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Single station and regional analysis
of daily rainfall extremes

D. L. Fitzgerald

Climatological Division, Irish Meteorological Service, Glasnevin Hill, Dublin 9, Ireland

Abstract: A peaks over threshold (POT) method of analysing daily rainfall values is developed using a
Poisson process of occurrences and a generalised Pareto distribution (GPD) for the exceedances. The
parameters of the GPD are estimated by the method of probability weighted moments (PWM) and a method
of combining the individual estimates to define a regional curve is proposed.

Key words: Generalised Pareto distribution, Peaks over threshold, Probability weighted moments,
Regionalisation

1 Introduction

Because of the high spatial variability of rainfall, the return period of a given daily total
may be very different at neighbouring stations. Since the period of record of most sta-
tions is less than 50 years, the estimates of 100 to 200 year return periods commonly
required by hydrologists have a high standard error. Regionalisation or pooling of
records is an attempt to meet these difficulties. In the British Flood Studies Report
(1975) a regional growth curve was defined based on Jenkinson’s method of quartile
analysis of the generalised extreme value distribution (GEV). This annual maximum
(AM) method was evaluated by Hosking et al. (1985) and an alternative AM method
based on PWM estimates of GEV parameters proposed. For individual stations Van
Montfort and Witter (1986) employed a POT method and, using maximum likelihood
(ML) parameter estimates, they concluded that the GPD was quite applicable. For
extreme rainfall series the shape parameter, k, of the GPD is usually negative; for this
case Hosking and Wallis (1987), in their comparison of ordinary moment, PWM and ML
estimates of the GPD parameters, concluded that, while the ordinary moments provide
the estimates with the lowest RMSE, in the most frequently encountered cases (0>k>-
0.2) the PWMs have only slightly higher RMSE but have much lower bias. This latter
property is most important to a regionalisation scheme and, as the main aim of this paper
is the development of such a scheme, the PWM method of estimation was adopted.

2 Generalised Pareto distribution-PWM parameter estimates

Pickands (1975) showed that the GPD arises as a limiting form of independent
exceedances of a high threshold. When k<0 the GPD arises as a compound of exponen-
tials whose mean has a gamma distribution (Johnson and Kotz 1970). This lends plausi-
bility to using the same distribution for both summer and winter rainfall as was done in
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this study. A GPD variate has the form
d
y =2 (=(-F)9 M

where y(>0) is the exceedance of a set threshold, d is a positive scale parameter and & is
a shape parameter which in applications is usually between +0.5 and -0.5 (Smith 1684).
When £ is positive y is bounded above and when k=0 the GPD reduces to the exponential
form. The inverse form is

1

F= 1—(1—§y)" k#0 @
Hosking and Wallis (1987) give the GPD parameters in terms of the PWMs E(y) and

E(y(1-F)), where E is the expectation operator, and also give an asymptotic expression
for the covariance matrix of the two parameters.

Here the PWMs B, = E(y)=—— and B, = E(yF) = ————2(::’2‘;21) are used giving
Bl l
4(79—)—3 Bo(l—g—)
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3 Sample estimates of the PWMs
Considering an ordered sample (y,,y,, * - * ¥,.), then after the manner of Kendall (1975)

E(Z(l Dy) = Z sz(z)‘ Y1-F@2)y" " dF (z)
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Thus the GPD parameters may be estimated from the (ordered) sample values since

_.__ 1 o j — .
= gy. and by = Y i=21(l Dy; @

are unbiassed estimates of the first two PWMs

noo( s
Hosking and Wallis (1987) employ o = ¥, n((’; li) y; as an estimator of E(y(1-F) but
i=1 -

since o1+b=by their formulae and (3) are equivalent.

4 Covariance and variances of the PWMs and of the GPD parameters

Since the mean exceedance by does not use the ordering of the values it is readily shown
that
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Since b, weights the ordered sample values, we have from (4)

nn—1)var(b)) = i (-D)var )+ X 3G-1)(j~1)cov Oiy))

i=1 i#

Using the properties of the GPD we get (Appendix A)

2 (i - i =
var(yi)zg—[n n-r+l1 \ﬁ r+1 2] k=0

K2 | neri2k+l o ner kel
_2 < 1 -
=d E — k=0
r=n—i+1 1
andi <j
I n-m+l L n—p+l
Ly = , k#0

cov(y;.yj) =var(y;) [”I;Il n—m-+k+1 pl:Iln ~p+k+1 ]

=var(y;) k=0

From these expressions for the variances and covariances of the sample order statlstlcs
we can obtain var (b) and in addition

cov(byb)=——— " (n—l [Z(z Dvar (y; )+EZ(’+J_2)C0V0’H)’1)J

i #j

Now the usnal method of finding a first order approximation of the variances and covari-
ances of functions of random variables (Kendall and Stuart 1977) can be applied to the
GPD parameters of eqn (3).

b 4var(g)
Putting g=— we get var(k) = ——2= (&)
8 8% "8 (1-2¢)°
where var(g) = Z%(var (b)) var (bg)-2g cov(byby), k#0
0
4(A%var (bg)+Clvar(b)-2AC cov(by,b;))
and var(d) = 0 12 el ©)
(2g-1)
where
_ 1+2g(1-g) 1
T 2g-1 and C= 2g-1

Finally
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4b,(4bgb,~2bE-bd var (boy+abgvar (by)—4by(Sbeb,—2b b )cov (bg.by)
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2 .
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In principle the expressions given here have the advantage of being valid for samples of
size n; in practice the asymptotic expressions given in Hosking and Wallis (1987) or even
the ML expressions (Smith 1984) gave similar results for the sample sizes (>40) encoun-
tered in the ensuing work.

5 Quantile estimation

Assume that the process generating the occurrences is Poisson with rate parameter A
independent of the process of exceedances of the threshold yg (with CDF Fy); then the

number of exceedances of y+y, in T time units has the average value
Ny = AT (1-Fo(y) ©
By definition if Ny=1 then y=yr is the exceedance having return period T. Hence

1

For) = 1—7:77

For the GPD
d -
yr=20-00T)") k#0

=—dIn(AT) k=0 (10)

On the assumption that the covariances (d,A) and (k,A) are zero, the usual first order
approximation about the true mean (m) yields

var (yr) = ( )mvar (d)+( Vr )mvar (k)+( )mmr n

a)’T
+2(—
( ad
All these quantities can be obtained from eqns (3) to (10) and by using var(\)=A/t where
t is the number of years of record and A is expressed in events per year.
For k=0 we get

ayT
)”‘(_a_k_)"‘cov(d’k) 1

2
var(yr) = (In (kT))zvar(deTvar(X) (12)

6 Single station analysis
If y, the exceedance of the threshold yg, is a GPD variate then for y,>y, then CDF is

readily seen, by insertion of the GPD form in the standard expression for a truncated dis-
tribution, to be again of GPD form with the same value of the shape parameter k but with
scale parameter d; given by
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k
dg = dy(1-——s
5 0( do )
Since from (3) the ratio B;/B, determines &, the ratio is not necessarily affected by a

change of threshold. Also from (3) the mean exceedance of the higher threshold is given
by

B, = By(1—s) (13
dp

Davison (1984) suggests a plot of mean exceedance against threshold as a means of
choosing a suitable base value above the (non-linear) lower portion of the graph. While
the constancy of the ratio b/by and (13) provided some guidance in the choice of thres-

hold they were less than satisfactory and so it was decided to accept the lowest threshold
for which the following three criteria held:
(a) the process of exceedances followed the GPD

Since we are especially concerned with the higher values of the CDF, the "global’ test of
) . . 12 i
fit was based on its ordered values weighted by the mean values and was o n—:_l-F ;
i=1 ,

. 2n+1)(2n+3)
and variance R
6(n+1) 180n(n+1)

Arbitrarily it was decided to accept only those values within one standard error of the
mean; in all cases the CDF values generated by the PWMs were very close to the mean.

The pattern of F over (0,1) was examined by means of a test of spacings (Pyke 1965); he
lists a number of tests including
n+l 1

H=Y

i=1

which has mean

Tl InD;, D;=F~F;_,;

Because of the number of ties it was decided to use instead a closely related statistic
A+l

S =¥ D;InD;
=1

In Appendix B the following results are obtained:

n+l
ES)=-% —:— = —(In(n+1.5)-1+y) where v is Euler’s constant

i=2
n+l 2

var(S)= Y _—12——”—2—(26—-——1) which is small even for modest sample sizes
= 1 n+

S has its minimum when each D;= :_1 and the sample CDF values have a perfectly reg-
n

ular pattern on (0,1).
Values of $ near to the maximum of zero indicate highly clustered CDF values

Arbitrarily, S>E(S )+\} var(S) was regarded as too clustered while S<E(S )—2\/ var(S) was
rejected as too regular (superuniform).
(b) the process of counts was Poisson
The interoccurrence times were employed and, as well as the equality of the mean and

standard error for exponential variates, the test of Hollander and Proschan (1972) was
used. Again values had to be within one standard error of the mean.
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(c) the fit of eqn (9) was tested by calculating r, the correlation coefficient, between
Nyo(l—FO(s)) and Nys, the number of exceedances of the higher threshold s. The

mean, standard deviation and also the individual values of the residuals for a series
of s-values were taken into account, with special attention paid to the ten highest
s-values. Asr was usually higher than 0.99, the necessarily rather subjective exami-
nation of the residuals was the main element of this test.

6.1 Application

For their years of record in the period 1941-1986, daily totals in excess of 20 mm and
their dates of occurrence were extracted for a selection of stations in the dry coastal strip
of north Leinster (Fig. 1). The set of stations was chosen because the terrain is relatively
uniform and the systems causing the rainfall usually affect the whole area about the same
time. A daily total was regarded as a peak only if no higher daily fall occurred within the
preceding or following three days; this was an attempt to reduce dependence between
peaks, as the GPD has so far been shown to be valid only in the case of independent
exceedances. There were generally about three peaks per year and these we may reason-
ably expect to be independent.

Next the variation of by the mean exceedance and b,/bg, which determines the shape

parameter, were found for a series of thresholds 21, 22..., the upper limit being where the
number of exceedances was between 5 and 15. Perusal of the variation of by and b/bg

with threshold enabled a reasonable starting value to be chosen. Conformity to the cri-
teria (a) to (¢) was examined for thresholds at or above above this value and the lowest
base conforming to the criteria accepted. For this threshold the parameters of the GPD
plus their variances and covariance, the Poisson rate parameter plus its variance and the
quantiles for 50, 100 and 200 years and their standard deviations were estimated from
eqns (3) to (12). The results are given in Table 1 and were used to decide the (arbitrary)
criteria for the regionalisation scheme.

7 Regionalisation-Pooling of records
The values of the 50-year return period, RP5j, were examined and only those within one

standard deviation (SD) of the median of the set were used. Of this set only those sta-
tions whose shape parameter k was within one SD of the median were retained. The
regional value of the shape parameter k was taken to be the weighted mean of the set.

As weights n;, the number of exceedances, were used.

The lowest threshold of the set was then considered as a base value. If more than one
station had this base as threshold, then the one with the highest rate parameter was
selected. Stations with thresholds higher than the base were regarded as having truncated
versions of the basic curve for the region. For a station with threshold s units above the
base y,, the equivalent scale parameter was assumed to be

d %o
do= =G "
(1__R_s) §
dor

The mean (weighted by n;) over the set of stations of the dj values then determined dyp,
the regional scale parameter for the base yg.

The regional rate parameter Agp was then obtained as the weighted mean of the set of
values
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Figure 1. A sefection of lowland stations from the dry coastal strip of North Leinster

-1

k [——
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For the region we then have a base value (0) and the three parameters dyg.kp and Agg.

Since each station has contributed to the parameter values, the standard deviations of the
parameters and cov (kg.dgp) can be estimated from the three sets of values. Quantiles for

any return period and their standard deviations can then be generated.

7.1 Example

The 17 stations in Table 1 are all lowland stations in the dry eastern coastal strip of north
Leinster (Fig. 1). The median value of RPsq is 63 mm and station number 12 was elim-

inated as its estimated RP5q was too low. The criterion for k eliminated station 8 whose

highest fall was recorded during an intense thunderstorm in June 1963 which nearby sta-
tion 9 largely escaped. The remaining 15 stations were then pooled giving the results
shown in Table 2; these determine a reference curve for the region and enable us, when
estimating the return period of a daily total at any lowland station of the region, to
assume a base of 20 mm, a scale parameter of 6.390, a shape parameter of -0.102 and a
rate parameter of 3.727. The SDs of the GPD parameters are less than those of the indi-
vidual stations but the SD of the rate parameter is higher. The regionalised covariance is
lower than that of the individual stations. The resulting SDs of the regional quantiles
appear too low and, if the SDs of the parameters are accepted as realistic, the covariance
would need to be lower in order to get more ’realistic’ error estimates; it would be rea-
sonable here to assume a covariance of zero.

8 Conclusions

The combination of a Poisson process of occurrences and a GPD distribution of
exceedances is shown to lend itself readily to a regionalisation scheme. Even for indivi-
dual stations the POT method of extreme value analysis has the advantage over the
annual maximum (AM) method of enabling larger sample sizes to be extracted from the
same period of record. Here the requirements of the theory were often met by a process
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Table 1. Peak over Threshold Analysis of Daily Rainfall

Stn Thr PWM Cov RP50 RPIO(] RPZOO
. Years mm N b d 5?2 k 2 @k A s mm mm mm
41-86 280 68 7.801 6.230 143 -0201 0.022 0.116 1.478 0.032 71x12 82+18 94+27
41-86 290 49 7.594 5918 1.82 -0221 0.032 0.156 1.065 0.023 67+12 77+18 90+28
41-86 250 101 7.836 7.350 1.31 -0.062 0.014 0.099 2.196 0.048 658 72+12 79+16
41-86 250 85 7382 7.036 140 -0.047 0.016 0.110 1.848 0.040 617 6710 73t14
41-86 21.0 143 6.331 5264 049 -0.168 0.010 0.047 3.109 0.068 639 72+14 82+19
54-86 21.0 96 8.110 6.853 1.19 -0.155 0.015 0.089 2.909 0.088 73+14 83t19 95+27
50-86 20.0 114 7409 7.062 092 -0.047 0.010 0.066 3.081 0.083 60+8 66+11 73+14
60-86 25.0 71 8407 5794 129 -0311 0.027 0.118 2.630 0.097 81127 112443 136165
48-86 21.5 120 8.029 7.177 1.11 -0.106 0.012 0.085 3.077 0.079 70+11 79+15 88+20
10 41-86 23.0 116 7.642 7.054 1.13 -0.077 0.013 0.090 2.522 0.055 640 7212 79+16
11 41-86 21.0 156 7.263 6441 0.65 -0.113 0009 0.053 3.391 0.074 66+9 74+12 8317
12 41-86 22.0 106 7.902 9.128 1.85 +0.155 0.014 0.136 2.304 0.050 535 5616  58+7
13 44-86 255 67 7.507 7.098 1.93 -0.054 0.032 0.156 1.558 0.036 618 67+12 7416
14 44-86 230 80 7.369 6.694 137 -0.092 0.017 0.111 1.860 0.043 61+9 68t12 76+17
15 64-86 200 75 6943 6.358 1.28 -0.084 0.018 0.108 3.261 0.142 61t11 6715 75+20
16 52-86 20.0 123 7.028 6.540 0.84 -0.069 0.011 0.070 3.541 0.100 619 67+12 74*16
17 44-86 21.0 127 6.650 6.089 0.79 -0.084 0.012 0.073 2.953 0.069 5948 65+11 73%15

Key: Thr=threshold; N=number of exceedances; by = mean exceedance; d=scale parameter of GPD;
54 = estimated variance of d; k=shape parameter of GPD; A = Poisson rate parameter;
RPs, = 50-year return period; standard deviation follows +

53

O 00~ N B W N

Table 2. Estimates of Regional Parameters for base value 20 mm

SmNo 1 2 3 4 5 6 7 9 10 11 13 14 15 16 17
dyy  5.709 5.248 7.007 6.593 5.196 6.720 6.964 7.007 6.819 6.413 6.539 6.277 6.306 6.540 5.979
-k 0.201 0.221 0.062 0.047 0.168 0.155 0.047 0.106 0.077 0.113 0.054 0.092 0.084 0.069 0.084
Ay 4.816 3.985 4.670 3.930 3.632 3.398 3.081 3.882 3.993 3.962 3.562 2.945 3.261 3.541 3450

Weighted Means dog=6.390:0.325; kz=—0.102+0.048; cov(dog kz)=0.019; A¢z=3.727+0.471
Retum Period RPsg=64+2; RP g=T244; RP1si=T7%5; RP3y=80£6

of occurrences of about 3 per year and this increased sample size should produce a
marked reduction in the SDs of the quantile estimates compared with the AM method for
a single station.

The pooling of the station estimates requires the broad assumptions of a basic thres-
hold, Poisson rate parameter and GPD parameters which apply throughout the region.
The results in Table 1 and in Table 2 show that, for a suitably homogeneous rainfall
region, the assumptions are quite tenable. It is intended to extend the analysis to other
larger areas.
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Appendix A Variances and covariance of the order statistics of the GPD

For the i order statistic the p.d.f. is

1 i1 ~i 1 j
e i 1— n-—i
FO=y) B(i,n—i+1)F O)(1~F (»))* dF (y) where B() is the B function
For the GPD with k#0
% i-1r1_ 7—i
E@) = k._~__8(m =~ L(l ~(I-FOYIFGY A-F O dF ()
_d|,_BGn-itktl) _‘1’:'I n-p+1
k B(i,n—i+l) % pu1 NPHhtL
Similarly
a4 =opr+l S p—s+l
E(v2) = 1-
0= 2 [ 2H n—r+k+1 gn—s+2k+1]
&2 "2 p-r+l = p—s+l Y
Hence var(y;) = — 7 [Hn YY) —(g PRI }
Also

EGiy) = E(l = (-FYf = =Ft + (=F)(-F3)9)

But

B(sa—s+k+l) = n-r+l

E((1-F)b) = =
(A=) B(s,;n—s+1) ) n—r+k+l

n!
r-Di(s—r—D!(n—s)!
f(Fr’Fs) = CFrr—l(F:_Fr)s—r_l(I_F.r)n‘derdF.r

Also for r<s and with C =

As suggested in David (1981) let y,=F and y,y,=F,. Both y; and y, range 0 to 1 and the Jacobian of the
transformation is y,. Then we have

FOry) = ConiyD ™ 0oy ™ (132 yadnidy,
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But (1-y,y,)* = E (ylyz)' where (—k), = —k(~k +1)(—k+2)...(~k+—1) and (—k)¢=1 gives
=0

2 = -
E [(1—1:,)"(1— :)k]=LCEB(s+t,n—-s+k+1)B(r+t,s—r)( K
2 ]

Ry | (kDD R A2+ 1) (r+2)
ntk+l | 2tk (n+k+2) | 3tk L)(ntk+2)(n+k+3)

o< B(r,s-r)B(s,n—s+k+1) [1 }
. n
using B(m+1.n-m) = TB(m,n—m)

2
E [(I—F,)"(l— :)"] = %CB(r,s—r)B (s,n—s+k+1)F (~kr n+k+1,1)

I'(n+k+ 1) {(n+2k—r+1)
T(n+2k+1)[(n+k—r+1)

where F(—kr n+k+1,1) = is a hypergeometric function (Sneddon 1956)

Substituting for C we get

ke ] 42 T DD=s e DR 2k—r+ D+
£ [(I FYA-F) ]_ k* T(r=—s+D0(n+k+1)D(n+2k+ D0 (n+k~r+1)

_ d2 2= n—p+l " n-m+k+l
T2 o n—p+k+l \H n—-m+2k+1 } r<s

Fori<j

d?. p=i
EQ@y)) = e [1 -T1

n-p+l  # pp+l P pepik+l ™ p—m+l }
p=1

n—p+k+1 pl} n~p+k+1 I:{ n—p+2k+1 £Il n-m+k+1

Subtracting E(y,)E(y;) we get

™ n-mtl n=p+k+l 23 n-p+l .
0= 3 [El — ‘E npr2il Wrpeern)|

_ " p-m+1 npil

- ”"'(y‘)(g Fa—e (pr_Il ki)

m=n

For k=0 there is the result var(y)=d* Y —17 {Gumbel 1958) and from the above we have

m=n—i+1
cov(y;.yj=var(y:)
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n+1 InD;
Appendix B The Spacings Statistics: S- Z D;lnD; and H= 2
i=1

In the notation of Wilks (1962) spacings have a Dirichlet distribution D(l,l,...l,n-k+1) for k spacings from

a sample of n values, k<n, ¥'D;<1. Hiseqn. (7.7.6) leads to
i=1

n+l
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T4 +ry) - - - T+ (14+n)
T(l4rptr; - - - retn)

ED/D}---D{)= [B1]

If we consider the n+1 spacings Dy,D,.D3,...D,41,0,:1=1-Y.D;, the same distribution applies, but with
i=1

4
degeneracy. Exploiting ai;D;“=D;“ {nD;Y DA=E(D* (inD;)),r=1,2... Since 0<D;<1,
o
the order of differentiation and integration can be changed and we get
ar
oo’

EMD7)=ED{ (nD;))
ar+s

doop*

Hence from [B1] we get

d T{I+o)l'(1+n)

Similarly

DD P=D,"D f(inD;y (InD;) and so on.

E(D; InD; — B2
¢ 0=Gy oo T(l+o+n) Jomt (B2
Using the notion of Scheid (1968) for the digamma function, (o) = T 11+ @ o —TI(+a)
Then W(0) = —y=~0.5772 and ¥(n) = E———Y when # is an integer.
i= 1
Successive differentiation yields W™ (n) = (—1Y"m![-E(m+1)+1+ ! D(n) is

2m+1 3m+1 +
the trigamma function and £(r) = Z—‘
i=1 b
From [B2] E(D; InD;)= ——il (F(1)-F(n+1)
n

n+l
Hence E(S)=-Y l and is well approximated by —(In(n+1.5)+y-1)
=2 !

Similarly, with 0=0 we get E(H) =¥(0)-¥(n) = —Zl =—(In(n+0.5)+y)
i=1
Variances

ESH= (n+l)E(D-Z(Ian)2)+n(n+1)E(D‘D AnD;InD ;)

= <n+1)(—E<D ozt (A D (5= EDFD Pom1 po

aaﬁ

= 2 1y ) 2 g 2 M gty 2
= n+2‘P 2)-P(n+2)+ 2 (P(2)-Y(n+2)) +n+2 (P(1)-¥(n+2))

Since E(§) =¥(1)-¥(n+1) we get

- ) m My p oA
var(8) = ——2—‘11 (1)-¥P(n+1) = ZT_;:Z_(__I)
i=2

Al oo __2 ___"_1
S n~yo0 var(S)—» ( )

The same method with o=0 and B=0 yields

n

var (H) = ———‘I’(”(O) Yy = 2——_ e

sll

As n—yoo var(H)—

T while the result in Darling (1953) is (o 1(——)
6(n+1) J 6 nel
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Third and fourth moments about the mean

Proceeding as above pa(H )= ; +11)2 YO0)-¥P(n) but the expression for S becomes more complicated:
n
H15(8) = O (1) P 4 1)t —— 1)
(n+2)(n+3) (n+2(n+3)

The coefficient of skewness \]E has values for H of -0.49, at n=30 and of -0.27, n=100. For S the values
are +0.54 and 0.32 respectively.

1
H)=
ha(H) (n+1)®
This gives a kurtosis excess for H of about 0.36 at n=30 and of 0.15 at n=100. For S values of a similar
magnitude may be expected. This lends plausibility to using measures based on standard error as rough
tests.

The advantage of S over H is that ties contribute only a small amount to S while for H the method of break-
ing ties is crucial. Since rainfalls are read to 0.1mm, it was decided to break ties (even if multipie) by
assuming a difference of 0.04 mm between each pair.
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