using a in the head of a clause. So a is inferable from 
the completion of P 1 0  P2" [] 
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The program completion approach handles many unstratified programs nicely. 
One example is the well known Yale Shootout example. Game trees provide 
another example: Consider the program 

{winningPos( X )  ~- move(X,  Y )  A -7 winningPos(Y)} 

describing a game where the player making the last legal move loses. To this is 
added a set of rules describing the positions of the game and the legal moves 
from position to position. 

Kolaitis [8] showed that no such program is locally statifiable. But if the 
digraph of positions and moves between positions is finite and acyclic, it is easily 
shown that PC a correctly identifies winning and nonwinning positions. 

3.2.3. 2-valued versus 3-valued intuitions 
There are significant intuitive differences between 2-valued and 3-valued 

semantics. The comments we make here, though made of the program comple- 
tion semantics, apply to all the 2-valued and 3-valued pairs in this paper. 

One approach to negation as failure comes from epistemic logic: the theory is 
describing, not what is true, but what is known to an intelligent observer. The 
knowledge extension operator K v described above corresponds to the inference 
process of the observer. An observer's knowledge tends to be partial, justifying 
the 3-valued approach. It can be argued that Van Gelder's example, which was 
the source of observation 3.6 and helped motivate the principle of stratification, 
illustrates a paradoxical inference in the 2-valued program completion seman- 
tics. One way to think of this is that epistemic logic, geared toward knowledge 
and belief, is naturally 3-valued, if not 4-valued, and an attempt to force it into a 
2-valued system creates paradoxical results. The 3-valued approach allows 
inferring that information which seems clearly to follow according to whatever 
logical paradigm is used, and stopping there. 

On the other hand, think of a logic program as representing causality. Then a 
program like { p ,--- --1 p, a ,-- -1 b} seems not just strange, but incoherent - and 
contradictory. The 2-valued program completion semantics essentially proscribes 
the program. Unfortunately, it is possible to get around proscribed constructs. 
The seemingly "anomalous", or "paradoxical", examples produced to violate the 
weak principle of stratification start with these proscribed programs and modify 
them so that they are consistent but have consequences violating the principle. 

Also recall our original statement of negation as failure: 

If it becomes obvious that an atomic s e n t e n c e  R ( t l ,  t 2 . . . .  , t n) is not 
provable (in whatever logical system is chosen as a paradigm), infer that the 
sentence is false. 

Here the rule in P C  3 for putting --1 p into KP(I)  can be thought of as coming 
from a very conservative interpretation of the word obvious. A positive literal p 
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is inferred only when it follows by modus ponens from other literals already 
inferred. A negative literal --1 p is inferred only when all possible ways to derive 
p have been rejected - have had their hypotheses inferred false. The semantics 
P C  2 c a n  thus be thought of as more radical, since it permits other inferences, as 
in observation 3.6. 

3.2.4. The stable and well-founded semantics 
The stable and well-founded explicitly enforce another paradigm, analogous 

to observation 3.3: 

If an atomic sentence is not asserted directly (as in p ~ true), the only way 
to derive it is to prove it, using program rules and modus ponens alone, 
from the negated atomic sentences already established and the atomic 
sentences which are asserted directly. 

The following definitions of the stable and well-founded semantics are not the 
original definitions. For the stable semantics, the equivalence of the definition 
here to the original definition is easy to show using the Gelfond-Lifschitz 
transformation of a logic program [7]. The definition here of the well-founded 
semantics is a small modification of a definition worked out in a discussion with 
Allen van Gelder, and is inspired by [2,14,15,19]. 

Example 3.8 
Let P be the program 

{ a ~ b , b * - - a ,  c u d ,  d ~ c , a ~  ~c}.  

The program completion is 

{a o b  V ~c ,  b o a ,  c o d ,  d o c } .  

But there is no way to derive c from negative literals. On the other hand, a can 
be derived from -7 c, and b can be derived from a, which can be derived from 
"'1 C. 

DEFINITION 3.9 
For P a logic program, a transitive rule of P is a rule oz * 81 A . . .  A ~k where 

a can be derived from 81 A . . .  /~ ~k by 0 or more (but a finite number  of) 
applications of modus ponens and 0 or more of rules of P. 

As before, in the special case where a transitive rule has empty body, we treat 
its body as being the propositional constant true. 

For a propositional program P, for each proposition letter p occurring in P, 
the stable completion of P contains the formula 

p ~-+ V { --7 q l  /~ " ' "  /~ -1 q k "  P * -~ q l  A . . .  /~ -~ q k  is a transitive rule of P}. 

The stable completion contains no other formulas. 
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CONVENTION 
If P has a transitive rule such as p g-- a A b, it will also have a transitive rule 

p ~ a A b A y for any literal y: the derivation of p just does not happen to use 
y. So a stable completion would be of the form p ~ (a A b) V (a A b A y) V . . . .  
When we write the stable completion, we shall include only disjuncts, such as 
a A b, which have minimal sets of conjuncts. 

Example 3.9 
The stable completion of 

{a*--b, b*--a,  c*--d ,  d*--c,  a *-- ~ c ,  e, e*--a A b ,  f *- -~e} 

is 

{a ~ ~ c ,  b e  ~ c ,  c ~ false, d ~ false, e ~ true V -7c, f o  -~e}. 

DEFINITION 3.10 
A stable model of a program P is a model of  the stable completion. If there is 

a unique stable model  of this "complet ion",  the stable semantics infers that. 
We shall define here the stable semantics ST(P) of a program P to be the set 

of literals true in all models of the stable completion. (So if there is no stable 
model, the stable semantics infers inconsistent information.) 

Hence  the stable semantics for the example above infers {a, b, ~ c, -1 d, e, 

DEFINITION 3.11 
The well-founded semantics WF(P) of a logic program P is the set of all 

literals true in all 3-valued models of the stable completion of P (where, again, 
Lukasiewicz's truth table is used for ~ ) .  

In the example above, it makes the same inferences that the stable semantics 
does. But in general it makes fewer inferences. 

Like the 3-valued program completion semantics, the well-founded semantics 
has an inductive definition with a knowledge-extension operator.  And just as 
with Fitting's work, this can be used to prove that: 

THEOREM 3.7 (VAN GELDER-ROSS-SCHLIPF) 
For any logic program P, WF(P) is itself a (consistent) 3-vaued model  of P. 

The stable semantics is due to Gelfond and Lifschitz [6,7]. The well-founded 
semantics is due to Van Ge lde r -Ross -Sch l ip f  [20]. Przymusinski first noticed 
that they were just 2-valued and 3-valued versions of the same semantics, though 
our explanation with the stable completion is quite different from his. 
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OBSERVATION 3.8 
The well-founded semantics obeys the weak principle of stratification. The 

stable semantics does not. 

Proof 
The proof is the same as for observation 3.6. [] 

A major strength of the well-founded semantics is that, of all the semantics 
discussed in this paper, it is the strongest semantics which can be constructed in 
polynomial time (as a function of the size of a finite propositional program), 
assuming ~ - 7  = #K~.  (That it is polynomial time is proved in [20]; that the 
stable semantics is co-~4/~-complete is proved in [12].) When fixed, finite, first 
order logic programs are used to deduce information from finite databases, 
these results translate to: answering queries based upon the well-founded 
semantics is polynomial time in the size of the database; answering queries 
based upon the stable semantics is co-#K~-complete. 

4. Goals for a "common sense" semantics 

As we stated earlier, our aim here is to attempt to understand what "common 
sense" negation as failure reasoning is and to see to what extent that can be 
formalized. We take the point of view that all the semantics discussed above 
have a certain "common sense" justification, and that the aim of a negation as 
failure semantics is to reconcile, as far as is possible in a reasonable formalism, 
all the underlying motives. We suggest the following as goals of a "common 
sense" semantics: 

(1) Pure declarativeness: If program P1 is formed from P by rearranging the rules 
in P, by rearranging the subgoals (hypotheses) within a rule of P, or by 
performing some alphabetic variation such as substituting one name for 
another throughout the program, then the semantics should infer the same 
sentences from the two (up to the alphabetic variation). This goal rejects 
some of the procedural features of PROLOG. 

(2) The motivation for these goals is that semantics should extend classical logic, 
not replace it. 
(a) Non-contradiction: The semantics can be applied to any program; no 

program is rejected as being meaningless. Furthermore, the set of 
sentences inferred by the program, together with the program itself, 
should be consistent in classical logic (with the classical interpretation of 
~ ) .  

(b) Classical completeness: If an atomic sentence a holds in all models of P 
(in classical logic), then the semantics should infer a from P. 
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(c) Factoring into cases: If from a program the semantics can infer a 
sentence p assuming a and also infer p assuming -7 a, it can infer p. 
Similarly, if it can infer p assuming each of the 2 n truth assignment to 
aa, a2,... , an, then it can infer p. 

(3) The motivation for these goals is that the minimal model semantics makes 
correct conclusions, but it does not make enough. 
(a) Minimality: If I is the set of inferences made from program P, then 

there should be a minimal model ~" of P where each formula in I is 
true in ~ ' .  

(b) GCWH: If an atomic sentence R(tl, t 2 , . . .  , tn) is false in all minimal 
models of a program P, then -7 R(tl, t 2 , . . .  , tn) is inferable. 

(4) The motivation for these goals is that certain semantics, though not strong 
enough in general, seem always to make reasonable inferences. 
(a) Extending Van Emden-Kowalski: The semantics should agree with the 

Van Emden-Kowalski  semantics on Horn clause programs. 
(b) Extending program completion: The semantics should extend the 3-val- 

ued program completion semantics. 
The justification for this goal is that the 3-valued program completion 
semantics, for example in its handling of winning games and of the Yale 
Shootout example, seems to capture a very significant notion of negation 
as failure. 

(5) Principle of stratification: The semantics should obey the weak principle of 
stratification. 

We have argued that all the goals above are in some sense "common-sense" 
goals for logic programming. Accordingly, it would, from a "common-sense" 
point of view, be desirable to achieve them all. 

Table 1 
Showing how previous semantics meet  these goals a 

Goal: Minimal Strati- 2-valued 3-valued Stable Well- 
model  fled completion completion founded 

Pure declarativeness Yes Yes Yes Yes Yes Yes 
Non-contradiction Yes No No Yes No Yes 
Classical completeness Yes * Yes No Yes No 
Factoring into cases Yes * * No * No 
Minimality Yes * * Yes * Yes 
G C W H  Yes * No No * No 
Extend V. Emden-Kowal .  Yes Yes No No Yes Yes 
Extend program compl. No * Yes Yes Yes Yes 
Princ. stratification No * No Yes No Yes 

a * true if the semantics is defined on the program and gives non-contradictory results. 
�9 the desired literal a is inferred, but -7 a may be also. 
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We justify these goals as satisfying some sort of "common sense" criteria. We 
make no at tempt here to ask whether  it makes good deep philosophical or 
linguistic sense to try to achieve all these goals at once. Our question here is 
merely whether  there is any reasonable formalism that achieves these goals. 

It is easy to construct an ad hoc semantics that satisfies all these goals. We do 
not know whether  any non-ad hoc semantics satisfies them all. In the remainder 
of the paper  we show that it is possible to satisfy all except the GCWH goal. 

5. A logical paradigm permitting argument by cases 

Recall our first intuitive characterization of negation as failure: 

If it becomes obvious that an atomic sentence R(t  1, t 2 , . . . , t  n) is not 
provable (in whatever logical system is chosen as a paradigm), infer that the 
sentence is false. 

Our approach to generalizing previous semantics is, not to change the construc- 
tion, but again to change the paradigm logic used for deriving positive literals. 

Consider the "weaknesses" of the well-founded semantics. First, it does not 
make all inferences classical logic would. Second, it does not make all the 
inferences GCWH does. And third, it does not allow argument by factoring into 
cases. Now if we repeat  the inductive construction of the well-founded seman- 
tics but replace derivation by modus ponens only with full classical logic, we get 
inference under  GCWH (by observation 3.3), and we no longer meet  some of 
the goals met  by the well-founded semantics. So it is natural to at tempt to find a 
logical paradigm for negation as failure that is stronger than argument by modus 
ponens alone but weaker than full classical logic. Is it possible to do this in such 
a way as to meet  most of the "common sense" goals proposed above? It turns 
out it is at least possible to do so and meet  all the goals except GCWH. The 
extension to the modus ponens-only paradigm is just strong enough explicitly to 
allow arguments by cases. 

Example 5.1 
It is tempting to try to infer and store information about possible cases. This 

turns out to be quite risky. For example, consider the program P 

{a <--- ~ b ,  b*-- ~ c ,  c ~  -~a, s*--a Ab ,  s<---b Ac ,  s*--c Aa}. 

First note that s holds in all (classical) models of P. From the first three rules it 
is tempting to infer, as in classical logic, a V b, b v c, and c v a. Now recall the 
intuition of the well-founded semantics: that positive literals can only be derived 
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f r o m  k n o w n  nega t ive  literals.  T h e  t rans i t ive  ru les  wi th  h e a d  s and  with  nega t ive  

subgoa l s  a re  (d i scard ing  u n n e c e s s a r y  subgoals )  

s ~ - n b A  -nc, s ~  ~ c A  ~ a , s ~ - n a A  --lb. 
But  the  in fe rences  of  a V b, etc., above  con t r ad ic t  the  bod i e s  of  all those  rules.  

H e n c e  an  obvious  gene ra l i za t i on  of  the  w e l l - f o u n d e d  seman t i c s  wou ld  infer  --1 s, 
v io la t ing  the  goal  o f  classical  consis tency.  

D E F I N I T I O N  5.1 

A derived rule of  P is a rule  

a = / 3 1 A  . . .  A/3 n, 

where ,  for  s o m e  p r o p o s i t i o n  le t te rs  d 1 . . . .  , d~ and  for  each  of  the  2;' ways to 
choose  e a c h  3i = d, o r  -7 di, 

a g - / 31A . . .  A/3 n A ~  1 A . . .  A 6  k 

is a t rans i t ive  rule  of  P (with a poss ibly  n o n - m i n i m a l  set  o f  subgoals) .  

Example 5.2 
(1) L e t  P = {p ~ -1 p}. T h e n  p * --1 p (in 1 app l i ca t ion  o f  modus ponens), and  

p * p (in 0 app l i ca t ions  of  modus ponens, so p ~ is a de r ived  ru le  of  P. 

(2) L e t  P = { a  ~ ~ b ,  b ~ -7 a,  c ~ a ,  c ~-b}.  T h e n  c ~ a  (in one  s tep) ,  and  
c ~ -7 a (in two steps),  so c ~ is a der ived  ru le  of  P. 

T H E O R E M  5.1 

(Completeness theorem for literals) L e t  P be  a logic p r o g r a m  and  let  a be  

p r o p o s i t i o n  le t t e r  occur r ing  in P. T h e n  a holds  in all m o d e l s  of  P (i.e., a is a 

classical  c o n s e q u e n c e  of  P) if and  only if a ~ is a de r ived  rule  of  P. 

/'roof 
I t  is easy  to show tha t  if  a ~ is a de r ived  rule  of  P t h e n  a holds  in all m o d e l s  

o f  P, so p r o v e  the  converse .  A s s u m e  tha t  a ~ is no t  a de r ived  ru le  o f  P, and  
cons t ruc t  a m o d e l  o f  P w h e r e  a is false. 

E n u m e r a t e  the  p r o p o s i t i o n  le t ters  o f  P: a0, a l ,  a 2 , . . .  , wi th  a = a 0. F o r  each  

na tu r a l  n u m b e r  i, we shall  set  a i to be  e i the r  a, or  -7 a, below.  T h e  f inal  
i n t e r p r e t a t i o n  will be  I = {a0, a a , . . .  , a n , . . .  }. 

Set  a o = --1 a 0. N o t e  tha t  a o ~ a o is not a der ived  ru le  o f  P: if it were ,  s ince :V 
a 0 ~ a 0 is a trivial t rans i t ive  rule  of  P, a 0 ~ wou ld  be  a de r ived  ru le  of  P. 

T o  de f ine  ai+l: By induct ive  hypothes is ,  a o ~ a 0 A a I A . . .  a ,  is no t  a de r ived  

rule  of  P. N o w  if b o t h  a o = a o A a I A . . .  a i A ai+ 1 and  a o = a o m a 1 A . . .  a ,  A 
a,+ 1 w e r e  de r ived  rules  of  P, t h e n  a 0 = a o A a I A . . .  a ,  wou ld  be  a de r ived  

rule  also. H e n c e  at  leas t  one  of  the  l a t t e r  is not.  Set  

a ,+ 1 if a 0 ~ o/0 A 0/1 A . . .  a i A ai+ 1 i s  a der ived  rule  of  P ,  
Olt+ 1 

a;+ a o the rwise .  

By cons t ruc t ion ,  t he r e  is no  der ived  ru le  a o ~ a 1 A . . .  A a n of  P. 
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Now show that if there is a derived rule 

a t r oL 1 A . . .  A OLn, 

of P then a i = a i. For suppose not. Since the construction picked oL i 

a O ~ O L  o A O l  1 A . . . o l  t A a i +  1 

(1) 
= --7 a i ,  

(2) 
is a derived rule of P. Composing the derived rules 1 and 2 gives a derived rule 

a 0 ~ a 0 A Ol I A . . .  O~k, (3) 

where  k is the maximum of i and n. 
Since I satisfies all the derived rules of P, and hence all the rules of P, I is a 

model  of  P. [] 

C O R O L L A R Y  5.2 

(Ex tended  completeness for  literals) For any logic program P, any set I of  
positive literals, and any proposition letter a, a holds in all models of P U I (i.e., 
a is a classical consequence of P u I )  if and only if, for some b l , . . . ,  b n ~ I, 
a ~ b 1 A . . .  A b n is a derived rule of P. 

Observe, however, that the corollary fails if I is allowed to contain negative 
literals. For  example, for P = {b *-- -1 a} and I = { --1 b}, a holds in all (classical) 
models of P. But since there  is no rule with head a, every derived rule with head 
a must contain a in its body. 

5.1. T H E  S T A B L E - B Y - C A S E  S E M A N T I C S  

We now have another  logical paradigm: a positive literal can be proved only 
by applying modus ponens to derived rules a program and negative literals 
already established. 

D E F I N I T I O N  5.2 

For a propositional program P, for each proposition letter p occurring in P, 
the stable-by-case completion of P contains the formula 

p ~ V {--1 ql A . . .  A --1 qk : P ~ --1 ql A . . .  A --1 q~ is a derived rule of P}. 

The stable-by-case completion contains no other  formulas. 

D E F I N I T I O N  5.3 

A 2-valued model  r a logic program P is stable-by-case if it is a model  of 
the stable-by-case completion of P. 

The stable-by-case semantics STbc(P) of a program P is the set of  all literals 
true in all stable-by-case models of P. 

The stable-by-case semantics eliminates some of the "paradoxes"  of the 
stable semantics. 
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Example 5.3 
Let  P be Van  Gelder ' s  p rogram {a <- --1 b, b ~ ~ a, p ~ -7 p,  p ~ a}. The  

stable-by-case comple t ion  is 4 

{p ~ t r u e  V a ,  a ~  -~ b, b ~ - 7  a}. 

The  first fo rmula  is enough  to derive p,  and the  "pa radox ica l "  behavior  of  the  
example  is lost. Both  {a, -1 b, p} and { --1 a, b, p} are stable-by-case. 

But  the stable-by-case semantics  still has some of  what  we have been  
consider ing "paradoxical" behavior:  

Example 5.4 
Le t  Q = (a ,-- -7 b, b <--- --1 c, c <--- -7 a). The  stable-by-case comple t ion  is {a <--> 
b, b <-> -7 c, c <-> -7 a}, w h i c h  is i n c o n s i s t e n t .  So STbc(Q)  = 

{a, -ha,  b, -Tb, c, ~c} .  

Example 5.5 
Let  R = {a <-- -7 b, b <--- ~ c, c <--- -~ a, s <- a A b, s <--- c A a}. The  stable-by- 

case comple t ion  is inconsistent .  So STbc(R) = {a, --1 a, b, --1 b, c, -7 c, s, --1 s}. 

THEOREM 5.3 
Le t  P be a logic program.  

(1) If  I is 2-valued, I is a model  of  P if and only if I satisfies all the derived 
rules of  P. 

(2) Every stable mode l  of  P is a stable-by-case mode l  of  P. 
(3) STb~(P) __ ST(P). 

OBSERVATION 5.4 

The  stable-by-case semantics  does not  satisfy the weak  principle of  stratifica- 
tion. 

Proof 
Let  P = { p , - - ~ q , q ~ - - ~ p ) .  Let  Q = { a ~ - p A ~ b , b ~ p A ~ c , c ~ p A  
a}. T h e n  the pair  P, Q is stratified. P has two stable-by-case models:  {p, -~ q} 

and  {q, --1 p}. So STbc(P)= 0. But  P U Q has just  one  stable-by-case model :  
{-~p,  q, ~ a ,  ~ b ,  ~c} .  [] 

4 Or is equivalent to - recall our convention on dropping extra conjuncts from the formulas. 
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5.2. THE WELL-FOUNDED-BY-CASE SEMANTICS 

DEFINITION 5.4 
The well-founded-by-case semantics, WFbc(P), of a program P is the set of all 

literals true in all 3-valued models of the stable-by-case completion of P. 

Look again at the same examples used to introduce the stable-by-case 
semantics: 

Example  5.6 
Again let P be Van Gelder's program {a ~ -7 b, b *-- ~ a, p ~ ~ p, p ~ a}. 

The stable-by-case completion is 

{ p o t r u e  Va ,  a,~, ~ b ,  b o  ~a} .  

And WFbc(P) = STbc(P) = {p}. 

Example  5. 7 
Let Q = {a ~ -7 b, b ~ ~ c, c ~ -7 a}. The stable-by-case completion is 

{a "~ b,  b o c, c <-> a}. 

WFbc(Q) = O. 

Example  5.8 
Let R = { a ~ b , b ~ c , c ~ - ~ a , s ~ a A b ,  s ~ b A c ,  s ~ c A a } .  The 

stable-by-case completion is inconsistent, but the well-founded-by-case seman- 
tics captures the fact that s is logical consequence of R. So WFbc(R) -- {s}. By 
contrast, WF(R) = 0. 

The inductive construction of V~/Fbc(P) is analogous to the inductive construc- 
tion of PC3(P). 

THEOREM 5.5 
For every logic program P, WFbc(P) is a (consistent) 3-valued model of the 

stable-by-case completion of P. 

P roo f  
The proof is analogous to the proof of theorem 3.5. [] 

THEOREM 5.6 
For every logic program P, there is a 2-valued model I of P where WFbc(P) ___ I. 

Proo f  
Let I = V~Tbc(P) U {p: --1 p ~ ~VFbc(P)}. Suppose I is not a model of P. Then 

there is a rule 

a <--b I A . . .  A b k A  mC 1 A  . . .  A -~c n (4) 
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of P where  all the subgoals are in I but -7 a ~ I. In particular, since each b i ~ I, 
no --1 b i ~ WFb~(P). So for each b, there is a derived rule 

b, = A . . .  A d / ,  (5) 

where no d~, ~ WFbc(P). Fur thermore,  since WFbc(P) is consistent, I is consis- 
tent, so no ci ~ WFbc(P). Now substitute each derived rule 5 into rule 4 to get a 
derived rule with head a and body a set of negative literals -1 dj. and -7 Cg where  
no djl or c k is in WFbc(P). But then -7 a ff WFbc(P) , contradicting the assump- 
tion. [] 

COROLLARY 5.7 
The well-founded-by-case semantics satisfies the goals of  non-contradiction 

and minimality. 

Proof  
The existence of the model  I above proves non-contradiction. By theorem 3.2, 

there  is a minimal model  J ___ I. By theorem 5.3, J satisfies all derived rules of P. 
Every positive literal in WFbc(P) is derivable, via some derived rule, from 
negative literals in WFbc(P). Hence  every positive literal in WFbc(P) must also be 
in J. Thus J is a minimal model as desired. [] 

THEOREM 5.8 
If a positive literal a holds in every model  of P U WFbc(P) , then a ~ WFbc(P). 

The relationship between 3-valued models of the stable completion and 
3-valued models of the stable-by-case completion is a bit more  tricky than with 
2-valued models. For the logic program {p ~ -7 p}, ~i is a model  of the stable 
completion but not  of the stable-by-case completion, and {p} is a model  of the 
stable-by-case completion but not the stable completion. However, for the least 
fixed points, the behavior is reasonable. 

THEOREM 5.9 
For any logic program P, WF(P) ~ WFbc(P). 

eroof 
Consider the inductive construction of the well-founded semantics, analogous 

to the inductive construction of the 3-valued program completion semantics: For 
J a set of literals, 

Wp(J )  = (p :  there is a transitive rule p g-- -1 c I/x . . . /~  -n c k 

of P where -~ q , . . .  -7 c k ~ J }  

u ( -7 p:  for every transitive rule p * -1 c 1 A . . .  A -7 c k of P, 

some c i ~ J}.  
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Then define by transfinite recursion J<n = u , < n J , ,  and J7 = WP(J<7)" WI?(P) 
is the first J7 where "In = J< 7" 

Prove by transfinite induction that J7 _c WFbc(P). Assume that J< 7 _c WFbc(P). 
It is easy to show that every positive literal in "In is in WFbc(P). So suppose 

P ~ Jn but -n p ~ WFbc(P). Then there is a derived rule 

p ~ - n C l A . . .  A "-nC n 

of P where no c, e WFbc(P). In particular, no c i e J<,7. So there are proposition 
letters d l , . . . , d ~  such that, for every way to choose 6~ equal to d, or --1 di, 
i = 1 , . . . , n ,  

p e"- --'1C 1 A . . .  A "-1 C n A 61 A . . .  6 k (6) 

is an iterated rule of P. 
Now for each di, choose 6 , = d i  if d, e J < , ,  and 6g= ~d~ otherwise. By 

construction of J< n, for each d, where 6; = d~ there is an iterated rule 

i A .  A - ~ i  d i *  - h e  I . . eh, (7) 

of P where each --1 e} ~ J< 7, and hence, by the consistency of the well-founded 
semantics, e} e? J< n" Composing iterated rule 6 with the iterated rule 7 for each 
positive 6~, we get an iterated rule with head p, all negative subgoals, and no 
subgoal false in J< 7" Hence -7 p cannot be in J7 after all. [] 

Since the well-founded-by-case semantics extends the well-founded semantics, 
it also extends the 3-valued program completion semantics and the Van Em- 
den-Kowalski  semantics. 

OBSERVATION 5.10 
The well-founded-by-case semantics obeys the weak principle of stratification. 

Proof  
Again, this follows easily from the inductive constructuion of the semantics. 

[] 

The main weakness, from our "common sense" point of view, of the well- 
founded-by-case semantics, is that it does not obey the GCWH goal. 

THEOREM 5.11 
There is a program P and a proposition letter s occurring in P where -7 s 

holds in every minimal model  of P but -7 s is not inferred by the well-founded- 
by-case semantics. 

Proof 
Let P = {a ~ --1 b, b ~ -7 c, c ~ --1 a, s ~ a A b A c}. The stable-by-case com- 

pletion of P is 

{ a o  ~ b ,  b o  ~ c ,  c o - ~ a ,  s o - ~ b A - ~ c A - ~ a } .  
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The well-founded-by-case semantics can make no inferences about a, b, and c, 
so it cannot infer --1 s. [] 

Another  weakness of the well-founded-by-case semantics is that even decid- 
ing whether s = is a derived rule of a program P is co-J/O~-hard. But with our 
goals of extending classical logic, this is to be expected. This merely says that any 
attempt to use the semantics practically - on any nontrivial scale - would have 
to use some approximation. 

6. Conclusion 

We have presented a group of "common sense" goals for a negation as failure 
semantics for logic programming. This "common sense" approach has the goal 
of, to the greatest extent possible, describing ordinary "common sense" infer- 
ence, not proscribing forms of inference. Description of "common sense reason- 
ing" was, after all, one of the sources of negation as failure in the first place. We 
do not know whether these goals are philosophically correct, but they do have a 
good deal of plausibility, and we think the attempt to isolate and satisfy 
"common sense" goals must be pursued. 

The well-founded-by-case semantics, with its mixture of constructive and 
classical constructs, seems to meet  these goals better than any other currently 
known semantics. It extends current logic programming intuitions, and it seems 
to have no "paradoxical" conclusions. Whether  it is possible to meet  all the 
goals listed, including the GCWH goal, should be a matter for further develop- 
ment. 

Table 2 
Showing how the new semantics meet  the "common-sense"  goals a 

Goal: Stable- Well-founded- 
by-case by-case 

Pure declarativeness Yes Yes 
Non-contradict ion No Yes 
Classical completeness Yes Yes 
Factoring into cases t Yes 
Minimality * Yes 
G C W H  t No 
Extend Van Emden-Kowalsk i  Yes Yes 
Extend program completion Yes Yes 
Principle of stratification No Yes 

a . t rue if the semantics is defined on the program and gives non-contradictory results. 
t The  desired literal a is inferred, but ~ a may be also. 
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