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1 Introduction 

Relating precipitation information to runoff is a fundamental activity of hydrologic 
research. The "information age" has transformed the underpinnings of this 
activity. Whereas in previous times, it was feasible only to perform a few 
calculator-sized computations using a small set of laboriously-gathered rainfall- 
runoff numbers, now investigators may work with widely available data bases con- 
sisting of millions of measurements. Even these bases have scarcely tapped the 
potential of electronic gathering, telemetering, and remote-sensing technology. 

The intention of the present study is to survey the major directions in rainfall- 
runoff (R-R) forecasting methodology, with attempts at deriving a unified frame- 
work for categorizing various modelling classes. We offer commentary on implica- 
tions of modern computational and statistical theory regarding major forecasting 
schemes. Our attention is devoted to "empirical" (in the sense of Clarke 1973) or, 
Synonymously, "systems-theoretic" (e.g. Sorooshian 1983) techniques. These consti- 
tute the major portion of the forecasting literature. This work is not a comprehen- 
sive review: however, we do believe that we have hit upon the major themes, and 
have sketched their logical foundations. 

The organization of this study is the following: The best-known R-R forecasting 
tool, the instantaneous unit hydrograph (IUH),  is reviewed and its characteristics 
are examined with regard to suitability in the case of large data bases. A conclu- 
sion is that when runoff (as well as precipitation) data are available, one Should use 
them in the forecasting mode. The line of thinking leads us (still holding to 
"second order" theory) from the unit hydrograph (which is a linear regression on 
excess precipitation) to the A R M A X  model. We remind the reader that 
" A R M A X "  denotes A R M A  (on the runoff series) with an exogenous variable, 
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which, in this context, is precipitation. Our framework for viewing linear predic- 
tion allows fresh insight into the relations of IUH, and ARMAX forecasting. Curi- 
ously, we are aware of only a few studies in which the resulting forecast actually 
depends on both rainfall and runoff. 

The section on the linear forecasters (i.e., IUH, ARMA, and ARMAX) is fol- 
lowed by a short synopsis of nonlinear predictors, with special attention to ideas 
based on i) Volterra expansions and ii) random IUH's.  

In the closing section we draw the reader's attention to a new-procedure based 
on a pattern recognition device, which has some advantages over all techniques we 
have reviewed. The essential feature is that under fairly general circumstances, 
convergence to the optimal forecaster is assured as the data set increases without 
bound. In fact, an aim of the present exposition is to whet the reader's appetite for 
our methodology, which is expounded elsewhere (Karlsson and Yakowitz 1987). 

The present study is part of a three-pronged attack on R-R forecasting. Its pur- 
pose is to give perspective to the subject and motivation for steps made by the 
other "prongs". Karlsson and Yakowitz (1987) concentrates on experimentally 
exploring the nearest-neighbor approach on actual data (from the Cochocton 
Watershed), comparing our methodology with ARMAX and unit hydrograph tech- 
niques. Yakowitz (1987), the third prong, is a theoretical development which 
demonstrates the consistency and convergence of the method in a rigorous 
mathematical framework. 

2 Unit hydrograph application to forecasting 
The instantaneous unit hydrograph (IUH) is a fundamental pillar of surface hydrol- 
ogy theory and application. For purposes of the present study, there are two 
salient aspects of the IUH R-R modelling: 
1. It is used for runoff forecasting. 
2. There is reason to suspect that when large data bases are available, it might be 
needlessly inaccurate. 

Toward substantiating the first point, Sorooshian (1983) has written: "It  is 
perhaps disconcerting that the most widely applied technique for short interval (24 
hours or less) on-line flow forecasting is still the unit hydrograph". 

Linsley et al. (1982, Sec. 16.11) describes and offers a detailed IUH forecasting 
procedure and an example (the only R-R forecaster in their book). Freeze (1982) 
offers a chart categorizing usages of various R-R modelling devices. The IUH is 
classified as being a forecasting tool (as well as a design aid). The book by Bras 
and Rodriguez-Iturbe (1985, p. 164) states, "Possibly one of the most popular 
hydrologic concepts is the [IUH]". Chander and Shanker (1984), for example, give 
a detailed analysis of on-line prediction of base flow and excess precipitation index, 
so that the classical IUH model can be used in the forecasting mode. 

Let us develop some notation and terminology. Assume that rainfall and runoff 
are stationary sampled data, which we denote by sequences {p(i)} and {q(i)}, 
respectively. Presume that the p (i) 's and q (i) 's have already been "preprocessed" 
to remove baseflow. Then to say that R-R is a linear time-invariant, causal relation 
is equivalent to saying that there exist constants {a(k)}k>_0 so that for any time i, 

M 
q ( i )  = ~ _ , a ( j ) p ( i - - j ) .  (1) 

j=o 

In the general case, M can be infinity. A nonlinear (M-step) relationship 
implies that flows and precipitation are related, for all i, by an expression of the 
form 
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q ( i )  = f ( p ( i ) , p ( i  -- 1),p(i --2), . . . ,p(i - - M ) ) ,  (2) 

where f ( ) is an arbitrary function of the indicated variables. 
Linearity is a very restrictive assumption. On the other hand, it is to be granted 

that linear approximations have served engineers and statisticians well, especially in 
circumstances (thermodynamics or electromagnetic waves) in which it has been 
established that the measurables do satisfy linear differential equations, or in sta- 
tistical analysis when large data sets are unavailable. In precomputer times, when 
IUH techniques earned a central place in hydrology, one could only deal with data 
sets within the computational limitations of human endurance and in the absence of 
the anything like the foundational theory of mathematical statistics of present day. 
Eagleson et al. (1966) articulate this viewpoint. However, a theme of the present 
study and its companion papers (Karlsson and Yakowitz 1987 and Yakowitz 1987) 
is that developments in computers and statistics have made it seem advisable to 
reexamine the utility of the IUH concept. 

We wish to make certain observations: 

2.1 Among linear predictors using precipitation only, the IUH is inclusive: 

To say that a forecaster q (i) depends linearly on the data {p ( j )}j  <i is mathemati- 
cally equivalent to demanding that the forecaster be of the Eq. (~.  If the coeffi- 
cient sequence {a(i)} is absolutely summable (i.e., ]~1 a ( i ) l < o o ) ,  one can 
approximate a predictor with infinite M to arbitrary accuracy by a predictor with 
M finite, but sufficiently large. The statistical problem of choosing the IUH 
parameters {a ( j )  } is not trivial. 

2.2 Regression would seem advisable if M,  in Eq. (1) is "small": 

A standard hydrological practice for choosing parameters is to select the IUH to 
"fit" the R-R data from one or perhaps a few rainstorms. Thus the coefficients are 
determined by solving the system 

M 
q ( i )  = ~_, a ( k ) p ( i - - k ) ,  M <_ i <_ N - - M  (3) 

k = 0  

for the a (i)'s, the p (i) 's and q (i) 's being observed areal precipitation and runoff 
of a single event yielding N data pairs. If  M = N  § 1, then barring some unlucky 
event of probability 0, the a ( i ) ' s  are uniquely determined. If N > M + I ,  then one 
customarily seeks a solution minimizing the squared residual error J ( a ) ,  given by 

N - - M  M 
J (a (O)  .... a ( M ) )  = ]~ ( q ( i )  -- ]~ a ( k ) p ( i - - k ) )  2. (4) 

i = M  k = 0  

Linsley et al. (1982, Sec. 7.8) recommend repeating the process over several 
rainfall events and then in a tricky way averaging the coefficient vectors deter- 
mined by each event. Eagleson et al. (1966) and Hino (1970) describe ways for 
using Wiener filter theory to infer the optimum unit hydrograph. However, it fol- 
lows from Priestly (1981, Chap. 10), for example, that least-squares methods must 
also yield the same optimum linear filter. 

In this computer age, all data analysis options are open: Statistician Efron 
encourages us to "think the unthinkable". We believe that a feasible initial plan of 
action is to use the entire data base for inference of the IUH parameter set 
a = (a(0) ..... a (M)). Some hydrologists have argued that an automated procedure 

foolhardy: One should restrict attention to particularly informative or represen- 
tative events. There is pragmatic merit in this view. But for purposes of 
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scholarship, such investigators should state clearly and algorithmically what it is 
that constitutes good data for R-R calibration. Some hydrologists argue further 
that hydrologic intuition and experience cannot be encoded. We agree that the 
working hydrologist should incorporate all the information and intuition he can into 
analysis of specific basins when undertaking actual applications. But to the 
authors of this manuscript, science rests upon two pillars: (1) the reproducible 
experiment and (2) mathematical deduction. Remove either pillar and stochastic 
hydrology is not a science. For this reason, we urge theoreticians in their research 
expositions, to be fully algorithmic about their procedures, explicitly incorporating 
into their modelling efforts and resulting formulas those guiding principles which 
they think lead tO good hydrographs. 

Presume for  now that the number of R-R data points ranges into the thousands, 
as it does in the data sets we deal with in Karlsson and Yakowitz (1987). If the 
number of regression coefficients M in Eq. (1) is relatively modest (say M = 10 
or 12) and if the IUH model is approximately correct, or even stationary, the esti- 
mates d of a obtained by regression should be accurate. One need not make any 
furthermodelling assumptions, by way of specialized "kernel" classes. 

On the other hand, for larger IUH parameter sets, the perils of least-squares 
methods are legion. Perhaps weighted regression, ridge regression, and so forth, 
have roles here, and in any case, numerical techniques such as related in Lawson 
and Hanson (1974) should be employed to overcome the usual ill-conditioning diffi- 
culties of high-dimensional least-squares problems. (Such difficulties have been 
illustrated in Yakowitz and Szidarovszky 1986, Sec. 6.2.4). 

3 General framework for linear predictors 

The most general framework for linear forecasting is afforded by the Gauss- 
Markov (GM) discrete-time model (e.g. the model in Anderson and Moore 1979, 
pp. 44-45). The model is also known variously as the state-space model (Ljung and 
Soderstrom, 1983, pp. 15), and the Kalman filter model. In the stationary case, 
this model assumes the form 

x ( k + l )  = A x ( k )  + B p ( k )  + O w ( k ) ,  (5) 

q ( k  ) = C x ( k  ) + v ( k  ) , 

where {p(k)} is a given input sequence, {w(k)} and {v(k)} are uncorrelated noise 
processes, and A,  B, C, and D are matrices of appropriate orders. In the IUH 
context, we will take q (k) to be the runoff. We will view p (k) as precipitation, 
which is presumed to be observable. The v(k)  terms can be regarded as measure- 
ment noise, and are unobservable. The statistical assumptions in IUH modelling 
are seldom made explicit, but it is consistent with this literature to take the w (k) 's  
to be zero, and the v (k) 's  to be white noise. 

It is  instructive to see how standard IUH models can be viewed as various spe- 
cial cases of the GM model. Having investigated that issue, it is appropriate to ask 
if there is anything useful left over. 

The general IUH model (Eq. (1) with M finite) can be modelled by Eq. (5), 
with the {w(k)} sequence set to zero. The intention is to make the state x ( k )  
store the past M precipitation observations. Then it is clear that C should be 
taken to be the horizontal vector of coefficients {a (j)} in Eq. (1). Specifically 
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001 .... /ill 
A = . , B = , C = ( a ( 0 )  ..... a (M) ) .  (6) 

0 -  . . 1 01 

We mention that  the discrete-t ime version of the Dooge (1959, pp. 248) t r iangular  
IUH takes the form Eq. (1), with M finite since the kernel is zero except on a 
bounded t ime interval. Thus the preceding discussion covers this case. In  fact, for 
the Dooge kernel composed of two lines, the coefficients can be stated explicitly as 

C ( j / T 1 ) ,  0 ~ j <~ T 1, 

a ( j )  = ~ C ( I _ j / T 1 )  ' T1 <~ j ~ T2" (7) 

I f  M in Eq. (1) is infinite, only certain a( i )  sequences admit  G M  representation. 
But the I U H  model given by Nash  (1959, pp. 115) falls into this representable 
class. In fact, the modelling discussion in that  paper essentially tells us how to 
construct  the representation. In Nash 's  notation, the number of reservoirs is n,  and 
they are identical,  and are determined by the relation 

q v ( j + l )  = [ ( 1 - 1 / k ) q v ( j )  + q v _ l ( j ) ] A t ,  i f v  = 1 ..... n, 

qv(J) = P(J ) ,  if v = 0, (8) 

which we obtain by substituting the finite difference approximation 
(qv(J + 1) --  q v ( j ) ) / A t  for d / d t  qv(t)  in the continuous reservoir model 

dqv 
- -  1 / k  q v  + q v  - 1" 

dt 

In Eq. (8), % ( j )  denotes the outflow of the v th reservoir at  t ime instant j A t .  
A way to put  this model into the mold of Eq. (5) is to take as state vector 

x ( j )  = (ql(J) ,  q2(J) . . . . .  qn(J)). 

Then we get a system consistent with Eq. (8) by defining 

~ l - - A t / k ,  O, �9 . . ,  0 

A = . , O = , C = (0,0 ..... 0 ,1) .  (9) 

o � 9  A t ,  1 - A t / k  /:OJ 
From linear systems theory, one can conclude that  the sequence {a ( j )}  is 

GM-representable  only if it can be written in the form of a finite sum of geometric 
terms 

Q N(q) 
a ( j )  = ~_~ ~.~ Cq ,m(~ ,q) j jm  , (10) 

q = o  rn = 0  

where the Xq'S are real or complex numbers with modulus less than one, and the 
N ( q ) ' s  are non-negative integers. In essence, the constraint that the I U H  be 
GM-representable  is equivalent to requiring that the outflow can be viewed as 
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precipitation routed through a finite number of Nash-like reservoirs. But we 
observe that in contrast to Nash (1959), there is no mathematical reason to take 
the  reservoirs as identical, and they can be interconnected any which way, and 
furthermore, each could have its own tributary, in addition to inflows from other 
reservoirs�9 Dooge (1959) has some generalizations in these directions. Klemes and 
Boruvka (1975) have derived this hydrograph representation in detail�9 

4 Connect ions  with A R M A  streamflow modell ing 

The assertion that runoff is A R M A  implies that {q (i)} satisfies the linear inhomo- 
geneous difference equation, 
N1 N 2  
] ~ f ( j ) q ( i - - j )  = ~ e (v )w( i - - v ) .  (11) 

j = 0  v = 0  

One may place the A R M A  model Eq. (11) into the GM model class by setting the 
p ( k )  sequence in Eq. (5) to zero and using the state to store past values of w and 
q. This can be accomplished by first assuming (without loss of generality) that 
f (0) = 1, and then rewriting Eq. (11) as 

N1 N2  
q(i)  = -  E f ( j ) q ( i - - j )  + ~_,e(v)w(i--v) .  (12) 

j = l  v = 0  

Now take the state vector to be 

x(n)  T = ( q ( n ) , q ( n - -  1) . . . . .  q ( n - - N 1 ) , w ( n )  ..... w (n - -N2) ) .  

Then Eq. (5) satisfies Eq. (11) if A and D are given respectively by 

�9 . . - f  ( N  1),e (0) ,e  (1) . . . . .  e ( N  2 )  
1, 0, . . . 0, 0, 0, . .0,0, 0 
0, 1 . . . .  0, 0, 0, . . 0 , 0 ,  0 

6, 6, 65,6, 6, o, 6, 6 ,6 ,  6 
0, 0, 0,0,0, 0, 0, 0, . .0,0, 0 
0, 0, 0,0,0, 0, 1, 0, . .0,0, 0 

6, 6, 6,6,6, 6, 6, 6, '6 , i ,  6 

" - - f ( 1 ) , - - f ( 2 ) ,  

A =  
~-- row N I + I  

(13) 

D = ( - - e (0 ) , 0  ..... 0 , - - 1 , 0 , . . . 0 )  T (The "-1" is in row N1 + 2). The observable 
output is flow q(n),  and one obtains this by setting C = (1,0 ..... 0). 

The z-transform of any sequence of numbers or vectors such as {bj } is denoted 
by B (z) and defined by 

B(z )  = ~_~bjz - j  (14) 

with j in Eq. (14) ranging over the domain of the sequence index. 
The z-transform transfer function effected by the A R M A  model Eq. (11) is 

E(z-1) w(z) (15) 
Q ( z ) -  F ( z _ l )  

where E( . )  and F(.)  are polynomials of the variable z -1, Q(z)  and W(z)  being 
the z-transforms of the sequences { q (i) } and { w (i) }, respectively. 

Suppose now that the A R M A  runoff is the result of some sort of linear response 
to precipitation. The model of Eq. (11) forces us to conclude that the w(i) 's ,  
which are assumed to be white noise in GM A R M A  modelling, must somehow be 
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related to the precipitation values {p(i)}. This is to say, the z-transformation 
P (z) of the precipitation sequence must satisfy 

P ( z )  = G ( z - 1 ) W ( z )  

for some polynomial G(-). Also, the presumption (12) that runoff depends on a 
moving average of a forcing function implies that the forcing function must be a 
moving average of precipitation, if it is to be believed that runoff depends linearly 
on precipitation, and nothing else. Writing this observation in the form of an equa- 
tion, we conclude that for some polynomial H(.), 

F ( z - 1 ) Q ( z )  = H ( z - 1 ) a ( z - 1 ) W ( z  ) = E ( z - 1 ) W ( z ) .  

Thus G ( z  -1 )  must factor the polynomial E(z -1) in Eq. (15). Perhaps from this 
information and with the help of conceptual modelling, one can discover from the 
roots of E(-) the factor that is attributable to the precipitation moving average 
(i.e., the polynomial G(.)), and the factor that is attributable the hydrogeologic 
process converting rainfall into runoff (the H(.) part of the filter). The interesting 
possibilities stem from the fact that E( ' )  can be found, up to a scale factor, 
without using precipitation data at all, but solely from the runoff data, because this 
is enough to calibrate ARMA models. 

Having made the connection between IUH kernels and ARMA runoff models, 
we observe that while there are mountains of publications on ARMA models for 
runoff prediction with no measurements on precipitation, and mountains of publica- 
tions on runoff prediction based on the IUH, which depends solely on rainfall, it is 
curious that there seems to be few who have noticed the potential of using the GM 
model of Eq. (5) to incorporate both rainfall and runoff data into the runoff predic- 
tion. In this context, the ARMA formula is called the ARMAX model (e.g., Ljung 
and Soderstrom 1983 ), the "X" standing for the exogenous variable (the p( i ) ' s  in 
Eq. (5)). It is not clear to us why a ground rule of forecasting seems to be that 
past runoff observations do not appear in the prediction formula. Usually, one has 
rainfall-runoff pairs available for calibration of the IUH, according to the standard 
formula (4). Presumably the same measuring devices are still available at forecast- 
ing time. 

The essential distinction between the ARMA and ARMAX models is that in the 
latter, part of the forcing term is observable. That is, one can suppose q (i) in Eq. 
(12) can, in an ARMAX regime, be written as 

N1 N2  N3  
q ( i )  = -- ~ f ( j ) q ( i - - j )  -- ~ . ~ e ( j ) w ( i - - j )  -- ~ . ~ b ( j ) p ( i - - j ) .  (16) 

j = l  j = l  j = l  

Here the w(k) 's  are still presumed to be white noise, but {p( j )}  can be any 
sequence. 

In comparing the ARMA and ARMAX viewpoints, we may say that under the 
latter regime we can partially observe the forcing function and allow the decision 
to use this extra information. This agrees with our earlier statement that in 
ARMA modelling, part of the forcing term is a moving average of white noise, and 
part of it is a linear combination of precipitations. The latter component is taken 
as observable in ARMAX but not in ARMA. This information should certainly 
reduce the mean squared prediction error. 

The ARMAX model is accommodated into the GM structure of Eq. (5) by 
breaking out the (observable) precipitation from the ARMA representation of Eq. 
(12). Thus the state vector now stores precipitation as well as white noise: 

x ( n )  T = ( q ( n )  ..... q ( n - - N 1 ) , w ( n )  ..... w ( n - - N 2 ) , p ( n ) , . . . , p ( n - - N 3 ) ) .  
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w(k) Noise Input 

p ( k ) ~  
Output Noise v(,k) 

x ( k _ l ) = ~ ~ ~ i ~  
Figure 1. ARMA state space model 

= q(k] Output 

w ( k ) - -  

p(k) 

Noise Input 

Output Noise 
v(k) 

Output 

Known Ir )ut Figure 2. ARMAX state space model 

Let us compare the ARMA and ARMAX R-R models with an eye toward evaluat- 
ing their mean-square prediction errors. In Figs. 1 and 2, we have given the 
schematic block diagrams of the two processes. An important insight comes from 
noting that because of superposition, the effect of the measured precipitation inputs 
{p (i)} can be eliminated entirely from the prediction error in the ARMAX model. 
To see this, evaluate the trajectory {Y(j)} of the linear system determined by A 
and D and the forcing sequence {p(i)}, presuming the initial state to be zero. 
Then subtract this trajectory {Y(j)} from the full ARMAX trajectory, and what is 
left (call it ~ ( k )  = x (k )  - ~(k) ,  k = 1,2,...) is exactly the ARMA process gen- 
erated by the input sequence of w(k) ' s  alone. Thus the effective noise of the 
ARMAX process is the noise of the ARMA process in Fig. 1, but with the p (k) 
sequence removed. Intuitively, it should be clear that the optimal ARMA predic- 
tor ought to be more accurate with the input noise cbmponent reduced (by removal 
of the p ( k )  sequence). But we can demonstrate this point by use of equations 
from Anderson and Moore (1979, Sec. 3.1). In keeping with their developments, 
let Qw and Qt' be the variances of the sequences w(k)  and p (k) respectively. 
Then at each iteration k,  the squared error ] ~  +1 I ~ of one-step-ahead prediction 
under an optimal (Kalman) filter is recursively calculated 

]~k+l lk  = 1-I(~-~k [k--l) + BQ Bt ' (17) 

where the exact form (given precisely by Eq. (1.9) of Anderson and Moore) of the 
function YI(]~) is of no particular significance, except that it increases monotoni- 
cally with ]~. Now we may see inductively that for ~ k  +1 I k the error variance of 

ARMA and ]~k +1 I k the effective error variance of ARMAX, 
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s > Z k + l [ k  " (18) 

For (by Eq. (1.10) of Anderson and Moore), 

Z l l 0  = Qp + Qw > Qw = ~ l l 0 .  

Now use monotonically H(-) in Eq. (17), and again the fact that Qp + Qw > Q to 
conclude Eq. (18), by finite induction. 

The few works known to us which use the ARMAX estimator and actually 
make the estimate depend on both rainfall and runoff, are Todini (1978), Party and 
Moreno (1982), Copper and Wood (1982a,b), and Kitanidis and Bras (1980). The 
earliest references we know of are Hino (1970), a conference proceeding report 
which Bras and Rodriguez-Iturbe (1985, Sec. 8.4) review, and a very nice and com- 
plete exposition by Kashyap and Rao (1973), based on an IFIPS conference in 
1972. 

In our view, ARMAX modelling is the most elegant method and final word in 
empirical linear forecasting for the runoff response to rainfall. The ARMAX 
model could, in principle, also be made to depend on other hydrologic variables 
such as snowpack, soil moisture, temperature, etc., however an increase in dimen- 
sionality makes the identification problem more complicated. Perhaps a conceptual 
approach to modelling, which incorporates the hydrogeology of the watershed, will 
eventually lead to more parsimonious and effective linear modelling, but the 
authors are not optimistic, since nonlinearities show up in the most elementary phy- 
sical considerations of the process. 

The identification problem has been adequately studied in the systems literature 
(e.g. Ljung and Soderstrom (1983)). The IMSL library has packages for ARMAX 
(as well as ARMA) inference. A conclusion is that estimates of ARMA and 
ARMAX are consistent and the error variance of standard estimators goes to 0 as 
1/n, n being here the length of the data set. 

Admirable surveys of linear R-R estimation methods include Clarke (1973), 
O'Connell and Clarke (1981), Freeze (1982), Bras and Rodriguez-Iturbe (1986), 
and Sorooshian (1983). 

There are two obvious and fundamental weaknesses to IUH and linear systems 
forecasting: 

1. There is no reason to consider that the R-R relationship is linear. Indeed stan- 
dard models for channel flow and infiltration would suggest the contrary. 

2. Statistical methods for IUH, Kalman, ARMA, and ARMAX forecasters are 
second order methods. Second order methods are suited only to least-squares 
estimation (unless the Guassian assumption is made). In particular, second 
order methods are of no theoretical use in estimating the probability 

P[qn+l>--T I qn,qn-1 .... ;Pn,Pn--1 .... ], (19) 

of flood, conditioned on observations in the recent past. However, it is clear 
that stochastic hydrologists would like tools for flood warning problems. 

Whereas Linsley et al. (1982) tell us, "the unit hydrograph has been the main- 
stay of the flood hydrologist...," the case against second-order methodology (e.g, 
IUH) has been aptly stated by Freeze (1982) as follows: 

In order to arrive at a theoretically defensible design flood, it is necessary that 
one consider the measured frequency distribution of the peaks as an estimate 
of the probability density function for the population of peaks from which the 
measured peaks have been drawn. Unlike time series analysis, frequency 
analysis requires knowledge of the full distribution, not just the first two 
moments. 
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5 Parametric nonlinear forecasting 

There exists a multitude of the oft-cited works which describe nonlinear stretchings 
of the IUH mold to make it work better. Some years after Sherman (1932) had 
proposed the unit hydrograph concept, Paynter (1952) argued from purely physical 
grounds that linear models in this context were untenable. Later, Minsall (1960) 
offered experimental measurements which he regarded as contradicting the unit 
hydrograph paradigm. The literature questioning the linearity of the R-R relation- 
ship is enormous. For example, Linsley et al. (1982, pp. 382) have written: 

The question of adjustment of the unit hydrograph is basically an assumption 
that the unit hydrograph is nonlinear .... empirical data on which to judge the 
unit hydrograph linearity .... concept are not conclusive. 

O'Connell (1982) states flatly: 

It is well-known that the response of a catchment to rain is highly nonlinear. 

One can accept the fundamental elaborations of IUH constructs such as baseflow 
and excess runoff at face value as modifications dictated by physical considera- 
tions, or more skeptically view them as not totally implausible fudge factors to 
twiddle for better fit than linearity will allow. Having established that the inven- 
tion of a physically-motivated but unproven nonlinear fudge-factor elaboration of 
the basic IUH is a respectable and publishable activity, there is no apparent end to 
this line of inquiry. We mention a few of the more interesting nonlinear modelling 
efforts to come to our attention. 

Early in the age of IUH, Amorocho (1967) proposed using a nonlinear model- 
ling device (Volterra series) as a generalization of the IUH, We dwell for a 
moment on this approach because it has been influential, and because it has the 
potential of being more inclusive than many of the other nonlinear models. The 
theory, as sketched in Chaps. 2 and 3 of Wiener (1958), shows that a wide class of 
nonlinear functionals mapping the space of squared integrable functions onto itself 
(the mapping taken by Amorocho to model the transformation of rainfalls into run- 
offs) can be represented as an infinite series of compositions of convolutions. The 
richness of this series gives confidence that any conceivable R-R transfer function 
effected by "nature" must be in this class. The motivation of the series is that in 
principle one can obtain an adequate approximation, in the spirit of trigonometric 
polynomials of Fourier theory, by truncation. Standard least-squares methods can 
then be used to obtain the coefficients of the truncated expansion. Of all the non- 
linear R-R modelling efforts, this Volterra series approach has attracted the 
greatest attention by far. We mention Diskin and Boneh (1973), Patry and Marino 
(1983a,b), Jacoby (1966), Napiorkowski and Strupczewski (1981). Amorocho and 
Brandstetter (1971) describe the Volterra scheme in an algorithmic (computer- 
ready) form, and apply it to some actual R-R data. They then compare their tech- 
nique with a standard IUH forecaster; the nonlinear forecaster seems much more 
accurate. Of course, in any algorithmic version, one must truncate the Volterra 
series (most authors restrict attention to two terms). This cuts off the non- 
parametric potential of the Volterra approach. A plan (untried to our knowledge) 
which we think may have some promise is to let statistical methodology be a guide 
as to how many terms to take. In other contexts, Shibata (1984) has explored the 
idea of using Akaike-like criteria to test when the data warrant additional terms in 
a series expansion. 

Other nonlinear modelling efforts to catch our fancy include a random IUH 
model (Rodrigues-Iturbe et al. 1982). Each storm generates a different hydrograph 
by virtue of randomly chosen parameters. For any particular height and time to 
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peak, they use a triangular hydrograph, but presume that the times and heights are 
governed by some known random variable. Thus in a prediction mode, presumably 
one should let the IUH parameters "a" in Eq. (1) depend on the conditional distri- 
bution of times and heights, given precipitation measurements. The precipitation 
dependence of a would make the resulting predictor nonlinear. Patty and Marino 
(1982), Freeze (1982), and others have explored R-R relations of the (differential 
equation) form 

kl  NQN_lq  _ 1 l_l__p 
q k2 --kQ + k2 

which have a conceptual foundation in the Chezy relation of storage to outflow. 
Other studies in replacing the IUH convolution kernel with nonlinear kernels 

include Patry and Marino (1983b), Rao and Rao (1984), and Shengjia (1984). Yet 
other approaches include a conference presentation by Todini and Wallis, which is 
outlined in O'Connell and Clarke (1981), who make the convolution kernel depend 
on the level of precipitation. 

It seems plain from the above citations and the many related efforts of docu- 
mented here, that whatever be the virtues of the IUH and its nonlinear variations, 
a sizable portion of influential stochastic hydrologists are dissatisfied with them. 
We urge the reader to note that in the next section, when we turn to (non- 
parametric) nearest-neighbor methods for the R-R process, we do depart from con- 
vention in that for a wide range of processes, our methods are consistent, in the 
strict statistical theory sense of the word: As the sample size increases, our model 
is guaranteed to converge to the correct R-R relation. No similar statement can be 
said for the type of nonlinear models cited above. If, for example, one uses a third 
order Volterra expansion model, and in fact, the true relation requires an infinite, 
or even a fourth order, relation, then beyond a certain limit, the model cannot get 
nearer the correct relationship no matter how large the calibration data base. 
Mathematicians would state that no parametric model is dense in the class of all 
possible R-R models. 

Finally, we repeat an observation from Clarke (1973) and elsewhere that few 
modelers take the obvious step of using statistical theory to attempt to "validate" 
their selection. At present, statistical theory, computational means, and data bases 
of sufficient size are available; there is no excuse for not testing model hypotheses. 

6 The nearest-neighbor forecaster 

The goal of this brief section is to alert the reader to the existence of applicable 
methodologies fundamentally different from the general linear model. Here we 
describe in particular one such technique, the nearest neighbor (NN) method. In 
this section we give only the bare essentials of its construct and highlight its attrac- 
tive properties. Our companion paper Karlsson and Yakowitz (1987) is dedicated 
to an investigation of the details and implementation of this technique. It gives an 
application to forecasting using data from the Cochocton watershed, and Yakowitz 
(1987), Yakowitz and Karlsson (1987) give some results on Bird Creek data. In 
the first reference, comparisons were made with the ARMAX and IUH models, 
and in the last two with the "Sacramento" model. 

We do not intend that the present section should constitute an endorsement of 
nonparametric methods, but only that it should make the reader aware that they 
exist and in principle, have some promise. 

With respect to very large R-R data sets, the R-R models hitherto considered 
have two fundamental drawbacks, in our opinion: 
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1: Being parametric, any of these model classes may not contain the true R-R 
relationship; as a result (and, mathematically speaking, since no parameter 
class is topologically dense in the space of all R-R models), the forecaster 
derived from such models may not be asymptotically optimal: It may never 
converge to the optimal forecaster, no matter how large the data base 
becomes. 

2: Essentially none of them are probabilistic models. That is, the model 
specifications do not explicitly include provisions for modelling the random 
error of the forecast, nor do they possess the structure to serve as a foundation 
for a statistical theory for parameter calibration. We will admit that if the 
IUH approach is placed into a regression setting, as outlined at the end of 
Section 5, then one can achieve an asymptotically optimal linear estimator 
under the minimum squared-error criterion. But even under these restrictions, 
one can usually anticipate that there will be an even better nonlinear forecas- 
ter. 

The authors have turned to nonparametric estimation theory in an attempt to 
overcome these drawbacks. Whereas results analogous to those to be outlined here 
can be achieved by the nonparametric kernel method (Yakowitz 1985 a,b), recently 
our attention has focussed on the nearest neighbor (NN) technique because it 
seems more intuitive, but nevertheless possesses statistical properties which are just 
as powerful as those of the kernel method. 

To begin with, let us describe the N N  method in the context of runoff forecast- 
ing. For each time epoch n, let x ( n )  be some feature vector of past rainfall and 
runoff recordings. By feature vector, in the spirit of pattern recognition usage, we 
mean a vector that summarizes history as far as prediction is concerned. 
Mathematically, we hope that the conditional random variable 
q (n + 1) [ (q (n), q (n -- 1) ..... ; p (n) ,p  (n -- 1) ..... ) conditioned on the entire past, has 
the same probability distribution as the random variable q(n + 1 )  I x (n) ,  which is 
conditioned on the n th feature vector, x (n). 

If  x does not satisfy the above "history summarization" property, and the N N  
technique is nevertheless applied, the resulting forecaster will be asymptotically 
optimal among all forecasters defined on the feature vector x(n) .  For example, if 
x(n)  is a vector of the past M precipitations, then the nearest neighbor will 
asymptotically (with increasing R-R record) be at least as good as any M t h  order 
unit hydrograph. 

We adopt some notation to help explain the N N  algorithm. Let rn(x)  denote 
the expectation of the next flow, conditioned on the current feature vector being x. 
That is, 

re(x) = E[q(n + 1 )  [ x ( n )  = x ] .  (20) 

The nonlinear regression function m ( x )  is the optimal one-step-ahead forecaster. 
The N N  method is a statistical technique for approximating m (x). 

Definition: Let {k (n): n > 2 }  be a nondecreasing sequence of positive integers such 
that k ( n ) < n ,  and let { (q ( i+ l ) , x ( i ) ) : l  <_i<_n} be the entire historical 
sequence of runoff/feature-vector pairs. With respect to these objects and for any 
feature vector x ,  the N N  estimator of m n (x) is 

mn(X ) = (1/k(n))  ~_~ q ( j + l ) ,  (21) 
jES(x,n) 

where S(x ,n )  is the set of indices i of the k (n )  nearest neighbors of x amongst 
the observed vectors x( i ) ,  1 ---< i ~ n. That is, 
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Figure 3. Illustration of nearest neighbor rule, estimate of qcv+l ~ sample average of successors of 
similar 3 tuples to (q~-2, qN-t, qN) 

i f j  E S ( x , n )  a n d k  ~ S ( x , n ) ,  (22) 

then with respect to Euclidean distance ] [. ] ] , 

I I x ( j ) - x l l  -< I I x ( k ) - x l l .  
In words, the NN-predictor of the next flow is the sample average of the successors 
to the k ( n )  closest observed feature vectors to the current feature vector x.  In 
Fig. 3, we have tried to illustrate the NN-method in the case that the feature vec- 
tor depends only on the last three runoff observations. In this figure, it is 
presumed that k ( n )  = 3. 

Rainfall-runoff analysis motivated the second author to undertake theoretical stu- 
dies dedicated to justifying N N  techniques that seem appropriate. We refer the 
interested reader to the companion statistical publication (Yakowitz 1987) for a 
complete and precise derivation of the asymptotic properties of the N N  algorithm. 
There also the reader will find a summary of and references to foundational N N  
developments in the pattern recognition and statistics literature. 

We mention here only facts and results most cogent to R-R analysis. 

1 The N N  method is nonparametric. 

The assumptions of the convergence theory do not require that the jointly- 
distributed rainfall and runoff sequences {(p ( i ) ,q( i )}  belong to any parametric 
family such as normal, log Pearson, etc., or even A R M A  (ARMA, of given AR and 
MA orders, are parametric inasmuch as they are continuously parameterized by 
the A R M A  coefficient vectors). For the N N  estimator to be consistent and con- 
verge at an optimal rate, it is enough that the sum 

~F, (]E(q(O),q( i ) )[  + ]E(q(O),p(i))[)  (23) 
i > 0  

of absolute cross correlations be finite; this is assured for the A R M A  process, 
where cross correlations must vanish exponentially. 

2 The N N  algorithm is not difficult to program. 

Our complete F O R T R A N  code contains about 500 statements. Typical Box- 
Jenkins inference packages are several times this size. Data sets involving several 
thousand points do require some CPU time; N N  estimation is not something one 
does on a IBM-PC (yet), but a VAX is sufficient. The main expense in time is 
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simply ordering the data to find the nearest neighbors. The N N  estimation is 
effective for sample sizes in the order of 1000. We illustrate this point by way of 
example in the companion paper (Karlsson and Yakowitz 1987). 

3 The asymptotic rate of squared error convergence is optimal. 

The rate of convergence of a sequence of estimators is r ,  if for some constant C 
and all n :> 1, 

E [(m n (x)  -- m (x)2] < Cn -~ (24) 

and if no relation of the form Eq. (24) is satisfied for a value r I > r .  An implica- 
tion of a fundamental paper by Stone (1980) is that if the real dimension of feature 
vector X ( n )  is d,  and no parametric assumptions are made, the best possible rate r 
of convergence in squared error 

E [ m  n ( x )  -- m (x))2] < Cn - r  (25) 

is r = 4 / ( 4 + d ) .  Yakowitz (1987) has established that the N N  achieves this 
optimal rate. For small d,  this is almost as fast as one can hope for in the 
parametric (e.g. ARMA)  case; this is because even in estimating the parameter of 
an iid sequence of Bernoulli observations, r cannot be made greater than l. 

4 The N N  approach (unlike second-order methods) is effective for general deci- 
sion problems. 

Let L ( q , a )  be the loss associated with action a and runoff q. Then define the 
regression function to be the expected risk under this action, conditional on the 
feature vector x:  

m ( x , a )  =- E [L(q(n  + l ) , a )  I x ( n )  = x]. (26) 

The obvious way to extend the N N  algorithm of Eq. (21) to this setting is to define 

m n ( x , a  ) = ( 1 / k ( n ) )  ~,  L ( q ( j + l ) , a )  (27) 
j E S ( x , n )  

where k ( n )  and S ( x , n )  are as explained in connection with Eq. (21). Fundamen- 
tal to flood warning problems (as explained at length in Yakowitz (1985b)) is the 
conditional probability of the next flow exceeding some threshold T: 

m ( x )  = P [ q ( n + l )  >_ T I X ( n )  = x]. (28) 

By now the reader may anticipate that the N N  estimator is 

mn(X ) = ( 1 / k ( n ) )  ~, 1T(q(i))  (29) 
j ~.S ( x ,n ) 

where I t ( .  ) is the indicator function for the event "q > T";  i.e., 
l r ( q )  = 1, if q > T; l r ( q )  = 0, otherwise. The assertions about convergence 
and asymptotic theory hold for the estimators we have just mentioned. 
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