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1 Introduction 
When I was asked to review stochastic differential equations for Stochastic 
Hydrology and Hydraulics, I was somewhat at a loss as to where I should start 
and what material I should cover. As everyone is aware, stochastic hydrology has 
become extremely broad-based over the last decade and appears to be growing 
logistically (Dagan 1986). At first thought, being somewhat of an applied 
mathematician,  I considered reviewing various methodologies for solving the sto- 
chastic transport equations of subsurface hydrology. I have decided against this 
approach for a number of reasons, not the least of which is that to do it "right", a 
large number  of functional analytic results must be presented in an i n t u i t i v e  
fashion so that the reader unfamiliar with the field can comprehend the methodol- 
ogy -- this would make the document extremely long. My second thought was to 
present a general survey of the literature on the use of stochastic differential equa- 
tions in subsurface transport. While such a survey may be interesting, it would be 
quite dry for those researchers working in the field, such as the readers of this jour- 
nal. After much more deliberation, I have decided to review a few "select" metho- 
dologies for deriving subsurface stochastic transport equations. Actually, I will do 
a little more than review existing methodologies, for I am also going to take the 
liberty of briefly introducing a methodology that has been used with great success 
in other fields, but has yet to be introduced to hydrologists -- that is, generalized 
hydrodynamics. 

I apologize jn advance to those authors whose methodologies I do not review; I 
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have tried to select the techniques most familiar to me and the methodologies that  
I perceive as having the widest influence and applicabili ty.  Thus, this document is 
not a full review of the field, but  rather a review of select papers which should be 
of interest to those working on the foundations of stochastic subsurface transport. 

The remainder  of this review is broken into the following parts. Section 2 
reviews the origins of stochasticity in subsurface transport. Section 3 presents 
several select methodologies for developing stochastic equations when natural  scales 
of motion are in evidence. Section 4 presents a methodology for developing sto- 
chastic t ransport  equations when no known natural  scales exist. In Section 5 we 
present the method of generalized hydrodynamics.  Section 6 reviews in detail  two 
methodologies for developing asymptotic transport  coefficients of relevance to the 
stochastic convective-dispersion equation. The paper is concluded with a brief sum- 
mary  in Section 7. 

2 Origins of randomness 

To be able to appreciate  the need for stochastic differential  equations in the field 
of porous media  transport,  an understanding of the origins of randomness in porous 
formations is required. To this end, an appreciation is necessary for the role scale 
of observation plays in all t ransport  processes. The easiest way to see the funda- 
mental  role that  spatial  scale of observation plays in a heterogeneous environment 
is to imagine oneself looking at the world thorough a camera with an infinitely fast 
shutter speed and a zoom lens which is capable of resolving scales on the order of 
miles down to scales on the order of angstroms. This imaginary camera viewpoint 
is not physically unrealistic in the sense that every measurement  process resolves 
around the taking of a snapshot (measurement)  of some phenomenon on a scale 
which corresponds to the scale of resolution of the instrument. 

Let  us take, as an example, a picture of a planar cross-section of the surface of 
the earth. Our initial picture of this cross-section centered at the point x might 
have a minimal resolution of meters (e.g., a landsat  image). On this scale of reso- 
lution we would be able to see geologic heterogeneities larger than a square meter 
("field-scale" heterogeneities), but we would not see heterogeneities on a scale 
smaller  than this. Suppose next that we increase our resolution by two orders of 
magni tude (say a modern U-2 type photo) so that we can observe heterogeneities 
on scales larger than a square centimeter.  Our picture of the world, centered at x, 
has now completely changed. What  had previously appeared to be homogeneous 
(determinist ic in a certain sense) now appears to be heterogeneous (random in the 
same sense), i.e., spatial  details on scales smaller than a square meter, yet larger 
than a square centimeter,  which had previously appeared uniform, now appear  to 
be quite non-uniform owing to the granular structure of the soil. By continuing to 
increase the resolution, we successively see detail  on scales of square millimeters, 
square microns, and etc. until finally we are on a scale of resolution of say square 
angstroms. On the square mill imeter scale we can pick out details such as worm 
holes and small cracks and fractures that  had previously been unnoticeable. On 
the square micron scale we can actually see grains and pores, and on the angstrom 
scale we view individual atoms and molecules. With  each increasing level of reso- 
lution we see randomness manifest on a new scale which had not previously 
appeared.  From this discussion it appears that  randomness is a function of the 
scale of observation. 

The reader  should note that there is an upper bound on the amount of informa- 
tion an instrument of a given technology can process in a finite period of time. 
Assuming the camera processes the same amount of information on each scale, we 
necessarily must have the maximum window size (field of view) decreasing as the 
resolution increases. I t  is this fact that leads to an additional source of randomness 
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in heterogeneous media. That source is parameter uncertainty which is due to the 
finite window size, i.e., the field is generally large enough to preclude us from tak- 
ing enough pictures to cover the whole field. Larger windows generally are associ- 
ated with less parameter uncertainty but poor resolution, while smaller windows 
have higher resolution but more parameter uncertainty. Thus both the resolution 
of the instrument and the instrument window size affect stochasticity. 

What about temporal resolution as it relates to randomness ? The spatial evolu- 
tion of any dynamic variable is governed by the Liouville equation (McQuarrie 
1976, p. 120). Hence, spatial and temporal scales of motion are intimately con- 
nected. When we take a snapshot with a high spatial resolution, whether or not 
that snapshot will be blurred or sharp, depends on the dynamic evolution of the 
process being measured. In general, if the dynamic variable is evolving at a fixed 
rate, then for a camera to obtain a sharp, high-resolution image of the dynamic 
variable, it must have a shutter speed much faster than this rate of evolution. We 
may perform a Gedanken experiment in time similar to our earlier spatial experi- 
ment. In this case, we now allow our shutter speed to vary. We maintain an infin- 
ite spatial resolution and an infinite spatial window. For very slow shutter speeds 
(say on the order of centuries) we might resolve glacial movements, but nothing of 
shorter duration. For shutter speeds on the order of years, we might see houses 
come and go, but one would not observe the actual building of the house. If we 
continue to increase the shutter speeds (temporal resolution), we eventually can 
view fluid motion, atomic motion, subatomic motion, and etc. On each one of 
these temporal scales randomness is manifested in a different fashion. And as in 
the spatial case, we also have parameter uncertainty varying with the temporal win- 
dow. 

In summary, a process (dynamic variable) may appear deterministic (uniform or 
smooth) on one scale, but chaotic or random on a smaller or larger scale. Thus sto- 
chasticity is a function of the scale of observation, i.e., it is a function of the scale 
of the instrumentation used in any given experiment -- by scale of instrumentation ! 
mean as an upper bound the window size and as a lower bound the resolution of 
the instrument. It should be noted that in some experiments the window size and 
the scale of resolution are identical. In conclusion, any rational theory of random 
media must specify a priori the spatial and temporal resolution of the experimental 
apparatus and the associated window size. To the author's knowledge, only four 
investigators have attempted to build stochastic theories with this in mind, Clifton 
and Neuman (1982), Neuman and Depner (1987), Dagan (1986) and Cushman 
(1984, 1986). 

3 Natural scales 

It is common to assume porous media have a natural hierarchy of distinct spatial 
and temporal scales, e.g., atomic, hydrodynamic, pore, REV, lab, field, etc. On 
each of these scales, the transport equations take basically the same form; only the 
interpretation of the parameters differs (Cushman 1984). If there are natural 
scales of motion, according to the discussion in the last section, it is important that 
instruments be designed with the aim of measuring motions on these scales. In Fig. 
1. we have presented a hypothetical plot of a dispersion curve for a porous 
medium. The function COrnax(k) is the frequency at which, for fixed k, the power 
spectrum of the current correlation function is a maximum. Regions wher'e the 
plot is linear are natural scales and the slopes of the linear segments of the plot are 
the adiabatic sound speeds on these scales. Regions over which the slope of the 
curve is nonlinear are known as preasymptotic regions and one would expect tran- 
sport parameters to be wave number and frequency dependent in these regions. 
This point will be discussed in more detail in a later section. 
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Figure 1. The dispersion curve for the power spectra of the current correlation function, O3ma x is the 
frequency at which the power spectra is a maximum. Slopes of the linear regions of the plot 
represent the adiabatic sound speed at that scale 

We will illustrate a few methods for developing stochastic transport equations 
when a natural hierarchy of scales is assumed. Bhattacharya and co-workers (Bhat- 
tacharya 1985; Bhattacharya and Gupta 1979, 1983, 1984; Bhattacharya et al. 
1976; Gupta and Bhattacharya 1983; and Gupta et al. 1981) have a particularly 
notable approach to the multiscale problem. Bhattacharya's method is what I 
would classify as a Martingale method (For recent easy to read references on 
Brownian motion and Martingale's see e.g., Durret 1984; Williams 1979; Harrison 
1985; the classical references on Martingale's are Doob 1953; and McKean 1969. 
The two most practical engineering type books I 've seen on the subject are Schuss 
1980; and Karlin and Taylor 1981, Vol. II). Bhattacharya and co-workers basically 
assume there are at least four natural scales of motion; the kinetic, microscopic, 
Darcy, and field scale. The three lower scales are defined as: 

Kinetic. The time scale is defined by the time over which a solute molecule 
undergoes a large number of collisions with the surrounding liquid molecules, but 
which is not larger than its average collision time with the solid phase. The spatial 
scale (not explicitly specified by Bhattacharya) would be larger than the molecule 
mean free path, yet smaller than the average pore width. 

Micro. "To specify the microscopic scale, fix a point within a porous medium. 
Consider volumes around this point gradually increasing in size starting from a 
small volume, say, lying entirely within the liquid phase. The average liquid veloci- 
ties over these volumes will initially exhibit extreme variations because of the irre- 
gularity in the porous medium geometry at the pore level. However, as the volume 
is further increased, these extreme variations are averaged out and the average 
velocity stabilizes, The smallest volume over which this stability takes place is a 
microscopic (velocity) REV. The mean time in which a solute molecule traverses a 
microscopic REV specifies a microscopic unit of time." 

Darey. "... a spatial scale larger than the microscopic at which the equations 
governing solute transport become translation invariant. For example, at this scale 
the volume average of the microscopic liquid velocity does not vary with spatial 
coordinates. The smallest volume beyond the microscopic scale at which this trans- 
lation invariance manifests itself is a Darcy scale REV. The mean time that a 
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solute molecule takes to traverse such an REV will be taken to be a Darcy scale 
time unit. It is assumed that a large number of microscopic REV's make up a sin- 
gle Darcy REV." 

I am not quite sure what Bhattacharya means by this last definition. I assume 
he means the dispersion tensor and average convective velocity are independent of 
x. If  so, this is a non-operational definition in that it can never be checked in the 
field. 

Bhattacharya and co-workers begin the development of their equations by 
assuming that on the kinetic scale the velocity of a "large", nonreactive, solute 
molecule, V(s), is stationary and ergodic on some finite interval sg[O, to] where t o 
is a microscopic time unit. For times much greater than the average molecular col- 
lision time with a pore wall, the displacement X ( t o ) - X  o of the molecule from its 
initial position x o satisfies a central limit theorem (CLT). The displacement, 

fot~ V(s  ) ds ,  

is Brownian with mean drift velocity U(x0) and variance 

cy2(Xo )I, 

where I is the identity matrix, 

U(x o) = f (x o)U(x o), (1) 

(1/2)~2(Xo) = g (x o)Do, (2) 

D O is the coefficient of binary diffusion in bulk liquid, f and g lie between 0 and 
1, and U is the microscopic liquid velocity. The CLT shows that the displacement 
is Gaussian. The displacement 

ft? t~ V(s ) ds 

is again Gaussian and hence the differential 

dX(t )  = X(t + a t )  - x( t )  (3) 

satisfies an It6 equation 

dX( t )  = U(X(t)) at + (y(x(t)) dB(t)  (4) 

where B(t) is a standard 3-D Brownian motion. Assuming the molecular motions 
are independent (low concentration), the microscopic solute concentration satisfies 

3 2 3 h - -  6C 0 , 
Ot - -  i = l  ~ X ' 2  ) ( x ~  - i ~ l ~ ( v ( x ) C )  (5) 

where D0'(x ) = 1/2o2(x) = g ( x ) D  o. (6) 

Bhattacharya next proceeds to assume the porous medium is homogeneous on 
the Darcy scale, convection is absent, and that 

lira 1/t  foto2(X(s )) ds - -~2 = constant (7) 
l ~ O O  

or equivalently 

lira 1 / t [ t g ( X ( s ) )  ds = ff (8) 
g ~ O O  ~O 

with 0 _< ff __< 1 and thus 
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(1/2)~ 2 = ~ D  o. (9) 

This line of reasoning provides the pore diffusion coefficient on the micro scale as 
gDo which is less than the bulk liquid phase diffusion coefficient, D o, of the same 
bulk fluid in equilibrium with the pore fluid. It also shows that pore diffusion 
manifests itself in going from the kinetic to the microscale. 

The transition from the microscale to the Darcy scale is more complex, however, 
mathematically the development follows the same line of reasoning as transition 
from the kinetic scale to the microscale. A CLT produces an It6 equation on the 
Darcy scale and a corresponding dispersion-convection equation. It is shown that 
mechanical dispersion is manifest in going from the micro to the Darcy scale. The 
major assumptions that are needed to go from the micro to the Darcy scale 
include: (i) a Darcy-scale velocity REV exists and is constant throughout the flow 
domain, (ii) a CLT (not rigorously proven) holds from the micro to the Darcy 
scale, (iii) the solute convection velocity on the micro scale is a fraction of the 
liquid velocity, (iv) flow at the micro scale is laminar, and (v) the analysis 
presented for a homogeneous medium applies to a heterogeneous medium. 

It is instructive to examine the advantages and disadvantages of using the Mar- 
tingale methodology for developing porous media transport equations. The main 
advantages of the Martingale approach are: (i) the physical assumptions necessary 
to make the method mathematically rigorous can be explicitly displayed, (ii) it pro- 
vides explicit forms for the dispersion coefficient in terms of molecular quantities, 
(iii) it. highlights the important role scale plays in solute transport, and (iv) it is 
consistent with the classical kinetic theory of fluids. There are a number of disad- 
vantages and drawbacks to the method. Among them are: (i) the method suffers 
from the major drawbacks the volume averaging approach suffers from (e.g., 
existence and invariance of REV's; see Baveye and Sposito 1984; Cushman 1984), 
(ii) the method has been shown to be mathematically valid only for large, nonreact- 
ing molecules in dilute solution, (iii) the CLT used to go from the micro scale to 
the Darcy scale has only been proven for very simple nonphysical media (e.g., 
periodic media), (iv) the method will not work for materials which have a high clay 
content (In regard to this point, it has been shown (Schoen et al. 1987a) that sim- 
ple fluids in small pores do not behave as their bulk counterparts, e.g., diffusion 
coefficients parallel to the pore wall are higher in the midpore region than near the 
surface of the pore wall and even more importantly, higher than in the bulk fluid. 
This observation holds out to at least 30 molecular diameter pore wall separations 
for simple fluids. Thus the classical It6 type equations will break down in small 
pores; see also Mulla et al. (1984) for comments on this.), v) there is no effective 
way to develop macroscopic boundary conditions using this approach, and vi) the 
theory is nonoperational in the sense that the measurement process, stressed in Sec- 
tion 2, is not accounted for in autocorrelation functions. 

Another interesting approach for developing transport equations using stochastic 
pde's is the statistical mechanical approach. Sposito and Chu (Sposito 1978a, b; 
Sposito and Chu 1981) following earlier classical works by Kirkwood (1967) 
developed the mass, momentum, and energy equations of a fluid in a porous 
medium at the pore scale. They then transform these equations to the "micro" 
scale by volume averaging techniques (Bear 1972). We will briefly outline the 
Kirkwood approach to developing statistical mechanical transport equations in the 
next few paragraphs. 

The starting point in the statistical mechanical approach is the Liouville eqUa- 
tion as presented in the special form (Kirkwood 1967) 
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N Pk 
-~tF.(A) F_,{ Z [--d--'VR~ A VR~ UVI,~A]} (10) 

k =1 "~k 

where A is a dynamic variable, Pk is the center of mass momentum of the k th 
molecule, m~ is the mass of the k th molecule and R k is its center of mass position 
(it may also include orientational coordinates), and U is the interaction energy 
potential of the entire system (including external fields). The expected value, E ,  is 
taken with respect to the phase space probability density function 

f (R1 . . . . .  RN, P1 . . . . .  PN, t)  

having 6N-degrees of freedom where N is the number of molecules in the system. 
Kirkwood was a strong believer in constructing operational theories. In an opera- 
tional setting, E can also be considered as a phase space average coupled with an 
average over space and time (coarse graining). The space-time average corresponds 
to the window of the experimental apparatus (see last section). The probability 
density is determined with respect to a set of macroscopic constraints (e.g. fixed 
particle number, volume, and energy). To develop the equations of motion in a 
porous media all one needs to do is substitute the appropriate dynamic variable in 
Eq. (10) and perform several standard mathematical manipulations on delta func- 
tions (cf. Kirkwood 1967, p. 59-75) and identify the molecular expressions with 
their hydrodynamic counterparts. This approach gives molecular expressions for all 
the terms in the hydrodynamic equations at the pore scale. The simplest example 
of the technique is given by the balance of mass. The energy and momentum con- 
servation laws follow similarly. To develop the continuity equation for a fluid in a 
porous medium, one sets 

N 
A = ~,  m j 6 ( R j  -- r) (11) 

j = l  

where r is an arbitrary point in configuration space and Rj is the location of the 
j t h  molecule in the pore. Defining the mass density 9 and mass-average velocity u 
a s  

N 
u(r, t ) = ~ E [Pk 6(Rk -- r)]/9(r, t)  (12) 

k = l  

9(r , / )  = E ( A )  (13) 

and upon using Eq. (10) we find 

09 _ 
Ot -- V-(pu) (14) 

which is identical to the continuity equation as developed from continuum theories. 
Sposito and Chu would now volume average this last equation to obtain what they 
call a "macro" equation. Sposito's three distinct natural scales are the molecular, 
hydrodynamic (Classical continuum) and REV. 

The major strengths and weaknesses of the statistical mechanical approach are 
described in the following. Like the Martingale methods discussed earlier, one of 
the main advantages of the statistical mechanical approach is its ability to generate 
molecular descriptions of the constitutive parameters. It is more general than the 
Martingale method in that statistical mechanics are applicable to mass, momen- 
tum, and energy. As far as developing the "form" of the transport equations, I see 
no advantage over the continuum approach. Sposito (1978), in his conclusion sec- 
tion, makes the claim that certain terms which show up on the momentum balance 
equations are not consistent with the continuum approach; I disagree. Using 
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nonlocal continuum theories (Edelen 1976), one can develop transport equations 
which are identical to the statistical mechanical equations. This author sees little 
advantage to the statistical mechanical approach for developing the form of the 
transport equations; the real advantage of the statistical mechanical approach is its 
use in examining the interactions of fluids with soil particles on the pore scale. 
Much information, that can not be obtained experimentally, can be obtained 
(Mulla et al. 1984; He et al. 1986; Schoen et al. 1987a, b; Rhykerd 1987) using 
numerical statistical mechanics. 

In passing, I should point out that I do not see the need for an ensemble of 
soils, as implied by Sposito, in the statistical mechanical derivation of transport 
equations. All one needs is an ensemble of fluids under an external force field (the 
soil) to make the derivation of Sposito valid. This eliminates a major conceptual 
difficulty in the statistical mechanical approach. 

Another approach to develop transport equations using a stochastic methodology 
has been put forth by Cushman (1984, 1986) and may be entitled stochastic- 
relativist. While this method can apply when a natural hierarchy of scales is evi- 
dent, such a hierarchy is not a prerequisite for the methodology. One could adopt 
a purely operational methodology based on the instrument windows irrespective of 
any natural scales. Using this method one can either assume that there exists a 
natural scale hierarchy on which we take measurements, or one can take measure- 
ment on successively larger spatial and temporal scales not knowing if there are 
any natural scales of motion. The concepts in the latter approach are similar to 
those in Baveye and Sposito (1984), but they also incorporate the concept of scale 
of observation as in Cushman (1984). I would like to point out that Eq. (26) of 
Cushman (1984) is in error. 

Continuum scale transport equations are assumed valid in both the void and 
solid space in a porous medium (the same approach may be followed on a molecu- 
lar scale). Randomness enters the problem through the random geometry of the 
pore surfaces. Scale is introduced into the setting through a mathematical 
representation of the window, T, of the instrumentation, the basic continuum scale 
transport equations are stochastic as a result of the random boundaries. The act of 
convolving (denoted * ) an instrument window with a field variable, ~, is equivalent 
to taking a measurement on ~. The relation T* ~ is well defined and stochastic as 
a result of the stochasticity of ~ and the determinism of T. However, the quantity 
T*~ is on a higher scale of motion than ~ owing to the scale constraints on T 
(Cushman 1986). The generalized function, T, which is compact, can be viewed in 
many ways. It can be viewed as representing an instrument window (as already 
mentioned), but just as importantly, it may be viewed as a Hausdorf measure and 
used to compute the fractal dimension of ~. 

The development of the stochastic transport equations themselves is similar in 
form, but mathematically more general than the classical REV methodology and 
will not be summarized here. The interpretation of parameters is quite different 
than in the REV approach. As will be discussed in a later section, all transport 
coefficients can be expressed in terms of correlation functions (McQuarrie 1976). 
Cushman (1986) has provided the machinery necessary to take correlation func- 
tions on any scale of motion and transfer them to higher scales in an operational 
setting. Thus transport coefficients on higher scales of motion can be written in 
terms of lower scales. 

The advantages to Cushman's approach are: (i) since they are defined in terms 
of an instrument window, all parameters have an operation meaning, (ii) the theory 
is developed in frequency and wave number space where scale is most easily 
accounted for, (iii) at every scale of motion the transport equations are random, 
(iv) the correlation of properties from lower scales to higher scales is easily 
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handled, (v) the theory is mathematically rigorous, and (vi) the method is very gen- 
eral in that it applies to mass, momentum, and energy. The major disadvantages to 
the approach are: (i) no one has taken the time to use the approach to develop 
operational constitutive coefficients, (ii) the mathematical form of the instrument 
windows are not easily determined, and (iii) a theory incorporating nonlinear win- 
dows has not been developed (Cushman 1984, has alluded to how such a theory 
may be developed). 

Dagan (1986) has yet another interesting approach to developing stochastic tran- 
sport equations when natural scales exist (see also Dagan 1981; 1982a, b, c; 1984; 
1985a, b). Mathematically, Dagan's and Cushman's (1984, 1986) approaches are 
similar with the major exception that higher scale transport equations are 
developed by successive probabilistic averages in Dagan's approach. Probabilistic 
averaging theorems that closely resemble their volume averaging counterparts are 
proven, and, hence the formal structure of the averaged equations is the same in 
both Dagan's method and the classical volume averaging method. A typical proba- 
bilistic averaging theorem would take the form 

E[(Vv)%o ] = VE(v%a ) -- lim [A-A-~fAAE(~n)dA] (15) 
AVI0 

where ~ is a field variable, %a is the indicator function of the a-phase, A V is a 
sampling volume, and AA the associated surface. The assumption of stationarity is 
heavily relied upon to equate 

E < ; ~ >  = E ~  (16) 

where < . >  denotes volume average. The natural scales that Dagan assumes exit 
include pore scale, lab scale, local scale, and regional scale. Stochasticity on the 
pore scale is attributed to the randomness of the indicator function %a of the 
a-phase (this is the same as in Cushman's methodology). The pore scale is defined 
as being small compared to the integral scale of %a, but large compared to the 
molecular scale. The fluid and solid phases at this scale are assumed to be con- 
tinua and governed by classical continuum mechanics. Dagan's lab scale is on the 
order of 10-1--100 m and is characterized by the dimensions of common lab 
experiments. The local scale is on the order of the aquifer thickness (101-  102 m). 
The regional scale, of the order 10 4 -  105 m in the horizontal plane, is much larger 
than the acquifer thickness. On this scale, flow variables are averaged over the 
vertical. Randomness on the local and regional scales is characterized by the ran- 
domness in hydraulic conductivity, K, and transmissivity, T, respectively. 

I find a difficult conceptual issue with the approach taken by Dagan (1986). In 
going from the pore scale to the lab or local scale, the stochastic equation for a 
fluid in the pore phase (on the pore scale recall that %a is random) is smoothed by 
taking expected values. This results in a deterministic equation on the local scale. 
Randomness is introduced into the local scale by assuming K is random. Now as 
indicated in Section 2, K can be random for either of two reasons. First, K can be 
assumed random owing to pore heterogeneity over the local scale. But K cannot 
be random for this reason in Dagan's model because K results from taking 
expected values of )~a and other variables. Thus K in Dagan's model must be 
assumed random for the second reason, parameter uncertainty (we cannot sample 
K everywhere in the field). This is the only source of randomness in Dagan's 
model. Yet, from a physical point of view, the randomness in K and T is due not 
only to parameter uncertainty as discussed in Section 2, but also to Za on each 
scale of motion. 

The major advantages of Dagan's approach are: (i) the method is conceptually 
simple, (ii) the method is consistent with existing experimental and sampling 
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methodology, (iii) equations developed from Dagan's approach look like those 
which are developed from deterministic averaging techniques, and (iv) the metho- 
dology allows one to update estimations via conditioning the equations. The major 
limitations of the approach are: (i) the conceptual difficulties in defining the ran- 
domness of K and T, (ii) the heavy reliance on stationarity, and (iii) conceptual 
difficulties with ergodicity (see Cushman 1987). 

4 Solute transport without natural scales 

In this section we will briefly review a technique for studying solute movement that 
does not explicitly require the existence of natural scales. 

The methodology, called the stochastic-convective approach by Simmons (Sim- 
mons 1982, 1986, 1987; Delvary and Simmons 1987; Simmons and Kincaid 1987; 
Weirenga et al. 1986) is quite powerful. In passing, I should point out that the 
impulse-response model, as exploited by Jury (Jury 1982; Jury et al. 1982; Jury et 
al. 1986) is a special case of Simmons' stochastic-convective approach. Simmons' 
methodology is a general stochastic approach for deriving solute transport equa- 
tions -- it requires no specific assumptions about natural scales of motion (e.g., 
existence of a REV or CLT). Much as is done in classical continuum theories, the 
model may be formulated in either an Eulerian or Lagrangian framework. Because 
of the limited distribution of Simmons' work, we will describe it in greater detail 
than models in earlier sections. We do not, however, go into the great detail that 
Simmons does. 

The basic starting premise with Simmons' approach is that solute transport is 
described by a first order stochastic hyperbolic equation, represented in one dimen- 
sion as 

o_c_c + vOC = 0 (17)  
Ot Ox 

where the velocity V is a random variable. Thus, as in several earlier models, sto- 
chasticity in C is a result of stochasticity in V. The parameter V desci'ibes the 
random paths, X ( t ) ,  which may be traversed by an individual solute molecule as it 
passed through the porous medium. The ensemble of random paths implicitly 
includes all "local-scale" dispersion mechanisms that contribute to "global-scale" 
dispersion. Explicit definitions of these two scales are unnecessary in Simmons' 
model. A notable difference between this approach and other methods mentioned 
earlier and those to be mentioned later, is that observables (measurable quantities) 
are defined in the stochastic-convective approach much as they are in quantum 
mechanics (Pilaf 1968), i.e., observables are expected values. In all other 
approaches observables are realizations. 

Simmons is interested in finding the observable concentration in terms of a 
specific velocity ensemble. This implies the need to know the relation between an 
observed moisture content and the velocity ensemble. Let X ( t ;  x o,  to)  be a solu- 
tion of 

d x  
d--t = V ( x ,  t )  (18) 

X ( t o ;  Xo,  to )  = x o. (19) 

Let P x ( x ;  t ,  x o,  to )  be a pdf for random location X which is conditioned on t-, x o,  
and t o. Then P x  is given by 

P x ( x ;  t ,  x o,  to )  = E { ~ [ x  - -  X ( t ;  x o,  to)] } . (20) 

Now a random concentration satisfies CO = 9 and if C and 0 are independent 



(uncorrelated), then 

E C  = E 9 / E  O. 

Also, if 

E [ C ( x ,  to) ] = Co(x ) ,  

then 
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(21) 

to) ] = fo ~176 Co(xo)PXo(Xo; t ,  x o, to) dx  o E [ C ( x ,  (22) 

where 

PXo(Xo; t o , x ,  t )  = E [ a ( x  o -- Xo(to;  x ,  t))]. (23) 

If  0 o(x)  is a deterministic initial fluid content such that 9o = Oo Co holds, then for 
Eqs. (21) and (22) to both hold for any C o, we must have 

E (O)Pxo = 0 o (x  o ) I x .  (24) 

This last equation directly ties the observed fluid content, E(0),  to a particular 
velocity ensemble, P x ,  as required. 

To show how classical solutions to the convective-dispersive transport equation 
are special examples of the stochastic-convective approach, one would argue as fol- 
lows. Assume 0 is deterministic such that 0 = Oo(X). Further assume the disper- 
sivity a is related to moisture content in a manner such that 

d = a 0  (25) 

is a constant for each flow state (for different flow states it will change). The 
dispersivity a is assumed stochastic. We further assume the molecular diffusion 
coefficient is zero (this is not a necessary requirement) and the dispersion coeffi- 
cient has the form 

D = aV. (26) 

Let 

z ( x )  = fo x 00 d x ,  (27) 

then the convective-dispersion equation may be transformed into 

OC OC 02C 
- -  + q = B - -  ( 2 8 )  

Ot Oz Oz 2 

where B = ffq and q = 0V. A stochastic Green's function solution to Eq. (28) is 
given by 

C ( z ,  t )  = f '~176 m C o ( z - l ( Z o ) ) G ( z  -- Zo; t )  dz  o (29) 

where 

G (z ,  t ) = (4r tBt ) -1 /2exp{  -- [z -- qt )2/4Bt  ] }. (30) 

Thus 

PXo = O o ( x o ) G ( z ( x ;  Xo); t )  

where z ( x ; x  o) = z ( x ) - -  z ( x  o) for t = 0. Note that Pxo 
space unless 0 o = constant. 

As mentioned earlier, the impulse-response model as used by Jury (1982) and 
Jury et al. (1986) can also be viewed as a special case of the stochastic-convective 
approach. To see this, Simmons would argue as follows: the impulse-response 

(31)  

is not stationary in 
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model gives the concentration observed at depth L, 

= fo c~~ Cin(l  -- I ' ) f L ( I '  ) d I ' ,  (32) CL(I) 

as a function of cumulative amount of applied water I (I = rainfall- 
evapotranspiration) remaining in the soil profile over a specific time t. Here f L ( I )  
is a pdf representing the distribution of I reaching to a depth L. The input con- 
centration, depending on the infiltration amount, is Cin (I) .  If  an average water 
infiltration rate i o is applied over a field area, then I = i o T determines a random 
travel time T ~ Assuming a scaling hypothesis for the probability of reaching 
another depth Z expressed as 

f z ( 1 )  = f L ( I L / Z ) L / Z ,  (33) 

equation (32) becomes 

C ( Z ,  t )  = fo ~176 Cin(t -- t ' ) f  z ( i o t ' ) i  o d t '  (34) 

where Cin(t)  is now a time dependent description of solute input concentration. 
Simmons' stochastic-convective expression for Eq. (34) would be 

C ( Z ,  t )  = fo ~~ Cin(t - Z / V ) P z * ( V ) d V  (35) 

where P z *  is the pdf for effective uniform random velocities, V = Z / T ,  defined 
by travel time, T, to depth Z.  Simmons' derivation of Eq. (35) does not rely on 
the scaling hypothesis, Eq. (33), and moreover it is easy to show that Jury's scaling 
hypothesis is the same as presuming that an invariant probability distribution for 
random velocity applies to each depth Z.  It is this property of invariance that pro- 
duces scale dependent dispersion (Simmons 1982). 

There are a number of positive and negative aspects to Simmon's approach. 
Some of the advantages to the stochastic-convective approach include: (i) the 
method can be used to show that Eulerian and Lagrangian approaches to stochastic 
transport are not necessarily equivalent, (ii) the method does not require existence 
of natural scales of motion, (iii) the classical convective-diffusive equation is a spe- 
cial example of the stochastic-convective approach as is the impulse-response 
model, (iv) constraints involving stationarity are unnecessary, and (v) it clarifies the 
definitions of flux-averaged and volume-averaged concentrations. Among the disad- 
vantages of the approach are: (i) unlike quantum mechanics where the probability 
density that defines the ensemble expectation is known (it results from a solution to 
the Schrbedinger equation), there is no known method to determine the probability 
density for the velocity ensemble in the stochastic-convective approach, (ii) the 
method is only applicable to solute transport, (iii) the standard parameters meas- 
ured in most transport experiments include the hydraulic conductivity, yet 
Simmon's method, to date, has not incorporated this parameter into the model. 

5 Preasymptotic development of transport coefficients 
In this section, we outline a stochastic methodology for developing time and space 
dependent (or equivalently frequency and wave vector dependent) transport coeffi- 
cients in porous media, i.e., preasymptotic coefficients. The approach is an exten- 
sion of molecular hydrodynamics (McQuarrie 1976) and will be called generalized 
hydrodynamics. Molecular hydrodynamics has classically been the study of the 
pre-continuum nature of fluids, i.e., the study of fluids which retain some detailed 
molecular information, but which are approaching the hydrodynamic limit (lower 
bound on the classical continuum scale). Many natural transport processes in 
porous media do not have a natural hierarchy of scales of motion and in those that 
do not have such a hierarchy, the asymptotic limits may not be reached owing to 
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time and experimental scale constraints. It thus appears that a generalization of 
molecular hydrodynamics should be applicable to porous media. 

For instructional purposes, we will put mathematical rigor aside for the moment. 
Consider the following intuitive example (see also Bhattacharya and Gupta 1979, 
1983). Suppose we have a system composed of N particles of mass M,  suspended 
in a fluid composed of particles of mass m (m < <  M). The concentration of 
heavy particles is assumed dilute so that these particles do not interact with each 
other, but they do interact with the lighter particles which behave as a continuum. 
The heavy particles with velocity u satisfy a Langevin equation of the form 

du 
m d~- ~u(t) + B(t) (36) 

where B(t) is a standard Brownian motion. It is well known that in the long time 
(asymptotic) limit (the Markovian approximation) the friction coefficient, ~, satis- 
fies 

= (3ke T)-~fo~176 [B(ol.B(t 1] dt (37) 

~ - I  = (3kB T ) - l f o ~ E  [u(o).u(t)] dt (38) 

or  

d = k B T /~  (39) 

where d is the diffusion coefficient, T is temperature and k B is the Boltzmann 
constant. Many other fluctuating quantities, A(t), can be described by a stochastic 
differential equation of the Langevin type 

dA 
- -  yA(t) + B(t) (40) 

dt 
I f  A = Mdu  and 7 = ~/M, then Eq. (40) reduces to Eq. (36). To describe the 
dynamics of a homogeneous system without the restriction on the time scale, Eq. 
(40) is rewritten as a non-Markovian generalized Langevin equation 

dA( t )  
iFoA(t ) -- fot'[(t')A(t - - t ' ) d t '  + B(t) (41) 

dt 
where Fo is real and corresponds to existence of a propagation process associated 
with the time evolution of the dynamic variable. The convolution in Eq. (41) 
accounts for memory effects. 

In passing, we should note that if Eq. (40) is multiplied by A(o) /E  [A(o)] 2 and 
expectations are taken (assuming E [A(o).B(t)] = 0) we find 

d w  _ 
dt Y~ (42) 

where ~ ( t )  = E [A(o).A(t)]/E [A(o)2]. This last equation provides the time evolu- 
tion of the autocorrelation function, e.g., it may provide the time evolution of the 
velocity autocorrelation, which in turn gives us information on d in the preasymp- 
totic region (as noted from Eqs. (38) and (39)). The corresponding Langevin equa- 
tion for the autocorrelation in Eq. (41) takes the form 

d w  fotT(t ') ,( t  - t ') dt '  + iFo~(t ). (43) 
dt 

Equation (43), without the second term on the right hand side, is called the 
memory function equation for the autocorrelation and 7 is called the memory func- 
tion or kernel. It can be shown (McQuarrie 1976) that all autocorrelation func- 
tions satisfy an equation of this form. The entirety of the physics of any transport 
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process is implicitly contained in the memory function ~'(t) and consequently a 
knowledge of T(t) allows us to study the preasymptotic nature of transport 
processes. Equation (43) is often generalized to allow for a heterogeneous medium 
by replacing y( t )  with T(x, t). 

Let G (r, t ) d r be the conditional probability of finding a molecule in d r at r at 
time t given it was initially located at the origin and let F s ( k , t )  be its space 
Fourier transform. It can be shown (McQuarrie 1976) that F s is a correlation 
function and hence satisfies Eq. (43). It can be shown further that the memory 
function ~, takes the form 

7(k, t ) = k.E {uexp(-- k'r)exp[it (I  - - P ) L  ]uexp(i k.r) }.k (44) 

where P is a projection operator (Schoen et al. 1987) and L is the Liouvillian. 
The expected value of the function in braces in Eq. (44) is identified with a time- 
wave vector dependent preasymptotic diffusion tensor d(k, t), 

T(k, t ) ----- k.d(k, t ).k (45) 

If  we now take the time-Fourier transform of Eq. (45), then 

y(k, co) = k.d(k, co)-k (46) 

is a generalized preasymptotic wave vector and frequency-dependent diffusion coef- 
ficient satisfying (Zwanzig 1964) 

j(k, co) = --d(k, co).(VC)k,c o (47) 

which is a generalized Fick's law (with scale-dependent diffusion) valid at all wave 
numbers and frequencies. In the above, the subscripts k and co on the gradient 
indicate Fourier component. It can be shown rigorously (Schoen et al. 1987) that 

lira d(k, co) = d (48) 
Ik[-,o 

t a r o  

where d is the classical diffusion tensor. 
Cushman (1986) has provided the necessary machinery to extend these concepts 

to porous media. Cushman, working in wave vector and frequency space, shows 
how correlation functions on higher scales of motion can be written in terms of 
lower scales of motion. On any scale of motion the Liouville equation is valid and 
thus a memory function equation will exist for the autocorrelation functions in a 
porous media. The memory function equation can he written in terms of autocorre- 
lations as a function of scale of observation. It is this last point that gives a 
rigorous operational derivation of, for example, a preasymptotic scale-dependent 
dispersion coefficient in porous media. 

6 Asymptotic development of dispersion tensors -- assuming the validity of the 
dispersion equation 

Several researchers have assumed the correctness of the stochastic conservation 
equations (at least on a "local" scale) and have gone on to use stochastic 
approaches to develop the form of the asymptotic constitutive coefficients. In this 
section, we will concentrate on two stochastic asymptotic approaches to developing 
the dispersion coefficient. I will try to highlight all assumptions and their justifica- 
tion. From the classical theories of diffusion (cf. Einstein 1956) one should not at 
all be surprised that the dispersion tensor in porous media theories is directly 
related to the velocity autocorrelation function, or equivalently, its Fourier 
transform. Because the velocity autocorrelation is directly related to the correla- 
tion of hydraulic conductivity through Richard's equation and because the 
hydraulic conductivity is a parameter which is usually measured in the field, we 



255 

find that many authors tend to write the dispersion tensor in terms of the conduc- 
tivity correlations. In the previous section we illustrated how one may rigorously 
derive preasymptotic information on transport parameters. For this reason, I will 
focus attention in this section on the asymptotic limit. 

Classically (Bear 1972), the dispersion tensor has been written in the form 

D = d L 5 1 i  + dT(~22 -[- r (49) 

where the tensor is expressed in the principal coordinate system with directions 
parallel and normal to the Darcy velocity, v. It is assumed that the dispersion coef- 
ficient is isotopic in directions normal to v. The general form of the transverse, d T, 
and longitudinal, d L, components is given by 

d L = d m + a L l Y  [ (50) 

d T = d m + a T [ v l  

where d m is the effective coefficient of porous diffusion. It is generally assumed 
that d m is smaller than the molecular scale diffusion coefficient and that d m is a 
scaler. Recent molecular dynamics simulations (Schoen et al. 1987a) indicate this 
need not necessarily be true in layered colloidal systems (e.g. clays). 

When soil samples are fairly uniform, researchers have found that the above 
expression for the dispersion tensor holds in many laboratory experiments (Bear 
1972; Fried 1975). Because the classical developments do not account for evolving 
heterogeneities, one would not expect the model to hold for more complicated sys- 
tems. In fact, what one finds is that in nonuniform media a L and a T turn out to 
be scale-dependent (cf. Martin 1971; Lawson and Elrick 1972; Dieulin et al. 1981). 

One of the most straightforward and informative methods for developing asymp- 
totic dispersion coefficients was proposed by Winter (1982) (see also Winter et al. 
1984a, b; Neuman et al. 1987). The basic approach of Winter is to assume the 
Darcy velocity is random on a local scale (on the order of a meter) and that a local 
convective-dispersion equation is obeyed. The local velocity, v, is assumed weakly 
stationary and of the form 

v(x) = I1 + ~u(x) (51) 

where g is the mean local velocity and ~ is a small perturbation parameter. One 
would like to show that the asymptotic average concentration also satisfies a 
convection-dispersion equation. This has only been accomplished in a few very 
select cases (incompressible velocity fields in 3-D). Winter and co-workers assume 
the asymptotic average concentration satisfies a convective-diffusion equation and 
go on to find explicit expressions for the asymptotic velocity, V, and asymptotic 
dispersion coefficient, D, via a perturbation expansion of the form 

V = V o + 8V 1 + 82V 2 + " ' "  (52) 

D = D o + eD 1 + eZv 2 + - . .  (53) 

where e need not tend to zero as I x [  ---+ oo or t ---+ oo. Specifically, if C is the 
local scale concentration, then it is assumed 

C(x, t ) = lim E [Cx(x, t )] = lira )~n/2 E [C(V~x  + )~t !1, )vt )] (54) 
L-+r s 

satisfies 

0C -- [1/2 V . D . V ] C ,  C(x, o) = 6(x) (55) 
0K 

where t = x/)~ and n is the dimension of the system. 
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Because C satisfies 

OC 
-- [1/2 V - d . V  -- v . V ] C ,  C(x,  o)  = Co(x ) (56) 

0"c 

we have the semigroup equation (cf. Goldstein 1985) 

lira Ee t (.4 + aB)e - "~t (v. v)  = e t (V-D. V)/2 (57) 
L~oo 

where the infinitesimal generator is given by 

A = ( V - d . V ) / 2  + "v/-~la.V (58) 

and 

B = klx(V~x ). ~7 (59) 

The expectation E is taken with respect to the distribution of u which is assumed 
weakly stationary. Using a Kubo type formal expansion (Kubo 1963) for e era, 
using Eqs. (52) and (53), and equating powers of e, we may explicitly determine 
the V i and Di, i = 0,1 ..... The results are (Winter 1982) V o = 10t, 
D O = d, V 1 = 0 ,  D 1 = 0 and 

kmPme(k) 
(V2)e = (272)-n ]~ fR "i F(k)  d k  (60) 

m=l 
where 

V ( k )  = k . d . k  - -  i ~ . k ,  (61 )  

[5 m e(k) = f R E  [Vg(X)V m (X)  - -  ~t2leikx dx ,  (62) 

D 2 : (2~)-nJR.  F---~k) Ifme(k ) d k  

2(270-2 ~ ~ fR" kpPp(m(k) d e)rkr - -  d k ,  n >_ 2 (63 )  
p = lr = 1 [F(k)] 2 

where (.) on subscripts denotes symmetric part. I f  one assumes V.v = 0, then it 
follows that 

k.d.k e(k) dk,  n > 2. (64) D : d q- (270-nfR" (k.d.k)2 + (bt.k)2 D m 

Neuman,  et al. (1987) present a number of special cases and approximations to the 
last result. The major strengths and weaknesses of Winter 's  approach are summar- 
ized below. 

The major advantages to Winter 's  approach are the ease with which explicit 
forms of the dispersion tensor may be developed from Eqs. (63) and (64) and the 
ability to analyze dispersion in terms of Peclet numbers. The major limitations are 
the large number  of assumptions required to develop various forms of the tensor, 
many of which are very difficult (if not impossible) to justify experimentally. 
Assumptions used to derive the general form of the dispersion tensor include: (i) at 
least two distinct scales exist, the local and asymptotic, (ii) stochasticity of the con- 
centration profile results strictly from stochasticity of the local velocity field, (iii) 
the local velocity and log hydraulic conductivity are weakly stationary, (iv) the 
asymptotic  expected value of the concentration satisfies a dispersion-convection 
equation, (v) the asymptotic expected value of the concentration equals the field 
realization (see Sposito et al. 1986 for a discussion of this), (vi) the Kubo formal- 
ism of the semigroup problem can be justified rigorously, (vii) the second order 
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approximation adequately describes dispersion, (viii) various mathematical  con- 
straints apply to 15 (e.g., bounded at the origin), and (ix) boundary conditions are 
unimportant  (see Schoen et al. 1987 for problems that may be encountered with 
this assumption). As currently applied, the method is nonoperational in the sense 
that the measurement  process is not accounted for. Constraints imposed to get 
practical forms of the dispersion tensor include: (i) V.v = 0, (ii) isotropy on a local 
scale, (iii) various special forms of the log-conductivity, and (iv) the local disper- 
sion tensor is constant (see Gupta  and Bhattacharya 1986 for a discussion of this). 

An alternative method for developing asymptotic dispersion tensors from a sto- 
chastic point of view is due to Gelhar and co-workers (Gelhar et al. 1979; Gelhar 
and Axness 1983). Gelhar 's  method is analogous to those used in classical tur- 
bulence theories (Monin and Yaglom 1973). While the basic ideas behind Gelhar 's  
technique are correct, there are several inconsistencies in his perturbation approach 
(Cushman 1983; Neuman et al. 1987). To illustrate the method and point out 
these inconsistencies, we will go into some detail in the following. 

Assume steady state conditions with the log of the local hydraulic conductivity, 
Y = InK, weakly stationary. The local mass balance takes the form 

V.v = 0 (65a) 

o r  

V . ( k V h )  = 0 (65b) 

where h is the local hydraulic head. Equation (65b) may be equivalently written 
a s  

V Y . V h  + V2h = 0 (66) 

Setting Y = E ( Y )  + I 7 a n d h  = E ( h )  + h ' w e f i n d  

V17. V E ( h )  + V17. Vh" + V 2 E ( h )  + V2h - = 0 (67) 

or equivalently (Cushman 1983) 

V17.VE(h) + (Vf.Vh~)'+ V2h " = 0 (68) 

where 

(V17 .Vh ' )  ~ =  V17.Vh" -- E [ V 1 7 . V h ' ]  (69) 

If  we assume the second term in Eq. (68) is small, then we arrive at 

V l ~ ' V E ( h )  + V2h " = 0. (70) 

This approach is equivalent to a first order perturbative analysis which has been 
criticized by Cushman (1983). Cushman, with a trivial example, shows that even if 
Y deviates from its m e a n o n l y  slightly, V17 may be extremely large. Hence, it is 
conceivable that  V Y . V h  is non-negligible~ In fact, the assumption that V17 is 
small is equivalent to the assumption that Y has only short wavelength components 
-- hence, it is an asymptotic approach much as is Winter's. 

Upon inserting, the spectral integral representations (Gihman and Skorohod 
1980) for Y and h,  we find (in terms of the spectral densities ~ f ( k )  and ~h-(k) of 
I 7 and h', respectively) 

i k. V E  ( h ) 0 ? ( k )  = k'kd~h-(k ) (71) 

(Note: For those unfamiliar with Lebesgue-Stieltjes measures, we have used spec- 
tral densities in Eq. (71) rather than these measures. In fact, in all practical appli- 
cations to date, the measures have been assumed absolutely continuous. Hence, we 
have lost no generality with this simplification.) 
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Now if we set K m 

r~2 
g = gmexpl  "v = Kin(1 q- Y -}- T 

Upon setting the Darcy velocity 

v = E (v) + 

Darcy's law takes the form 

92 
v = - - K V h  = --Kin(1 + Y + 2 

= exp(EY), then 

+ . . . )  

+ . . . )V(E(h)  -4- h ~) 

(72) 

(73) 

(74) 

which upon taking expected values up to second order gives: 

E(v) = - - K m [ V E ( h  ) + 1 / 2 E ( Y ' 2 ) V E ( h )  + E(ITVh ~) + 1/2E(I72Vh~)]. (75) 

To first order we have 

E (v) = --Km V E  (h). (76) 

Also, to first and second order we have, respectively, 

= --Krn[Vl~ -}- ]7VE(h) ]  (77) 

= --Km [Vh" + I~VE(h)  + 1/2(y2)~TE(h) + (IPVh~)'+ 1/2(I~2Vh~)]. (78) 

It wzs pointed out by Newman et al. (1987) that Gelhar and Axness (1983) keep 
the first two terms in Eq. (75) and that is neither a first or second order approxi- 
mation. Newman et al. point out that to be consistent, either Eqs. (75) and (78) or 
Eqs, (76) and (77) should be used in any perturbative analysis. I will go even 
further and suggest that since Gelhar uses Eq. (70), he should use Eqs. (76) and 
(77). If, on the other hand, Eqs. (75) and (78) are used, then to be consistent, Eq. 
(68) should replace Eq. (70). As suggested by Newman et al. (1987), if we 
proceed with the first order analysis, then we get 

#0~(k) = -- K,n V E (h ) ~ ( k )  - K m i kr (79) 

Substituting ~fi(k) in Eq. (71) we find 

kk 
O~(k) = [I I k[ 2 ]E(v )*? (k )  (80) 

where I is the identity matrix. If we now take the scalar product of Eq. (80) with 
itself and take expected values, we find 

kk kk 
15~ = [I Ikl2] [ l  Ikl2]lSyIE(v) 12 (81) 
which is the relation between velocity perturbations and hydraulic conductivity per- 
turbations expressed in terms of their respective autocorrelations. 

Gelhar and Axness (1983) next proceed to expand Eq. (56) for the steady state 
problem in terms of perturbations and spectral densities. Let C = E ( C )  + C, 
then Eq. (56) with OC/Ot = 0 and d assumed constant gives 

v . [ e ( v ) C  + ~E(C) + ~C -- E(~C)] = d.V2C. (82a) 

The equation for means is 

V.[E(v)E(C)]  + V . E ( ~ + d )  = D.V2E(C). (82b) 

The first order approximation to Eq. (82a) is 
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V'[E(u  -~- vE(C)] : d'V2C. (83) 

Again, if Eq. (83) is used, then to be consistent, Eqs. (76) and (77) should be used. 
If  Eq. (82a) is used, then Eqs. (75) and (78) should be used. 

Gelhar calls E (C~) the macroscopic dispersive flux and writes it as 

E(C~) = I v I D ' V E ( C )  (84) 

where D is again the macroscopic (asymptotic) dispersion tensor. This macro- 
dispersion tensor is now easily found by aligning the coordinate axis so that Eqs. 
(50a) and (50b) hold, assuming C is weakly stationary and using the spectral 
representation of C. The result is 

0~(k) dk 
D f (85) 

&3[ikl + aLk 2 + ar(k 2 + k 2 ) l v l  2 

As this brief outline indicated, there are a number of strengths and limitations 
to this approach. The major strengths are similar to those of Winter, although 
Winter's approach is more general (Gelhar's approach relies on the stationarity of 
C). The limitations to Gelhar's approach are also similar to those of Winter's. 
The major assumptions used by Gelhar include: (i) at least two distinct scales exist; 
the local and the mean (it is not completely obvious how the mean scale of Gelhar 
relates to the asymptotic scale of Winter), (ii) it is not clear to me how stochasti- 
city arises in Gelhar's approach; I assume, like Winter, it arises from stochasticity 
of the local velocity, (iii) the local velocity, concentration and log hydraulic conduc- 
tivity are weakly stationary; (iv) the mean concentration is measurable (see Sposito 
et al. 1986 for a discussion of this), (v) a first order approximation is sufficient to 
give reasonable results, (vi) various mathematical constraints apply to 15 to assure 
its existence, (vii) boundary conditions don't affect dispersion (see Schoen et al. 
1987 for problems with this assumption), and (viii) the local dispersivity is constant 
(see Gupta and Bhattacharya 1986 for a discussion). 

7 Summary 
In this article, we have made an attempt to review a number of stochastic metho- 
dologies which are in use to develop subsurface transport equations and constitutive 
parameters. We have not been directly concerned with stochastic methodologies 
which are in use solely to solve stochastic PDE's. We have been somewhat selec- 
tive in our choice of methodologies; choosing only those approaches that the author 
perceives as having the greatest ramifications and with which the author is fami- 
liar. An attempt has been made to outline the major assumptions associated with 
each methodology, and to highlight each method's strengths and weaknesses. The 
list of topics includes: Martingale techniques (e.g., Brownian motion), stochastic- 
convective methodologies, stochastic-relativist methodologies, spectral-integral 
approaches, perturbative analysis, statistical-mechanical techniques, and general- 
ized hydrodynamics. Each method has its own advantages and disadvantages. The 
choice of methodology is dictated by the problem at hand. Most often one looks 
for a technique that is applicable and which minimizes the assumptions necessary 
to be consistent with experimental data. 

We illustrated why the scale of observation is a key to our understanding of sto- 
chasticity. Any stochastic technique must adequately handle the concept of meas- 
urement scale. It was pointed out that only Clifton and Neuman (1982), Neuman 
and Depner (1987), Dagan (1986) and Cushman (1984, 1986) have accounted for 
the measurement process in stochastic subsurface transport. 
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