
Annals of Mathematics and Artificial Intelligence 5 (1992) 279-302 279

Formalizing a logic for logic programming

John S. Schlipf 1

Center for Intelligent Systems, Department of Computer Science, University of Cincinnati, Cincinnati,
OH 45221-0008, USA

1. Introduction

Much research in the last few years has centered upon an idea called negation
as failure. The basic idea of negation as failure is that, if an atomic "fact"
(atomic sentence) is true, it must be demonstrably true - so if we cannot
demonstrate that the atomic sentence is true, we should infer it to be false.

Negation as failure clearly is not logically sound. In classical logic, to infer a
sentence to be false, we must demonstrate that the atomic sentence is false -
not merely that it is undemonstrable. Nevertheless it has natural appeal. Most
noticeably, as pointed out by McCarthy, Reiter, and others, it is invoked in a
great many "common-sense" human inferences.

Example 1.1 (Reiter)
If a patient goes to a physician with a problem that could be caused by either

pneumonia or a sprained ankle, the physician assumes - in the absence of
evidence to the contrary - that the patient has only one of these problems.

Example 1.2
If company records do not show that Mr. Jones was ever a vice president,

then management infers that he never was a vice president.

A major research topic concerning negation as failure is the at tempt to find
the "correct" semantics. We shall use the term semantics to mean what is
usually called declarative semantics. The declarative semantics of a logic pro-
gram tells what is to inferred - but does not prescribe how. Our point of view
here is that goal of the study of semantics for negation as failure is to find a
reasonable and fairly elegant mathematical formalism that captures as much as
possible of ordinary human negation-as-failure type reasoning. There is of course

1 This work was partially supported by NSF grants IRI-8705184 and IRI-8905166.

�9 J.C. Baltzer A.G. Scientific Publishing Company

280 J.S. Schlipf / Formalizing a logic for logic programming

a danger: human negation-as-failure type reasoning often appears ad hoc, so it
seems entirely possible that there is no entirely satisfactory way to capture it
formally. But we believe the goal of finding one approach that captures much, or
most, of "common sense reasoning" needs to be pursued.

Our starting point is not a search through ordinary human usage. Rather, we
start by comparing various semantics people have already given for negation as
failure. These semantics, we feel, all have clear "common sense" justification.
We shall identify certain features of these semantics as goals of a semantics for
a common sense negation as failure.

We start from the following vague statement of negations as failure:

If it becomes obvious that an atomic sentence R(tl , t 2 , . . . , t n) is not
provable (in whatever logical system is chosen as a paradigm), infer that the
sentence is false.

Of course, there are then two natural questions:

(1) When is it obvious that an atomic sentence is not provable?
(2) What logical system is chosen as the paradigm?

From our perspective here, these two questions distinguish many of the standard
semantics for negation as failure. And we shall show that, by choosing a
standard cautious interpretation of obvious and by creating an appropriate
paradigm for the logic, we can meet all but one of the goals we suggest.

2. Logic programming background

The whole endeavor is simplified in the restricted realm of logic program-
ming.

Example 2.1
The following is a logic program:

{even(0), even (succ (ucc (x))) even (x) A even (ucc (x)) }

DEFINITION 2.1
A literal is an atomic formula R(t 1, t2 , . . . , t n) (a positive literal) or a negated

atomic formula --1 R(t 1, t2, . . . , t n) (a negative literal).
A logic program is a finite, or countably infinite, set of rules, (implicitly

universally quantified) formulas of the form

~ ~'--/~1A ~2 A . . . A/~n,

where a is a positive literal and the /3,'s are all literals - positive or negative.

J.S. Schlipf / Formalizing a logic for logic programming 281

The literal a is called the head of the rule; each /3, is a subgoal, and the
c o n j u n c t i o n 131 A 132 A . . . A 13n is called the body. The ~ symbol is some sort of
implication.

Later on it will be convenient to treat a rule p ~ with no body as being
implicitly p ~ true.

At tent ion is traditionally limited to Herbrand models:

DEFINITION 2.2
An Herbrand model is a model whose universe is the Herbrand universe of

the program: the set of variable-free terms of the language. (Distinct terms are
unequal elements.)

Example 2.2
For the program {even(O), even(succ(succ(x))) ~ even(x) A -1 even(succ(x))}

the Herbrand universe is the set of terms {0, succ(O), succ(succ(O)),
succ(succ(succ(O))), . . . } - the natural model of the integers with the successor
function.

Using the Herbrand universe blurs the distinction between the language and
the model. This is a convenience in definitions.

DEFINITION 2.3

The ground instantiation of a logic program is formed by substituting ele-
ments of the Herbrand universe in for variables of the logic program in all
possible ways.

Example 2.3
Consider again {even(O), even(succ(suec(x))) ~ even(x) A -1 even(succ(x))}.

Its ground instantiation is:

{even(O),

even(succ(succ(O))) ~ even(O) A ~ even(succ(O)),

even (succ (succ (succ (0)))) ~ even (succ (0)) A --1 even (succ (succ (0))),

even(succ(succ(succ(succ(O))))

*-- even(succ(succ(O))) A ~ even(succ(succ(succ(O)))),

...,}

OBSERVATION 2.1 (WELL KNOWN)

An Herbrand model is a model of a logic program if and only if it is a model
of the ground instantiation of the logic program.

282 J.S. Schlipf / Formalizing a logic for logic programming

Since the ground instantiation contains no variables at all, each atomic
sentence R(ta, . . . , t~) of the instantiation may be t reated as a proposition letter
PR~tl tk)" Hence, over its Herbrand universe, each logic program is equivalent
to a propositional logic program. (Of course, a finite logic program in proposi-
tional logic usually has an infinite ground instantiation.) Hence from now on we
may make all our definitions in terms of infinite programs of propositional logic.
The terms positive literal and negative literal will be used for these proposition
letters and their negations.

DEFINITION 2.4
A partial interpretation is a set of proposition letters and negated proposition

letters. A partial interpretat ion I is consistent, or 3-valued, if for no proposition
letter a are a and -7 a both in I. A partial interpretat ion I is 2-valued if for
each proposition letter a, ei ther a or -7 a is in I, but not both. A model of a
program is a 2-valued interpretat ion which is a model in the ordinary sense of
classical logic.

Think of a partial interpretat ion I as a set inferences made. In only one
circumstance in this paper will inconsistent partial interpretations arise: when a
logic programming semantics "considers" a logic program incoherent and infers
all proposition letters, both positive and negative.

DEFINITION 2.5
A logic programming semantics is a function S which assigns, to each logic

program P, a partial interpretat ion S(P). S(P) is the set of literals which the
semantics "tells us to infer" from P.

3. A semantics survey

We begin with a survey of some of the logic programming semantics. We do
this, in part, because of our motivation: to try to find a formalism describing as
much as possible of the way negation as failure has been applied. 2 It is part of
this goal to accept, at least in part, and to try to reconcile, several of the major
semantics for logic programming. But in addition, our suggested semantics is
constructed identically to other semantics, except that it changes the logical
paradigm, and many of the properties are analogous.

3.1. SEMANTICS BASED UPON CLASSICAL LOGIC

The most obvious semantics is that of classical logic: infer all proposition
letters true in all classical models of the (ground instantiation of the) program.

2 Of course, we present the various semantics from a point of view appropriate to this paper.

J.S. Schlipf / Formalizing a logic for logic programming 283

Steeped in classical logic as we are, we accept these inferences as valid. But
these inferences totally miss negation as failure.

OBSERVATION 3.1 (WELL KNOWN)
Consider any logic program P. Since every rule has a positive head, P is

satisfied if all proposition letters are true. Hence the set of classical conse-
quences of P may contain no negative literals.

The original declarative semantics for logic programs is the Van E m d e n -
Kowalski semantics [17] for Horn clause programs. There, a positive literal is
inferred if an only if it is true in all (2-valued) models of the program; otherwise,
its negation is inferred. This interpretation is itself a model of the program.
Moreover, a proposition letter is in this interpretation if and only if it can be
inferred from the program using only modus ponens as a deduction rule. 3 The
Van Emden-Kowalsk i semantics captures both classical consequence and nega-
tion as failure in the limited context of Horn clause programs. But attempts to
extend its notions to other logic programs have produced varied generalizations.

3.1.1. Minimal model semantics and the G C W H

DEFINITION 3.1
For (2-valued) models ~ ' , J F of a program P, say ~ / c ,/K if every proposition

letter true in ~ / i s also true in
A (2-valued) model ~ / o f P is minimal if it is minimal in the c ordering.

Example 3.1
Let P be {hasPneumonial(MrJones)~ -7 hasSprainedAnkle(MrJones)}, which

has the form {a ~ -~b}. Then P has three models: {a, b}, {a, --7 b}, {-7 a, b}. The
last two are minimal, the first is not.

THEOREM 3.2 (WELL KNOWN)
Every logic program has a minimal model. Given any model J F for a logic

program Q, there is a minimal model ~ / o f Q where ~'c_ JK.

DEFINITION 3.2
The minimal model semantics for logic program P, Min(P), is the set of all

literals true in all minimal models of P.

3 Actually, we are using a variant of modus ponens: from a ~ - / ~ 1 / ~ . . . /~ fin and/31,...,/3~, infer a.
Thus we are really making inferences using just modus ponens and the A -introduction rule. We
shall continue to refer to this variant as modus ponens.

284 J.S. Schlipf / Formalizing a logic for logic programming

Example 3.2
Let Q be

{ hasPneumonia (MrJones) ~ --1 hasSprainedAnkle (MrJones)

willMakeMeRich (X) ~ hasPneumonia (X) A hasSprainedAnkle (X) }

Its g round instantiat ion has the form {a ~ --1 b, c ~ a A b}. That has two mini-
mal models: {a, -7 b, -7 c}, { ~ a, b, --1 c} so Min(Q) = { -1 c}, i.e., { --1 wiUMa-
keMeRich(MrJones)}.

OBSERVATION 3.3
For p a proposi t ion letter appear ing in a p rogram P,

(1) p ~ Min(P) if and only if p is provable f rom P in classical logic.
(2) --1 p ~ Min(P) if and only if, for no set { -~ q l , . . . , ~ q~} of negative literals

consistent with P, is p provable f rom P U { -1 q l , . . . , --1 q~}.

DEFINITION 3.3
The General ized Closed World Hypothesis (GCWH) is the inference rule that if
an atomic sentence is false in all minimal models, it should be inferred to be
false.

The G C W H was first formula ted by Minker.

3.2. SEMANTICS BASED UPON A MORE CONSTRUCTIVE INTERPRETATION OF

Later semantics have rejected the classical logic interpretat ions as too weak.
They adopt a more constructive-logic type of paradigm, approximately:

The only way to infer an atomic sentence is to deduce it f rom known facts
by modus ponens.

Alternatively, the rules with any given atomic sentence in their head may be
thought of as a definition of that atomic sentence.

Example 3.3
Let P be {a *-- --1 b}. Then b cannot be inferred by modus ponens alone, so

these semantics infer --1 b. T h e n by modus ponens, they infer a.

Note that this point of view explicitly rejects proof by contradiction. This can
also be thought of as a re in terpre ta t ion of ~ , rejecting the classical notion.
Fitt ing [5] used this to develop his semantics, discussed briefly below.

J.S. Schlipf / Formalizing a logic for logic programming 285

3.2.1. Stratified semantics

Example 3.4
Let program P contain the atomic formulas

married(A, B), married(C, D), parent(A, C), parent(B, C)

plus the rules

married(X, Y) ~ married(Y, X),

relative(X, Y) ~ parent(X, Y),

relative(X, Y) ~ relative(Y, X)

relative(X, Y) ~ relative(X, Z) A relative(Z, Y),

inLaw(X, Y) ~ married(X, Z)/x relative(Z, Y) A -7 relative(X, Y),

inLaw(X, Y) ~ inLaw(g, X)

The stratified semantics chooses here among minimal models. It divides the
program into two pieces called strata, P2, the last two lines, and P1, all the rest.
It exploits properties of the program: (1) Each relation is defined (appears as
the head of a rule) in only one of the pieces. (2) The relation, inLaw, defined in
P2 does not appear at all in P~. (3) Any relation defined R defined in any
stratum P, is used only positively in the bodies of rules in P~, though relations
defined in P1 may appear both positively and negatively in the bodies of rules in
P2.

In the stratified semantics the two strata are treated separately. The minimal
model 11 is constructed for the first part, as in the Van Emden-Kowalski
semantics. So --1 relative(A, D) ~ 11. Then a minimal model I 2 is chosen for the
entire program where 11 c_I 2. Since -1 relative(A, D) ~ 11, -~ relative(A, D) e 12
also. Hence the stratified semantics prefers a minimal interpretation containing
-~relative(A, D), inLaw(A, D) to one containing relative(A, D),

inLaw(A, D).
A program is stratified if it can be broken into a finite set of strata obeying

the positive and negative occurrence properties above. The stratified semantics
assigns truth values stratum by stratum as described. It was developed indepen-
dently in [1,3,18]. Przymusinski [13] considered the extension, called local
stratification, where the ground instantiation (as a propositional logic program)
is stratified (in a possibly infinite but well-ordered set of strata). The failing of
the stratified semantics is that many interesting programs (an example will be
mentioned below) are not stratified, nor even locally stratified.

We isolate a property of the stratified semantics below. This property seems
to be a consequence of both of the justifications we presented for the construc-
tive semantics.

286 J.S. Schlipf / Formalizing a logic for logic programming

DEFINITION 3.4

A stratified pair of programs is a pair of programs P, Q where for each
relation R, if R occurs in the head of a rule in Q, it does not appear at all in P.

DEFINITION 3.5

A logic programming semantics S obeys the Weak Principle of Stratification if,
for every stratified pair P, Q of logic programs, if a relation R appears in P at
all, then an atomic sentence R(t~, t 2 , . . . , t n) ~ S(PU Q) if and only if
R(t 1, t 2 , . . . , t n) ~ S(P).

So the weak principle of stratification asserts that, if P, Q is a stratified pair
of programs, P u Q is a conservative extension of P.

From a programming point of view, one way to think of the weak principle of
stratification is to consider a stratified pair P, Q of logic programs as two
program modules. Think of each module as defining the relations which appear
in the heads of its clauses. Thus module P defines certain relations, and Q
defines other relations using the relations defined in P. If a semantics for logic
programming obeys the weak principle of stratification, then these modules
operate more or less independently: in particular, module Q will not alter the
definitions made by P.

OBSERVATION 3.4

The minimal model semantics does not obey the weak principle of stratifica-
tion.

Proof
Consider the programs P = {a <--- b}, and Q = (c <--- -~ a}. P has one minimal

model: {--1 a, -7 b}. So the minimal model semantics will infer both those
formulas from P. On the other hand, P u Q has two minimal models:
{ -~ a, -7 b, c} and {a, -7 b, -1 c}, so the minimal model semantics for P u Q can
infer only { -~ b}. []

3.2.2. Program completions: 2-ualued and 3-ualued
Clark proposed treating the rules explicitly as definitions. Hence an atomic

formula R(t 1 , t,,) is true if and only if it is implied by one of the rules.

DEFINITION 3.6

For a propositional program P, for each proposition letter p occurring in P,
the completion of P contains the formula

p <--> V{q lA .. . A qk :P <---ql A . . . A qk is a rule of P}.

The completion contains no other formulas.

J.S. Schlipf / Formalizing a logic for logic programming 287

(Note that, in general, the disjunction V above may well be a disjunction over
an infinite set of formulas. The disjunction of 0 formulas is defined to be the
constant false.)

Example 3.5
The completion of {a ~ --1 b, b ~- c, b ~ -~ c, d} is

{ c o f a l s e , b o c V ~ c , a ~ - T b , d o t r u e }

which has one 2-valued model, { -7 a, b, -~ c, d}.

DEFINITION 3.7
The 2-valued program completion semantics PC2(P) of a program P is the set

of all literals true in all 2-valued models of the program completion.

Example 3.6
The logic program P = {p ~ -7 p} in classical logic is equivalent to {p}, but its

completion, {p ~ --1 p}, is inconsistent. So PC2(P) = {p, -1 p}.

Fitting and Kunen [5,9] suggested a 3-valued interpretation, where the third
truth value is "undef ined" (denoted • corresponding to neither a proposition
letter nor its negation being in the partial interpretation.

Given a consistent partial interpretation, they use Lukasiewicz's truth tables
to define the notion of a partial interpretat ion being a 3-valued model of the
completion of a program. A conjunction is true if all the conjuncts are true, false
if one conjunct is false, and undefined otherwise, disjunctions are dual. And

T = F, -1 F = T, and -1 2 = _1_. Lukasiewicz's truth table for ~ (the opera-
tor he called =-) is:

,-) b:

a: r
F
_k

T F •

T F F
F T F
F F T

The propositional constants true and false, of course, evaluate to T and F.

DEFINITION 3.8
The semantics PC3(P) is the set of all literals true in all 3-valued partial

models of the completion of P.

Example 3. 7
The completion of the logic program Q = { p ~ --7 p, a, b ~ -~ c} is

{p ~ --7 p , a ~ true, ,b ~ ~ c, c ~ false},

which is inconsistent, so PC2(Q) -- {p, --1 p, a, -7 a, b, -1 b, c, -7 c}. But PC3(Q)
={a , b, -~c).

288 J.S. Schlipf / Formalizing a logic for logic programming

The semantics PC3, like all three-valued semantics discussed in this paper,
has an inductive construction. For a program P, define a knowledge extension
operator Ke as follows: For I a set of literals,
(1) p is in K r (I) if there is a rule p *-/31 A . . . A/3~ in P where/31 A . . . A/3 k is
true in I;
(2) -7 p is in Kp(I) if for every rule p ~131 A . . . A/3 k in P with head p ,

131 A . . . A/3~ is false in I. Now define by transfinite induction

1< 7 = U v<7I~

I7 = Kp(I<n) .

PC3(P) is the least fixed point of the operator K r, i.e., the first 17 where

I n = I < n.

THEOREM 3.5 [5]
For any logic program P, PC3(P) is itself a (consistent) 3-valued model of P.

P r o o f (ske tch)
It is straightforward to show that if a partial interpretat ion I is consistent, so

is Kp(I) . It then can be shown by transfinite induction, on the stages of the
construction above, that the least fixed point is consistent. Finally, it is straight-
forward to show that a 3-valued interpretat ion is a fixed point of Kp if and only
if it is a 3-valued model of P. []

(Analogous results will hold for the other 3-valued semantics discussed in this
paper.)

OBSERVATION 3.6
The 3-valued program completion semantics obeys the weak principle of

stratification; the 2-valued does not.

P r o o f
The inductive construction of the 3-valued version makes the weak principle

obvious.
We construct a counterexample for the 2-valued version from an example of

Van Gelder [20]: P1 = {a ~ --7 b, b ~ -1 a}; P2 = {P ~ ~ P, P ~ a}. The comple-
tion of P1 is {a o -7 b, b ~ --7 a} - a or b but not both - and it gives no way to
choose between them. So, if the semantics satisfied the weak principle of
stratification, it would infer nei ther a nor ~ a when applied to P1 U P2'

The rule p ,--- --, p is classically equivalent to p , so it forces p to be true in all
2-valued models, but its completion is p o - 7 p, which is inconsistent. The
completion of the two rules in P2 is p ~ -1 p v a, which amounts to a way to
force a to be true without using a in the head of a clause. So a is inferable from
the completion of P 1 0 P2" []

J.S. Schlipf / Formalizing a logic for logic programming 289

The program completion approach handles many unstratified programs nicely.
One example is the well known Yale Shootout example. Game trees provide
another example: Consider the program

{winningPos(X) ~- move(X, Y) A -7 winningPos(Y)}

describing a game where the player making the last legal move loses. To this is
added a set of rules describing the positions of the game and the legal moves
from position to position.

Kolaitis [8] showed that no such program is locally statifiable. But if the
digraph of positions and moves between positions is finite and acyclic, it is easily
shown that PC a correctly identifies winning and nonwinning positions.

3.2.3. 2-valued versus 3-valued intuitions
There are significant intuitive differences between 2-valued and 3-valued

semantics. The comments we make here, though made of the program comple-
tion semantics, apply to all the 2-valued and 3-valued pairs in this paper.

One approach to negation as failure comes from epistemic logic: the theory is
describing, not what is true, but what is known to an intelligent observer. The
knowledge extension operator K v described above corresponds to the inference
process of the observer. An observer's knowledge tends to be partial, justifying
the 3-valued approach. It can be argued that Van Gelder's example, which was
the source of observation 3.6 and helped motivate the principle of stratification,
illustrates a paradoxical inference in the 2-valued program completion seman-
tics. One way to think of this is that epistemic logic, geared toward knowledge
and belief, is naturally 3-valued, if not 4-valued, and an attempt to force it into a
2-valued system creates paradoxical results. The 3-valued approach allows
inferring that information which seems clearly to follow according to whatever
logical paradigm is used, and stopping there.

On the other hand, think of a logic program as representing causality. Then a
program like { p ,--- --1 p, a ,-- -1 b} seems not just strange, but incoherent - and
contradictory. The 2-valued program completion semantics essentially proscribes
the program. Unfortunately, it is possible to get around proscribed constructs.
The seemingly "anomalous", or "paradoxical", examples produced to violate the
weak principle of stratification start with these proscribed programs and modify
them so that they are consistent but have consequences violating the principle.

Also recall our original statement of negation as failure:

If it becomes obvious that an atomic s e n t e n c e R (t l , t 2 , t n) is not
provable (in whatever logical system is chosen as a paradigm), infer that the
sentence is false.

Here the rule in P C 3 for putting --1 p into KP(I) can be thought of as coming
from a very conservative interpretation of the word obvious. A positive literal p

290 J.s. Schlipf / Formalizing a logic for logic programming

is inferred only when it follows by modus ponens from other literals already
inferred. A negative literal --1 p is inferred only when all possible ways to derive
p have been rejected - have had their hypotheses inferred false. The semantics
P C 2 c a n thus be thought of as more radical, since it permits other inferences, as
in observation 3.6.

3.2.4. The stable and well-founded semantics
The stable and well-founded explicitly enforce another paradigm, analogous

to observation 3.3:

If an atomic sentence is not asserted directly (as in p ~ true), the only way
to derive it is to prove it, using program rules and modus ponens alone,
from the negated atomic sentences already established and the atomic
sentences which are asserted directly.

The following definitions of the stable and well-founded semantics are not the
original definitions. For the stable semantics, the equivalence of the definition
here to the original definition is easy to show using the Gelfond-Lifschitz
transformation of a logic program [7]. The definition here of the well-founded
semantics is a small modification of a definition worked out in a discussion with
Allen van Gelder, and is inspired by [2,14,15,19].

Example 3.8
Let P be the program

{ a ~ b , b * - - a , c u d , d ~ c , a ~ ~c}.

The program completion is

{a o b V ~c , b o a , c o d , d o c } .

But there is no way to derive c from negative literals. On the other hand, a can
be derived from -7 c, and b can be derived from a, which can be derived from
"'1 C.

DEFINITION 3.9
For P a logic program, a transitive rule of P is a rule oz * 81 A . . . A ~k where

a can be derived from 81 A . . . /~ ~k by 0 or more (but a finite number of)
applications of modus ponens and 0 or more of rules of P.

As before, in the special case where a transitive rule has empty body, we treat
its body as being the propositional constant true.

For a propositional program P, for each proposition letter p occurring in P,
the stable completion of P contains the formula

p ~-+ V { --7 q l /~ " ' " /~ -1 q k " P * -~ q l A . . . /~ -~ q k is a transitive rule of P}.

The stable completion contains no other formulas.

J.S. Schlipf / Formalizing a logic for logic programming 291

CONVENTION
If P has a transitive rule such as p g-- a A b, it will also have a transitive rule

p ~ a A b A y for any literal y: the derivation of p just does not happen to use
y. So a stable completion would be of the form p ~ (a A b) V (a A b A y) V
When we write the stable completion, we shall include only disjuncts, such as
a A b, which have minimal sets of conjuncts.

Example 3.9
The stable completion of

{a*--b, b*--a, c*--d , d*--c, a *-- ~ c , e, e*--a A b , f *- -~e}

is

{a ~ ~ c , b e ~ c , c ~ false, d ~ false, e ~ true V -7c, f o -~e}.

DEFINITION 3.10
A stable model of a program P is a model of the stable completion. If there is

a unique stable model of this "complet ion", the stable semantics infers that.
We shall define here the stable semantics ST(P) of a program P to be the set

of literals true in all models of the stable completion. (So if there is no stable
model, the stable semantics infers inconsistent information.)

Hence the stable semantics for the example above infers {a, b, ~ c, -1 d, e,

DEFINITION 3.11
The well-founded semantics WF(P) of a logic program P is the set of all

literals true in all 3-valued models of the stable completion of P (where, again,
Lukasiewicz's truth table is used for ~) .

In the example above, it makes the same inferences that the stable semantics
does. But in general it makes fewer inferences.

Like the 3-valued program completion semantics, the well-founded semantics
has an inductive definition with a knowledge-extension operator. And just as
with Fitting's work, this can be used to prove that:

THEOREM 3.7 (VAN GELDER-ROSS-SCHLIPF)
For any logic program P, WF(P) is itself a (consistent) 3-vaued model of P.

The stable semantics is due to Gelfond and Lifschitz [6,7]. The well-founded
semantics is due to Van Ge lde r -Ross -Sch l ip f [20]. Przymusinski first noticed
that they were just 2-valued and 3-valued versions of the same semantics, though
our explanation with the stable completion is quite different from his.

292 J.S. Schlipf / Formalizing a logic for logic programming

OBSERVATION 3.8
The well-founded semantics obeys the weak principle of stratification. The

stable semantics does not.

Proof
The proof is the same as for observation 3.6. []

A major strength of the well-founded semantics is that, of all the semantics
discussed in this paper, it is the strongest semantics which can be constructed in
polynomial time (as a function of the size of a finite propositional program),
assuming ~ - 7 = #K~. (That it is polynomial time is proved in [20]; that the
stable semantics is co-~4/~-complete is proved in [12].) When fixed, finite, first
order logic programs are used to deduce information from finite databases,
these results translate to: answering queries based upon the well-founded
semantics is polynomial time in the size of the database; answering queries
based upon the stable semantics is co-#K~-complete.

4. Goals for a "common sense" semantics

As we stated earlier, our aim here is to attempt to understand what "common
sense" negation as failure reasoning is and to see to what extent that can be
formalized. We take the point of view that all the semantics discussed above
have a certain "common sense" justification, and that the aim of a negation as
failure semantics is to reconcile, as far as is possible in a reasonable formalism,
all the underlying motives. We suggest the following as goals of a "common
sense" semantics:

(1) Pure declarativeness: If program P1 is formed from P by rearranging the rules
in P, by rearranging the subgoals (hypotheses) within a rule of P, or by
performing some alphabetic variation such as substituting one name for
another throughout the program, then the semantics should infer the same
sentences from the two (up to the alphabetic variation). This goal rejects
some of the procedural features of PROLOG.

(2) The motivation for these goals is that semantics should extend classical logic,
not replace it.
(a) Non-contradiction: The semantics can be applied to any program; no

program is rejected as being meaningless. Furthermore, the set of
sentences inferred by the program, together with the program itself,
should be consistent in classical logic (with the classical interpretation of
~) .

(b) Classical completeness: If an atomic sentence a holds in all models of P
(in classical logic), then the semantics should infer a from P.

J.S. Schlipf / Formalizing a logic for logic programming 293

(c) Factoring into cases: If from a program the semantics can infer a
sentence p assuming a and also infer p assuming -7 a, it can infer p.
Similarly, if it can infer p assuming each of the 2 n truth assignment to
aa, a2,... , an, then it can infer p.

(3) The motivation for these goals is that the minimal model semantics makes
correct conclusions, but it does not make enough.
(a) Minimality: If I is the set of inferences made from program P, then

there should be a minimal model ~" of P where each formula in I is
true in ~ ' .

(b) GCWH: If an atomic sentence R(tl, t 2 , . . . , tn) is false in all minimal
models of a program P, then -7 R(tl, t 2 , . . . , tn) is inferable.

(4) The motivation for these goals is that certain semantics, though not strong
enough in general, seem always to make reasonable inferences.
(a) Extending Van Emden-Kowalski: The semantics should agree with the

Van Emden-Kowalski semantics on Horn clause programs.
(b) Extending program completion: The semantics should extend the 3-val-

ued program completion semantics.
The justification for this goal is that the 3-valued program completion
semantics, for example in its handling of winning games and of the Yale
Shootout example, seems to capture a very significant notion of negation
as failure.

(5) Principle of stratification: The semantics should obey the weak principle of
stratification.

We have argued that all the goals above are in some sense "common-sense"
goals for logic programming. Accordingly, it would, from a "common-sense"
point of view, be desirable to achieve them all.

Table 1
Showing how previous semantics meet these goals a

Goal: Minimal Strati- 2-valued 3-valued Stable Well-
model fled completion completion founded

Pure declarativeness Yes Yes Yes Yes Yes Yes
Non-contradiction Yes No No Yes No Yes
Classical completeness Yes * Yes No Yes No
Factoring into cases Yes * * No * No
Minimality Yes * * Yes * Yes
G C W H Yes * No No * No
Extend V. Emden-Kowal . Yes Yes No No Yes Yes
Extend program compl. No * Yes Yes Yes Yes
Princ. stratification No * No Yes No Yes

a * true if the semantics is defined on the program and gives non-contradictory results.
�9 the desired literal a is inferred, but -7 a may be also.

294 J.S. Schlipf / Formalizing a logic for logic programming

We justify these goals as satisfying some sort of "common sense" criteria. We
make no at tempt here to ask whether it makes good deep philosophical or
linguistic sense to try to achieve all these goals at once. Our question here is
merely whether there is any reasonable formalism that achieves these goals.

It is easy to construct an ad hoc semantics that satisfies all these goals. We do
not know whether any non-ad hoc semantics satisfies them all. In the remainder
of the paper we show that it is possible to satisfy all except the GCWH goal.

5. A logical paradigm permitting argument by cases

Recall our first intuitive characterization of negation as failure:

If it becomes obvious that an atomic sentence R(t 1, t 2 , . . . , t n) is not
provable (in whatever logical system is chosen as a paradigm), infer that the
sentence is false.

Our approach to generalizing previous semantics is, not to change the construc-
tion, but again to change the paradigm logic used for deriving positive literals.

Consider the "weaknesses" of the well-founded semantics. First, it does not
make all inferences classical logic would. Second, it does not make all the
inferences GCWH does. And third, it does not allow argument by factoring into
cases. Now if we repeat the inductive construction of the well-founded seman-
tics but replace derivation by modus ponens only with full classical logic, we get
inference under GCWH (by observation 3.3), and we no longer meet some of
the goals met by the well-founded semantics. So it is natural to at tempt to find a
logical paradigm for negation as failure that is stronger than argument by modus
ponens alone but weaker than full classical logic. Is it possible to do this in such
a way as to meet most of the "common sense" goals proposed above? It turns
out it is at least possible to do so and meet all the goals except GCWH. The
extension to the modus ponens-only paradigm is just strong enough explicitly to
allow arguments by cases.

Example 5.1
It is tempting to try to infer and store information about possible cases. This

turns out to be quite risky. For example, consider the program P

{a <--- ~ b , b*-- ~ c , c ~ -~a, s*--a Ab , s<---b Ac , s*--c Aa}.

First note that s holds in all (classical) models of P. From the first three rules it
is tempting to infer, as in classical logic, a V b, b v c, and c v a. Now recall the
intuition of the well-founded semantics: that positive literals can only be derived

J.S. Schlipf / Formalizing a logic for logic programming 295

f r o m k n o w n nega t ive literals. T h e t rans i t ive ru les wi th h e a d s and with nega t ive

subgoa l s a re (d i scard ing u n n e c e s s a r y subgoals)

s ~ - n b A -nc, s ~ ~ c A ~ a , s ~ - n a A --lb.
But the in fe rences of a V b, etc., above con t r ad ic t the bod i e s of all those rules.

H e n c e an obvious gene ra l i za t i on of the w e l l - f o u n d e d seman t i c s wou ld infer --1 s,
v io la t ing the goal o f classical consis tency.

D E F I N I T I O N 5.1

A derived rule of P is a rule

a = / 3 1 A . . . A/3 n,

where , for s o m e p r o p o s i t i o n le t te rs d 1 , d~ and for each of the 2;' ways to
choose e a c h 3i = d, o r -7 di,

a g - / 31A . . . A/3 n A ~ 1 A . . . A 6 k

is a t rans i t ive rule of P (with a poss ibly n o n - m i n i m a l set o f subgoals) .

Example 5.2
(1) L e t P = {p ~ -1 p}. T h e n p * --1 p (in 1 app l i ca t ion o f modus ponens), and

p * p (in 0 app l i ca t ions of modus ponens, so p ~ is a de r ived ru le of P.

(2) L e t P = { a ~ ~ b , b ~ -7 a, c ~ a , c ~-b}. T h e n c ~ a (in one s tep) , and
c ~ -7 a (in two steps), so c ~ is a der ived ru le of P.

T H E O R E M 5.1

(Completeness theorem for literals) L e t P be a logic p r o g r a m and let a be

p r o p o s i t i o n le t t e r occur r ing in P. T h e n a holds in all m o d e l s of P (i.e., a is a

classical c o n s e q u e n c e of P) if and only if a ~ is a de r ived rule of P.

/'roof
I t is easy to show tha t if a ~ is a de r ived rule of P t h e n a holds in all m o d e l s

o f P, so p r o v e the converse . A s s u m e tha t a ~ is no t a de r ived ru le o f P, and
cons t ruc t a m o d e l o f P w h e r e a is false.

E n u m e r a t e the p r o p o s i t i o n le t ters o f P: a0, a l , a 2 , . . . , wi th a = a 0. F o r each

na tu r a l n u m b e r i, we shall set a i to be e i the r a, or -7 a, below. T h e f inal
i n t e r p r e t a t i o n will be I = {a0, a a , . . . , a n , . . . }.

Set a o = --1 a 0. N o t e tha t a o ~ a o is not a der ived ru le o f P: if it were , s ince :V
a 0 ~ a 0 is a trivial t rans i t ive rule of P, a 0 ~ wou ld be a de r ived ru le of P.

T o de f ine ai+l: By induct ive hypothes is , a o ~ a 0 A a I A . . . a , is no t a de r ived

rule of P. N o w if b o t h a o = a o A a I A . . . a i A ai+ 1 and a o = a o m a 1 A . . . a , A
a,+ 1 w e r e de r ived rules of P, t h e n a 0 = a o A a I A . . . a , wou ld be a de r ived

rule also. H e n c e at leas t one of the l a t t e r is not. Set

a ,+ 1 if a 0 ~ o/0 A 0/1 A . . . a i A ai+ 1 i s a der ived rule of P ,
Olt+ 1

a;+ a o the rwise .

By cons t ruc t ion , t he r e is no der ived ru le a o ~ a 1 A . . . A a n of P.

296 J.S. Schlipf / Formalizing a logic for logic programming

Now show that if there is a derived rule

a t r oL 1 A . . . A OLn,

of P then a i = a i. For suppose not. Since the construction picked oL i

a O ~ O L o A O l 1 A . . . o l t A a i + 1

(1)
= --7 a i ,

(2)
is a derived rule of P. Composing the derived rules 1 and 2 gives a derived rule

a 0 ~ a 0 A Ol I A . . . O~k, (3)

where k is the maximum of i and n.
Since I satisfies all the derived rules of P, and hence all the rules of P, I is a

model of P. []

C O R O L L A R Y 5.2

(Ex tended completeness for literals) For any logic program P, any set I of
positive literals, and any proposition letter a, a holds in all models of P U I (i.e.,
a is a classical consequence of P u I) if and only if, for some b l , . . . , b n ~ I,
a ~ b 1 A . . . A b n is a derived rule of P.

Observe, however, that the corollary fails if I is allowed to contain negative
literals. For example, for P = {b *-- -1 a} and I = { --1 b}, a holds in all (classical)
models of P. But since there is no rule with head a, every derived rule with head
a must contain a in its body.

5.1. T H E S T A B L E - B Y - C A S E S E M A N T I C S

We now have another logical paradigm: a positive literal can be proved only
by applying modus ponens to derived rules a program and negative literals
already established.

D E F I N I T I O N 5.2

For a propositional program P, for each proposition letter p occurring in P,
the stable-by-case completion of P contains the formula

p ~ V {--1 ql A . . . A --1 qk : P ~ --1 ql A . . . A --1 q~ is a derived rule of P}.

The stable-by-case completion contains no other formulas.

D E F I N I T I O N 5.3

A 2-valued model r a logic program P is stable-by-case if it is a model of
the stable-by-case completion of P.

The stable-by-case semantics STbc(P) of a program P is the set of all literals
true in all stable-by-case models of P.

The stable-by-case semantics eliminates some of the "paradoxes" of the
stable semantics.

J.S. Schlipf / Formalizing a logic for logic programming 297

Example 5.3
Let P be Van Gelder ' s p rogram {a <- --1 b, b ~ ~ a, p ~ -7 p, p ~ a}. The

stable-by-case comple t ion is 4

{p ~ t r u e V a , a ~ -~ b, b ~ - 7 a}.

The first fo rmula is enough to derive p, and the "pa radox ica l " behavior of the
example is lost. Both {a, -1 b, p} and { --1 a, b, p} are stable-by-case.

But the stable-by-case semantics still has some of what we have been
consider ing "paradoxical" behavior:

Example 5.4
Le t Q = (a ,-- -7 b, b <--- --1 c, c <--- -7 a). The stable-by-case comple t ion is {a <-->
b, b <-> -7 c, c <-> -7 a}, w h i c h is i n c o n s i s t e n t . So STbc(Q) =

{a, -ha, b, -Tb, c, ~c} .

Example 5.5
Let R = {a <-- -7 b, b <--- ~ c, c <--- -~ a, s <- a A b, s <--- c A a}. The stable-by-

case comple t ion is inconsistent . So STbc(R) = {a, --1 a, b, --1 b, c, -7 c, s, --1 s}.

THEOREM 5.3
Le t P be a logic program.

(1) If I is 2-valued, I is a model of P if and only if I satisfies all the derived
rules of P.

(2) Every stable mode l of P is a stable-by-case mode l of P.
(3) STb~(P) __ ST(P).

OBSERVATION 5.4

The stable-by-case semantics does not satisfy the weak principle of stratifica-
tion.

Proof
Let P = { p , - - ~ q , q ~ - - ~ p) . Let Q = { a ~ - p A ~ b , b ~ p A ~ c , c ~ p A
a}. T h e n the pair P, Q is stratified. P has two stable-by-case models: {p, -~ q}

and {q, --1 p}. So STbc(P)= 0. But P U Q has just one stable-by-case model :
{-~p, q, ~ a , ~ b , ~c} . []

4 Or is equivalent to - recall our convention on dropping extra conjuncts from the formulas.

298 J.S. Schlipf / Formalizing a logic for logic programming

5.2. THE WELL-FOUNDED-BY-CASE SEMANTICS

DEFINITION 5.4
The well-founded-by-case semantics, WFbc(P), of a program P is the set of all

literals true in all 3-valued models of the stable-by-case completion of P.

Look again at the same examples used to introduce the stable-by-case
semantics:

Example 5.6
Again let P be Van Gelder's program {a ~ -7 b, b *-- ~ a, p ~ ~ p, p ~ a}.

The stable-by-case completion is

{ p o t r u e Va , a,~, ~ b , b o ~a} .

And WFbc(P) = STbc(P) = {p}.

Example 5. 7
Let Q = {a ~ -7 b, b ~ ~ c, c ~ -7 a}. The stable-by-case completion is

{a "~ b, b o c, c <-> a}.

WFbc(Q) = O.

Example 5.8
Let R = { a ~ b , b ~ c , c ~ - ~ a , s ~ a A b , s ~ b A c , s ~ c A a } . The

stable-by-case completion is inconsistent, but the well-founded-by-case seman-
tics captures the fact that s is logical consequence of R. So WFbc(R) -- {s}. By
contrast, WF(R) = 0.

The inductive construction of V~/Fbc(P) is analogous to the inductive construc-
tion of PC3(P).

THEOREM 5.5
For every logic program P, WFbc(P) is a (consistent) 3-valued model of the

stable-by-case completion of P.

P roo f
The proof is analogous to the proof of theorem 3.5. []

THEOREM 5.6
For every logic program P, there is a 2-valued model I of P where WFbc(P) ___ I.

Proo f
Let I = V~Tbc(P) U {p: --1 p ~ ~VFbc(P)}. Suppose I is not a model of P. Then

there is a rule

a <--b I A . . . A b k A mC 1 A . . . A -~c n (4)

J.S. Schlipf / Formalizing a logic for logic programming 299

of P where all the subgoals are in I but -7 a ~ I. In particular, since each b i ~ I,
no --1 b i ~ WFb~(P). So for each b, there is a derived rule

b, = A . . . A d / , (5)

where no d~, ~ WFbc(P). Fur thermore, since WFbc(P) is consistent, I is consis-
tent, so no ci ~ WFbc(P). Now substitute each derived rule 5 into rule 4 to get a
derived rule with head a and body a set of negative literals -1 dj. and -7 Cg where
no djl or c k is in WFbc(P). But then -7 a ff WFbc(P) , contradicting the assump-
tion. []

COROLLARY 5.7
The well-founded-by-case semantics satisfies the goals of non-contradiction

and minimality.

Proof
The existence of the model I above proves non-contradiction. By theorem 3.2,

there is a minimal model J ___ I. By theorem 5.3, J satisfies all derived rules of P.
Every positive literal in WFbc(P) is derivable, via some derived rule, from
negative literals in WFbc(P). Hence every positive literal in WFbc(P) must also be
in J. Thus J is a minimal model as desired. []

THEOREM 5.8
If a positive literal a holds in every model of P U WFbc(P) , then a ~ WFbc(P).

The relationship between 3-valued models of the stable completion and
3-valued models of the stable-by-case completion is a bit more tricky than with
2-valued models. For the logic program {p ~ -7 p}, ~i is a model of the stable
completion but not of the stable-by-case completion, and {p} is a model of the
stable-by-case completion but not the stable completion. However, for the least
fixed points, the behavior is reasonable.

THEOREM 5.9
For any logic program P, WF(P) ~ WFbc(P).

eroof
Consider the inductive construction of the well-founded semantics, analogous

to the inductive construction of the 3-valued program completion semantics: For
J a set of literals,

Wp(J) = (p : there is a transitive rule p g-- -1 c I/x . . . /~ -n c k

of P where -~ q , . . . -7 c k ~ J }

u (-7 p: for every transitive rule p * -1 c 1 A . . . A -7 c k of P,

some c i ~ J}.

300 J.S. Schlipf / Formalizing a logic for logic programming

Then define by transfinite recursion J<n = u , < n J , , and J7 = WP(J<7)" WI?(P)
is the first J7 where "In = J< 7"

Prove by transfinite induction that J7 _c WFbc(P). Assume that J< 7 _c WFbc(P).
It is easy to show that every positive literal in "In is in WFbc(P). So suppose

P ~ Jn but -n p ~ WFbc(P). Then there is a derived rule

p ~ - n C l A . . . A "-nC n

of P where no c, e WFbc(P). In particular, no c i e J<,7. So there are proposition
letters d l , . . . , d ~ such that, for every way to choose 6~ equal to d, or --1 di,
i = 1 , . . . , n ,

p e"- --'1C 1 A . . . A "-1 C n A 61 A . . . 6 k (6)

is an iterated rule of P.
Now for each di, choose 6 , = d i if d, e J < , , and 6g= ~d~ otherwise. By

construction of J< n, for each d, where 6; = d~ there is an iterated rule

i A . A - ~ i d i * - h e I . . eh, (7)

of P where each --1 e} ~ J< 7, and hence, by the consistency of the well-founded
semantics, e} e? J< n" Composing iterated rule 6 with the iterated rule 7 for each
positive 6~, we get an iterated rule with head p, all negative subgoals, and no
subgoal false in J< 7" Hence -7 p cannot be in J7 after all. []

Since the well-founded-by-case semantics extends the well-founded semantics,
it also extends the 3-valued program completion semantics and the Van Em-
den-Kowalski semantics.

OBSERVATION 5.10
The well-founded-by-case semantics obeys the weak principle of stratification.

Proof
Again, this follows easily from the inductive constructuion of the semantics.

[]

The main weakness, from our "common sense" point of view, of the well-
founded-by-case semantics, is that it does not obey the GCWH goal.

THEOREM 5.11
There is a program P and a proposition letter s occurring in P where -7 s

holds in every minimal model of P but -7 s is not inferred by the well-founded-
by-case semantics.

Proof
Let P = {a ~ --1 b, b ~ -7 c, c ~ --1 a, s ~ a A b A c}. The stable-by-case com-

pletion of P is

{ a o ~ b , b o ~ c , c o - ~ a , s o - ~ b A - ~ c A - ~ a } .

J.S. Schlipf / Formalizing a logic for logic programming 301

The well-founded-by-case semantics can make no inferences about a, b, and c,
so it cannot infer --1 s. []

Another weakness of the well-founded-by-case semantics is that even decid-
ing whether s = is a derived rule of a program P is co-J/O~-hard. But with our
goals of extending classical logic, this is to be expected. This merely says that any
attempt to use the semantics practically - on any nontrivial scale - would have
to use some approximation.

6. Conclusion

We have presented a group of "common sense" goals for a negation as failure
semantics for logic programming. This "common sense" approach has the goal
of, to the greatest extent possible, describing ordinary "common sense" infer-
ence, not proscribing forms of inference. Description of "common sense reason-
ing" was, after all, one of the sources of negation as failure in the first place. We
do not know whether these goals are philosophically correct, but they do have a
good deal of plausibility, and we think the attempt to isolate and satisfy
"common sense" goals must be pursued.

The well-founded-by-case semantics, with its mixture of constructive and
classical constructs, seems to meet these goals better than any other currently
known semantics. It extends current logic programming intuitions, and it seems
to have no "paradoxical" conclusions. Whether it is possible to meet all the
goals listed, including the GCWH goal, should be a matter for further develop-
ment.

Table 2
Showing how the new semantics meet the "common-sense" goals a

Goal: Stable- Well-founded-
by-case by-case

Pure declarativeness Yes Yes
Non-contradict ion No Yes
Classical completeness Yes Yes
Factoring into cases t Yes
Minimality * Yes
G C W H t No
Extend Van Emden-Kowalsk i Yes Yes
Extend program completion Yes Yes
Principle of stratification No Yes

a . t rue if the semantics is defined on the program and gives non-contradictory results.
t The desired literal a is inferred, but ~ a may be also.

302 J.S. Schlipf / Formalizing a logic for logic programming

References

[1] K.R. Apt, H. Blair and A. Walker, Towards a theory of declarative knowledge, in: Founda-
tions of Deductive Databases and Logic Programming, ed. J. Minker (Morgan Kaufmann, Los
Altos, CA, 1988).

[2] F. Bry, Logic programming as constructivism: a formalization and its application to databases,
in: 8th ACM Symp. on Principles of Database Systems (1989) pp. 34-50.

[3] A. Chandra and D. Harel, Horn clause queries and generalizations, J. ACM 29 (1982)
841-862.

[4] K.L. Clark, Negation as failure, in: Logic and Databases, eds. Gallaire and Minker (Plenum
Press, New York, 1978) pp. 293-322.

[5] M. Fitting, A Kripke-Kleene semantics for logic programs, J. Logic Progr. 2 (1985) 295-312.
[6] M. Gelfond, On stratified autoepistemic theories, in: Proc. AAAI (1987).
[7] M. Gelfond and V. Lifschitz, The stable model semantics for logic programming, Proc. 5th

Int. Conf. Syrup. on Logic Programming (1988).
[8] P. Kolaitis and C. Papadimitriou, Why not negation by fixpoint?, in: Proc. 7th Symp. on

Principles of Database Systems (1988).
[9] K. Kunen, Negation in logic programming, J. Logic Progr. 4 (1987) 289-308.

[10] K. Kunen, Some remarks on the completed database, Technical Report 775, Univ. of
Wisconsin, Madison, WI 53706.

[11] V. Lifschitz, On the declarative semantics of logic programs with negation, in: Foundations of
Deductive Databases and Logic Programming, ed. J. Minker (Morgan Kaufmann, Los Altos,
CA, 1988)pp. 177-192.

[12] W. Marek and M. Truszczynski, Autoepistemic logic, J. ACM 38 (1991) 588-619.
[13] T.C. Przymusinski, On the declarative semantics of deductive databases and logic programs,

in: Foundations of Deductive Databases and Logic Programming, ed. J. Minker (Morgan
Kaufmann, Los Altos, CA, 1988) pp. 193-216.

[14] T.C. Przymusinski, Every logic program has a natural stratification and an iterated fixed point
model, 8th ACM Syrup. on Principles of Database Systems (1989) pp. 11-21.

[15] K.A. Ross, A procedural semantics for well-founded negation in logic programs, in: 8th ACM
Symp. on Principles of Database Systems (1989) pp. 22-33.

[16] J.C. Shepherdson, Negation as failure, II, J. Logic Progr. 2 (1985) 185-202.
[17] M.H. Van Emden and R.A. Kowalski, The semantics of predicate logic as a programming

language, J. ACM 23 (1976) 733-742.
[18] A. Van Gelder, Negation as failure using tight derivations for general logic programs, in:

Proc. 3rd IEEE Symp. on Logic Programming, Salt Lake City, Utah (Springer, New York,
1986).

[19] A. Van Gelder, The alternating fixpoint of logic programs with negation, in: 8th ACM Symp.
on Principles of Database Systems (1989) pp. 1-10. Available from UC Santa Cruz as
UCSC-CRL-88-17.

[20] A. Van Gelder, K.A. Ross and J.S. Schlipf, The well-founded semantics for general logic
programs, J. ACM 38 (1991) 620-650.

