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1 Introduction 

Because of the high spatial variability of rainfall, the return period of  a given daily total 
may be very different at neighbouring stations. Since the period of record of  most sta- 
tions is less than 50 years, the estimates of 100 to 200 year return periods commonly 
required by hydrologists have a high standard error. Regionalisation or pooling of  
records is an attempt to meet these difficulties. In the British Flood Studies Report 
(1975) a regional growth curve was defined based on Jenkinson's method of  quartile 
analysis of the generalised extreme value distribution (GEV). This annual maximum 
(AM) method was evaluated by Hosking et al. (1985) and an alternative AM method 
based on PWM estimates of GEV parameters proposed. For individual stations Van 
Montfort and Witter (1986) employed a POT method and, using maximum likelihood 
(ML) parameter estimates, they concluded that the GPD was quite applicable. For 
extreme rainfall series the shape parameter, k, of  the GPD is usually negative; for this 
case Hosking and Wallis (1987), in their comparison of ordinary moment, PWM and ML 
estimates of the GPD parameters, concluded that, while the ordinary moments provide 
the estimates with the lowest RMSE, in the most frequently encountered cases (0>k>- 
0.2) the PWMs have only slightly higher RMSE but have much lower bias. This latter 
property is most important to a regionalisation scheme and, as the main aim of this paper 
is the development of such a scheme, the PWM method of estimation was adopted. 

2 Generalised Pareto distribution-PWM parameter estimates 

Pickands (1975) showed that the GPD arises as a limiting form of  independent 
exceedances of  a high threshold. When k<0 the GPD arises as a compound of  exponen- 
tials whose mean has a gamma distribution (Johnson and Kotz 1970). This lends plausi- 
bility to using the same distribution for both summer and winter rainfall as was done in 



2 8 2  

this study. A GPD variate has the form 

y = d(1- (1-F)k)  (1) 

where y(>0) is the exceedance of a set threshold, d is a positive scale parameter and k is 
a shape parameter which in applications is usually between +0.5 and -0.5 (Smith 1984). 

When k is positive y is bounded above and when k=0 the GPD reduces to the exponential 
form. The inverse form is 

1 

F = 1 - ( 1 - k y ) k  k~0 (2) 

Hosking and Wallis (1987) give the GPD parameters in terms of the PWMs E(y) and 
E(y(1-F)), where E is the expectation operator, and also give an asymptotic expression 
for the covariance matrix of the two parameters. 

d d(k+3) 
Here the PWMs B 0 = E(y) = 1 - ~  and B 1 = E(yF) - 2(k+2)(k+l) are used giving 

4(B~ )_3 B1 
~o B~ ) 

k - - -  and d = - 2  
B1 1-2 B1 1 - 2 ~  

Bo Bo 

(3) 

3 Sample estimates of the PWMs 

Considering an ordered sample ( Y l , Y 2 ,  " " ' Yn), then after the manner of Kendall (1975) 

n n . . , /!  . . 

E(i~=l(i-1)Yi):'= ~2"= ,t . . . .  -z)~: ,n -t""IzF(z)'-l(X-F(z))n-'dF(z) ) ! z 

n - -  [ 

=n(n-1) f zF(z )dF(z)~  . (n-2)!.  F(z)i_2(l_F(z))n_i. 
"~ ~ (t-2)!(n-t)! ' 

1 E(~( i -1 )y  i) = IzF(z)dF(z) = E(yF) 
n(n-1) i=1 

Thus the GPD parameters may be estimated from the (ordered) sample values since 

1 n 1 n 
b o = "~i~y i . =  and b 1 - - - n  (n - l )  i=l]~(i-1)Yi (4) 

are unbiassed estimates of the first two PWMs 

& (n-i) 
Hosking and Wallis (1987) employ ot 1 = :~n(--~_l)y i as an estimator of E(y(1-F) but 

since al+bl=b0 their formulae and (3) are equivalent. 

4 Covarianee and variances of the PWMs and of the GPD parameters 

Since the mean exceedance b 0 does not use the ordering of the values it is readily shown 
that 
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a2 b 2 

var(b~ n(l+2k)(l+k) 2 - n(l+2k) k # 0  

d 2 bo 2 
= - - =  k = 0  

n n 

Since bl weights the ordered sample values, we have from (4) 

nZ(n-1)2var(bl) = ~ (i-1)2var(yi)+ ]~_.(i-1)(j-1)cov(yi,Yj ) 
i=1 i~j 

Using the properties of the GPD we get (Appendix A) 

7 d2 __ l i  n-r-'7~+an-r+l " n-r+a ] var(Yi) = [rl=ll (r__~l )2 k ~ 0  n-r+k+l 

2 n 1 
= d  • - 7  k = 0  

r=n-i+l 

and i < j 

c~ [rSI=l n-m+k+ln-m+l " I-Ip=l n-p+k+ln-p+l l k "O 

=var(Yi) k =0 

From these expressions for the variances and covariances of the sample order statistics 
we can obtain var (bl) and in addition 

1 (i_l)var(yi)+~.~(i+j_2)cov(yi,yj) cov ( bo,b 1) n2tn-1), ~ , ,~ 

Now the usual method of finding a first order approximation of the variances and covari- 
ances of functions of random variables (Kendall and Stuart 1977) can be applied to the 
GPD parameters of eqn (3). 

bl 4var(g) 
Putting g='-~o we get var(k)= (1_2g)4 (5) 

where var(g) = ~o2 (var(ba)+(g)2var(bo)-2g cov(bo,bl)) , k#O 

4(A 2var(bo)+C2var(bl)-2AC cov(bo,bl) ) 
and var(d) - (6) 

where 

A l+2g(1-g) and C= 1 
2g-1 2g-1 

Finally 

(2g-l)  2 
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4bl ( 4bobl-2b ~-bo2 )var( bo)+4b 3o var(bl )--4bo( 5bobl-2b 2-boZ )CoV ( bo,bl ) 
cov(d,k) - (b~ 4 (7) 

For 

d 2 
k=O var(d) =-~var(y) = - -  (8) 

n n 

In principle the expressions given here have the advantage of being valid for samples of 
size n; in practice the asymptotic expressions given in Hosking and Wallis (1987) or even 
the ML expressions (Smith 1984) gave similar results for the sample sizes (>40) encoun- 
tered in the ensuing work. 

5 Quantile estimation 
Assume that the process generating the occurrences is Poisson with rate parameter 3. 
independent of the process of exceedances of the threshold Y0 (with CDF F0); then the 
number of exceedances ofy+y 0 in T time units has the average value 

Ny = ~oT(1-Fo(Y ) ) (9) 

By definition ifNy=l then Y=YT is the exceedance having return period T. Hence 

1 
FO(YT) = 1 3.oT 

For the GPD 

YT = d(1-(XoT)-k) k~O 

=-dln(3-0T ) k = 0 (10) 

On the assumption that the covariances (d,k) and (k,~.) are zero, the usual first order 
approximation about the true mean (m) yields 

OYT OYT 
+2(--~'-)m (--~-)mC~ (d,k ) (11) 

All these quantities can be obtained from eqns (3) to (10) and by using var(~.)=~./t where 
t is the number of years of record and 3- is expressed in events per year. 
For k=O we get 

var(yz ) = ( ln (3.T ) )2var ( d)+ d-ci?--var(3. ) (12) 

6 Single station analysis 
If y, the exceedance of the threshold Y0, is a GPD variate then for ys>Yo then CDF is 
readily seen, by insertion of the GPD form in the standard expression for a mancated dis- 
tribution, to be again of GPD form with the same value of the shape parameter k but with 
scale parameter d s given by 
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d s = d 0 ( 1 - i s  ) 
ao 

Since from (3) the ratio B1/B o determines k, the ratio is not necessarily affected by a 

change of  threshold. Also from (3) the mean exceedance of  the higher threshold is given 
by 

B s = B0(1--~0 s ) (13) 

Davison (1984) suggests a plot of mean exceedance against threshold as a means of 
choosing a suitable base value above the (non-llnear) lower portion of the graph. While 
the constancy of the ratio bl/b o and (13) provided some guidance in the choice of thres- 

hold they were less than satisfactory and so it was decided to accept the lowest threshold 
for which the following three criteria held: 

(a) the process of exceedances followed the GPD 

Since we are especially concerned with the higher values of the CDF, the 'global '  test of  

F fit was based on its ordered values weighted by the mean values and was n : ~  n+l  i 

2n+l  (2n+l)(2n+3) 
which has mean - -  and variance 

6(n+l)  180n(n+l) 2 

Arbitrarily it was decided to accept only those values within one standard error of the 
mean; in all cases the CDF values generated by the PWMs were very close to the mean. 

The pattern of  F over (0,1) was examined by means of a test of spacings (Pyke 1965); he 
lists a number of tests including 

n+l  l 
H = ~ ---:---lnDi, D i = F i -F i_  1 

i=1 n+l  

Because of  the number of  ties it was decided to use instead a closely related statistic 

n + l  
S = ~_.DilnD i 

i=1 

In Appendix B the following results are obtained: 

E ( S ) = _-~* t = _(  in ( n + l .5 )_ l + T) where Tis Euler 's constant 
i=2 l 

n+l 1 n rt 2 
var(S)  = ~ 777( - -2 - -1 )  which is small even for modest sample sizes 

i 2 i=2 

1 
S has its minimum when each Di='-s 1 and the sample CDF values have a perfectly reg- 

ular pattern on (0,1). 

Values of S near to the maximum of zero indicate highly clustered CDF values 

Arbitrarily, S > E ( S ) + ~  was regarded as too clustered while S < E ( S ) - 2 ~  was 
rejected as too regular (superuniform). 

(b) the process of  counts was Poisson 

The interoccurrence times were employed and, as well as the equality of the mean and 
standard error for exponential variates, the test of Hollander and Proschan (1972) was 
used. Again values had to be within one standard error of the mean. 
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(c) the fit of eqn (9) was tested by calculating r, the correlation coefficient, between 
Nyo(1-Fo(s)) and Nys, the number of exceedances of the higher threshold s. The 

mean, standard deviation and also the individual values of the residuals for a series 
of s-values were taken into account, with special attention paid to the ten highest 
s-values. As r was usually higher than 0.99, the necessarily rather subjective exami- 
nation of the residuals was the main element of  this test. 

6.1 Application 
For their years of record in the period 1941-1986, daily totals in excess of 20 mm and 
their dates of occurrence were extracted for a selection of stations in the dry coastal strip 
of north Leinster (Fig. 1). The set of stations was chosen because the terrain is relatively 
uniform and the systems causing the rainfall usually affect the whole area about the same 
time. A daily total was regarded as a peak only if no higher daily fall occurred within the 
preceding or following three days; this was an attempt to reduce dependence between 
peaks, as the GPD has so far been shown to be valid only in the case of independent 
exceedances. There were generally about three peaks per year and these we may reason- 
ably expect to be independent. 

Next the variation of b 0 the mean exceedance and bl/b o, which determines the shape 

parameter, were found for a series of thresholds 21, 22 .... the upper limit being where the 
number of exceedances was between 5 and 15. Perusal of the variation of b 0 and bl/b 0 
with threshold enabled a reasonable starting value to be chosen. Conformity to the cri- 
teria (a) to (c) was examined for thresholds at or above above this value and the lowest 
base conforming to the criteria accepted. For this threshold the parameters of the GPD 
plus their variances and covariance, the Poisson rate parameter plus its variance and the 
quantiles for 50, 100 and 200 years and their standard deviations were estimated from 
eqns (3) to (12). The results are given in Table 1 and were used to decide the (arbitrary) 
criteria for the regionalisation scheme. 

7 Regionalisation-Pooling of records 

The values of the 50-year return period, RP5o, were examined and only those within one 

standard deviation (SD) of the median of the set were used. Of this set only those sta- 
tions whose shape parameter k was within one SD of the median were retained. The 
regional value of the shape parameter k R was taken to be the weighted mean of the set. 

As weights ni, the number of exceedances, were used. 

The lowest threshold of the set was then considered as a base value. If more than one 
station had this base as threshold, then the one with the highest rate parameter was 
selected. Stations with thresholds higher than the base were regarded as having truncated 
versions of the basic curve for the region. For a station with threshold s units above the 
base Y0, the equivalent scale parameter was assumed to be 

d o - ds _ ds(~-)  kR 
*R 

(1- d-~-ffs) 

The mean (weighted by ni) o v e r  the set of stations of the d o values then determined d0R, 

the regional scale parameter for the base Y0. 

The regional rate parameter )'oR was then obtained as the weighted mean of the set of 

values 
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13. 

12, 

17. 15.16"' 10.~ 
7. 

6. " 3 

F i g u r e  I. A selection of lowland stations from the dry coastal strip of North Leinster 

-1 

~-0s = ~-s(1- d-~-e s)-~-R 

For the region we then have a base value (0) and the three parameters d0R,k R and ~-0R. 

Since each station has contributed to the parameter values, the standard deviations of the 
parameters and cov(kR,doR ) can be estimated from the three sets of  values. Quantiles for 

any return period and their standard deviations can then be generated. 

7.1 Example 
The 17 stations in Table 1 are all lowland stations in the dry eastern coastal strip of north 
Leinster (Fig. 1). The median value of RPs0 is 63 mm and station number 12 was elim- 

inated as its estimated RP5o was too low. The criterion for k eliminated station 8 whose 

highest fall was recorded during an intense thunderstorm in June 1963 which nearby sta- 
tion 9 largely escaped. The remaining 15 stations were then pooled giving the results 
shown in Table 2; these determine a reference curve for the region and enable us, when 
estimating the return period of  a daily total at any lowland station of the region, to 
assume a base of 20 mm, a scale parameter of 6.390, a shape parameter of -0.102 and a 
rate parameter of 3.727. The SDs of the GPD parameters are less than those of the indi- 
vidual stations but the SD of the rate parameter is higher. The regionalised covariance is 
lower  than that of the individual stations. The resulting SDs of the regional quantiles 
appear too low and, if  the SDs of the parameters are accepted as realistic, the covariance 
would need to be lower in order to get more 'realistic'  error estimates; it would be rea- 
sonable here to assume a covariance of zero. 

8 Conclusions 

The combination of a Poisson process of occurrences and a GPD distribution of 
exceedances is shown to lend itself readily to a regionalisation scheme. Even for indivi- 
dual stations the POT method of extreme value analysis has the advantage over the 
annual maximum (AM) method of enabling largcr sample sizes to be extracted from the 
same period of record. Here the requirements of the theory were often met by a process 
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Table 1. Peak over Threshold Analysis of Daily Rainfall 

Stn Thr PWM Coy RPso RPloo RP2.oo 
No. Years mm N b 0 d s 2 k s 2 (d,k) ~. s 2 mm mm mm 

1 41-86 28.0 68 7.801 6.230 1.43 -0.201 0.022 01116 1.478 0.032 71+12 82#_18 94+27 
2 41-86 29.0 49 7.594 5.918 1.82 -0.221 0.032 0.156 1.065 0.023 67+12 77+18 90+-28 
3 41-86 25.0 101 7.836 7.350 1.31 -0.062 0.014 0.099 2.196 0.048 65+_8 72#_12 79+_16 
4 41-86 25.0 85 7.382 7.036 1.40 -0.047 0.016 0.110 1.848 0.040 61_+7 67_+10 73+14 
5 41-86 21.0 143 6.331 5.264 0.49 -0.168 0.010 0.047 3.109 0.068 63_+9 72#.14 82_+19 
6 54-86 21.0 96 8.110 6.853 1.19 -0.155 0.015 0.089 2.909 0.088 73_+14 83+19 95+27 
7 50-86 20.0 114 7.409 7.062 0.92 -0.047 0.010 0,066 3.081 0.083 60-+8 66+_11 73_+14 
8 60-86 25.0 71 8.407 5.794 1.29 -0.311 0.027 0.118 2.630 0.097 81-+27 112-+43 136-+65 
9 48-86 21.5 120 8.029 7.177 1.11 -0.106 0.012 0.085 3.077 0.079 70-+11 79-2-_15 88+_20 

10 41-86 23.0 116 7.642 7.054 1.13 -0.077 0.013 0.090 2.522 0.055 64-+9 72#.12 79+16 
11 41-86 21.0 156 7.263 6.441 0.65 -0.113 0.009 0.053 3.391 0.074 66_+9 74+12 83+17 
12 41-86 22.0 106 7.902 9.128 1.85 +0.155 0.014 0.136 2.304 0.050 53+_5 56+_6 58-+7 
13 44-86 25.5 67 7.507 7.098 1.93 -0.054 0.032 0.156 1.558 0.036 61_+8 67+_12 74-+16 
14 44-86 23.0 80 7.369 6.694 1.37 -0.092 0.017 0.111 1.860 0.043 61_+9 68+_12 76_+17 
15 64-86 20.0 75 6.943 6.358 1.28 -0.084 0.018 0.108 3.261 0.142 61_+11 67_+15 75_+20 
16 52-86 20.0 123 7.028 6.540 0.84 -0.069 0.011 0.070 3.541 0.100 61_+9 67_+12 74+_16 
17 44-86 21.0 127 6.650 6.089 0.79 -0.084 0.012 0.073 2.953 0.069 59+8 65_+11 73_+15 

Key: Thr=threshold; N=number of exceedances; bo = mean exceedance; d=scale parameter of GPD; 
sa 2 = estimated variance of d; k=shape parameter of GPD; ~. = Poisson rate parameter; 
RP5o = 50-year return period; standard deviation follows +__ 

Table 2. Estimates of Regional Parameters for base value 20 mm 

Sm.No 1 2 3 4 5 6 7 9 10 11 13 14 15 16 17 
d2o 5.709 5.248 7.007 6.593 5.196 6.720 6.964 7.007 6.819 6.413 6.539 6.277 6.306 6.540 5.979 
-k 0.201 0.221 0.062 0.047 0.168 0.155 0.047 0.106 0.077 0.113 0.054 0.092 0.084 0.069 0.084 
~.20 4.816 3.985 4.670 3.930 3.632 3.398 3.081 3.882 3.993 3.962 3.562 2.945 3.261 3.541 3.450 

Weighted Means doR=6.390-+0.325; kR=-0.102+0.048; cov(doR,kR)=O.019; ~R=3.727+-0.471 
Return Period RP50=64+2; RP10o=72_+4; RP150=77+5; RP.zoo--80-+6 

of  occur rences  o f  about  3 per  year  and this increased sample  size should  p roduce  a 
marked  reduct ion  in the SDs of  the quant i le  es t imates  compared  wi th  the A M  method  for 
a s ingle station. 

The  pool ing  of  the stat ion est imates  requires  the broad assumpt ions  of  a bas ic  thres- 
hold, Po i sson  rate pa ramete r  and G PD  parameters  which  apply th roughou t  the region.  
The  resul ts  in  Table  1 and in Table  2 show that, for  a sui tably homogeneous  rainfal l  
region,  the assumpt ions  are qui te  tenable.  It is in tended  to ex tend  the analysis  to o ther  
larger  areas. 
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A p p e n d i x  A V a r i a n c e s  a n d  c o v a r i a n e e  o f  t h e  o r d e r  s t a t i s t i c s  o f  t h e  G P D  

For the i th order statistic the p.d.f, is 

1 f(yi=y)= n . . . . .  .Fi-l(y)(1-F(y))n-i dF(y) where B( ) is the ~ function 
zJ (t,n-t+l) 

For the GPD with kr 
I 

E(yl) = d 1 ~(l_(l_F(y))k)F(y)i_l(l_F(y))._idF(y ) 
k B(i,n-i+l) 

= d I 1 B ( i , n - i + k + l  ) d "~ n-p+l 

k 

Similarly 

^ ~ n - r +  1 n - s +  1 E(yi 2) = 1 - 2 1 1 - -  + 
r-l- n-r+k+l s=l n-s+2k+l 

-~d2 [~-I n-r+2k+ln-r+l s=i n-s+l z] Hence var(Yi) = ( [ - I ~ )  
L~-I s=l " -  

Also 

d 2 
E(yi,y:) = -~-E(1 - (1-Fi) k - ( l-F1) k + (1-Fi)k(1-F:) k) 

But 

E((I_F.)k) = B(s,n-s+k+l) r-~ n-r+l 
B(s,n-s+1) ~ n-~+k+l 

n! 
Also for r<s and with C = 

(r-1)[(s-r-1)!(n-s)[ 

f (F,.,Fs) = CF ;-I (F~,-F,.) . . . .  l( l_Fs),-S dF,.dF , 

As suggested in David (1981) let yz=F, and yly2=Fr. Both Yl and Y2 range 0 to 1 and the Jacobian of the 
transformation is Y2- Then we have 

f(Yl,Y2) = C (ylY2f-a (Y2-YlY2) . . . .  I (1-Y2)n-~ yzdyl dy2 
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E[(I_F~)k(I_Fs)~ ] d2 11 = "~C~ ~(1--yly2)k(1--yZ)ky~ly~ -~-1 (1-y2)~-~dyldy2 

(-k), , 
But (1-ylyz) k = t~t---~(&yz) where (-k), = -k(-k+l)(-k+2)...(-k+t-1) and (-k)0=l gives 

ELI_F,)~(I_F~)k'IL ( ] d 2 ' ~  (-k)t = ~ C  ~ B  (s+t.n-s+k+l)B (r+t ~ - r )  . 
k t---o t[ 

[ ~ ( - k ) ( - k + l ) r ( r + l ) ( - k ) ( - k + l ) ( - k + 2 ) r ( r + l ) ( r + 2 ) ]  
B(r~s-r)B(s,n-s+k+l) 1+ ~ 2!(n+k+l)(n+k+2) 4 3!(n+k+l)(n+k+2)(n+k+3) ~"" 

�9 I n  
using B (m+l ,n-m)  = - - B  (re,n-m) 

n 

E [(I_F~.)t(I_F.,)t ] dZ = -s 

where F(-k,r~+k+l,1) F(n+k+l)F(n+2k-r+l) is a hypergeometric function (Sneddon 1956) 
F(n+2k+l)F(n+k-r+ 1) 

Substituting for C we get 

[: q d 2 F(n+l)F(n-s+k+l)F(n+2k-r+l)F(n+k+l) E [O-F,:(1-F,:] = ~-  r(n-~+l)r(n+k+l)r(n+2k+l)r(n+k-r+l) 

n-p+l ([-i. n-m+k+l 
k2 ~,=l n-p+k+l ,,=1 n-m+2k+l ) r<s 

For i < j  

d 2 [ p=i n-p+l P=) n-p+l , ~ n-  +k+l :T-~ n-m+l , ]  E ( y i , Y i ) = ' - ~ I I - I I  " - l - [ ~ * ' '  n-P+~*l + + .~ 11 . . . .  , 
n-p+k+l p=l n-p k 1 p=l n-p+2k+l .=1 n-m+k+l ] L p=l 

Sublracting E(yi)E(yj) we get 

m=j p=/ p=/ d2 f ~  n-m+l ( ~  n-p+k+l ~ n - p + l  ) ]  
COV(Yi 'Y j )  = ~ I I ~  1 1  + - l l  + i<j 

[,~=1 - 1 p=l n-p+2k 1 t,=l n-p k+l J 

m=j p=i n-m+l n-p+l )) 
m=l n-m+/c+ln-m/c+l p=t n - p+g+ l  

m=n 

For k=0 there is the result var(yi)=d 2 x; ~ (Gumbel 1958) and from the above we have 
~'~ rt22 m=n-i+l 

cov(yi,y))=var(yl) 
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n+l n+l IrlD i 
Appendix B The Spacings Statistics: S= ~ DilnD i and H= 

l=t 1:1 n+ l  

In the notation of Wilks (1962) spacings have a Dirichlet distribution D(1,1,...l,n-k+l) for k spacings from 
n 

a sample of n values, k<_n, ~Di<l. His eqn. (7.7.6) leads to 
i=1 
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~. rj F(l+ri)F(r+r)) " " " F(l+rt)F(l+n)  
E(Di' D.i ." Dr') = F(l+ri+r ) . . .  rt+n) [B1] 

n 

If we consider the n+l  spacings D1,Dz,D3,..~Dn+I,D,~+I=I-~_Di, the same dislribution applies, but with 
i=1 

degeneracy. Exploiting br D[X=Df ~ (lnDi) r we have E( Dia)=E(Df ~ (lnDi)r),r=l,2... Since 0<Di< 1, 
be( 

the order of differentiation and integration can be changed and we get 

0 r 
E(D?) = E(O? q ~ i )  r) 

~t~ r 

~ r + s  r 
Similarly ~ D i a D ~ = D i a D ~ ( l n D i )  (lnDjf and so on. 

Hence from 031] we get 

E(Di inDi) = (~a 
F( l+~)F( l+n)  

:~l ~ [B21 

1 ~ct.F(l+a) Using the notion of Scheid (1968) for the digamma function, ~ ( a )  F ( l+a )  

n 

Then W(0) = - y =  -0.5772 and W(n) = ~ - 3 , .  when n is an integer. 
i=1 l 

Successive differentiation yields ~P(m)(n) = (_l),~m![_~(m+l)+l+ 2 _ ~ +  3_~+1 + . . . .  1 �9 --'~-+l I where ~P(l~(n) is 

t 
the trigamma function and ~(r) = ]~ .-7" 

i= I  /" 

From [B2] E(D i InDi) = n--~(W(1)-q~(n+l)) 

n + l  1 

Hence E(S) = - ]~--'. and is well approximated by -(ln(n+ 1.5)+7-1) 
i=2  l 

Similarly, with tx=O we get E(H) =~P(O)-~F(n) = -i~, ~ = -(ln(n+O.5)+y) 

Variances 

E(S ~) = (n+ l)E(Di2(InDi)2)+n(n+ l)E(DiDilnDilnDj) 

=(n+l)(-~a2E(Dia))~=2+n(n+l)(~E(DiaD~))~=t ,~=x 

= 2 ~(a)(2)_~t,O)(n+2)+2.~(~(2)_~(n+2))2+_~(~(1)_W(n+2))2 
n+2 n+z n+z 

Since E(S) = qJ(1)-'q?(n+l) we get 
n + l  ~ 2 
_ t n . 7~  1" var(S)= W(1)(1)-WO)(n+l) = )..~'z - ' - - ~ ( - ' 7 - -  ) 
i=2  l n + , d  o 

A s n o ~  var(S)---> n ~ ( - ~ - I  ) 

The same method with a=0 and ~=0 yields 

1 n 1 
/ t  2 

var(H) = -"-L;-~. ~ ' I s (1 ) (0 ) -~ I . J ( l ) (n )  = 
n 

n+l  i=t i2 n+ l  6 

7t. 2 r? 1 
As n ~  v a r ( H ) - o ~  while the result in Darling (1953) is ( - 7 - - 1 ) ( " 7 7 )  

o k n + l )  O / 1 5 - 1  
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Third and fourth moments about the mean 

Proceeding as above ix3(H)= . ~ 1  9 q~(z)(0)-W(2)(n) but the expression for S becomes more complicated: 
~n+D 2 

I.t3(S ) = 6 W(2~(1)_q.,(2)(n+l)+ 3n ~(~)(t) 
(n+2)(n+3) (n+2)2(n+3) 

The coefficient of skewness ~ has values for H of -0.49, at n=30 and of -0.27, n=100. For S the values 
are +0.54 and 0.32 respectively. 

[z4(H)= ( n ~  qJ(3)(O)-~O)(n )+ 3~t~(H) 

This gives a kurtosis excess for H of about 0.36 at n=30 and of 0.15 at n=100. For S values of a similar 
magnitude may be expected. This lends plausibility to using measures based on standard error as rough 
tests. 

The advantage of S over H is that ties contribute only a small amount to S while for H the method of break- 
ing ties is crucial. Since rainfalls are read to 0.1mm, it was decided to break ties (even if multiple) by 
assuming a difference of 0.04 mm between each pair. 
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